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Abstract: In the last two decades, Radio Frequency Identification (RFID) technology has attained
prominent performance improvement and has been recognized as one of the key enablers of the
Internet of Things (IoT) concepts. In parallel, extensive employment of Machine Learning (ML)
algorithms in diverse IoT areas has led to numerous advantages that increase successful utilization
in different scenarios. The work presented in this paper provides a use-case feasibility analysis of
the implementation of ML algorithms for the estimation of ALOHA-based frame size in the RIFD
Gen2 system. Findings presented in this research indicate that the examined ML algorithms can
be deployed on modern state-of-the-art resource-constrained microcontrollers enhancing system
throughput. In addition, such utilization can cope with latency since the execution time is sufficient
to meet protocol needs.

Keywords: Internet of Things; RFID tags, RFID reader; Machine Learning; tag estimate method;
microcontroller

1. Introduction

The Internet of Things (IoT) has become a pervasive environment in which smart
objects interact and exchange information by sensing the ambiance of their surroundings.
One of the major technologies that enable IoT is Radio Frequency Identification (RFID),
which can utilize Wireless Information and Power Transfer (WIPT) in its applications
that include access control, parking management, logistics, retail, etc. [1]. In large-scale
infrastructures, such as commercial warehouses, reading RFID tags, such as ultra-high-
frequency ones, comes at a high cost and can involve a large volume of data [2]. In general,
RFID presents radio technology that acts as a communication medium between a reader
and the tag, with a unique identifier used for communication [3]. In general, the RFID tag
is distinguished by the presence or absence of the battery [4]. Passive tags are self-powered
and communicate using the same RF waves emitted by the reader antennas, known as
backscattering technology [5]. Among the existing technologies, passive Gen2 technology
is considered the most attractive in IoT applications due to its simple design, flexibility,
cost and performance [6,7]. Gen2 as a standard is used on the physical and MAC levels
to establish reliable communication between the reader and a tag. Readers must provide
sufficient power to energize tags and respond to the necessary information since they are
not equipped with batteries. The energy levels that tags can extract are quite low and,
therefore, cannot afford energy-efficient MAC schemes [8]. In general, the MAC of RFID
is random, and there are two widely used methods to achieve it: the first is a binary tree,
and the second is the ALOHA-based protocol [4]. In the binary tree protocol, continuous
YES/NO communication is achieved between a reader and tags, while with the ALOHA
protocol tag initiates communication with a request from the reader [9–11].

One of the commonly utilized ALOHA-based protocols is the Dynamic Framed Slot-
ted ALOHA (DFSA) since it has the most prominent performance, which is the highest
throughput. DFSA belongs to a group of time division multiple access (TDMA) protocols,
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where communication between a reader and tags is divided into time frames, which are,
in turn, divided into time slots [12]. The beginning of the interrogation process in DFSA
is induced by the reader’s announcement of the frame size [6]. This is performed by the
reader sending a QUERY command and the value of the main protocol parameter Q for
the tags [13]. The value of Q is an integer ranging from 0 to 15 that sets the frame size at
L = 2Q. From there on, all tags that are being interrogated will occupy a randomly selected
position in the frame (commonly known as a slot) and will onward reply back to the reader
when their slot is being interrogated. Based on such an access control scheme, three diverse
scenarios may happen: (a) only one tag is in the slot (the successful slot), (b) no tags in the
slot (empty slot) and (c) numerous tags have taken the same spot (collision) [6]. The overall
number of successful, empty and collision slots is denoted with S, E and C, respectively.
An example of an interrogating frame is exhibited in Figure 1.

successful slots

empty slots
collision slots

Q

i

L = 2

Figure 1. An example of an interrogating frame of frame size L = 2Q. i represents the size of a
particular part of the frame.

Therefore, the frame size is equal to the sum of successful, empty and collision slots,
i.e., L = E + S + C. According to the previous notation, the throughput is defined using
Equation (1) as :

η =
S
L

. (1)

therefore, the main goal in DFSA systems is to increase the number of successful slots S
within the frame size L. As tags are fitting their slots randomly, previous studies [14] show
that the maximum throughput will reach its maximum value of approximately 37% when
the size of the frame equals the number of tags. In usual situations, the number of tags is
unknown and has to be estimated in order to set an adequate frame size and, consequently,
achieve maximum throughput.

Aiming to improve the throughput of RFID systems, the research presented in this pa-
per utilizes Machine Learning classifiers as an approach for efficient tag number estimation.
The performance of the ML algorithms is compared with state-of-the-art solutions, specifi-
cally the Improved Linearized Combinatorial model (ILCM) for tag estimation (elaborated
in [8]). The study presented in this paper shows that ML classifiers, which use the maximum
of the available information gathered from Monte Carlo simulations, can be implemented
in standard, mobile RFID readers. What is more, they outperform the state-of-the-art model
achieving better throughput. The advances result in achieving optimal performance in tag
identification by the reasonable processing time and energy requirements. The paper is
structured as follows: Section 2 gives an insight into some commonly applied methods
for tag number estimation and provides more detail on the ILCM model. Section 3.1 gives
details on the experimental setup and elaboration on the Machine Learning models and
the ILCM model used on a particular set of data, continuing with model performance
analyses and comparison. Section 5 examines the feasibility and mandatory means for the
efficient deployment of ML models on microcontrollers. Overall, an articulate conclusion
that emphasizes the obtained results is provided in Section 6.

2. Related Works

Over the past few years, various methods and approaches have been employed
for tag estimation. In [15], Vogt presented a method based on Minimum Squared Error
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(MSE) estimation by minimizing the Euclidean norm of the vector difference between the
actual frame statistics and their expected values. The number of empty, successful and
collision slots is taken into account. However, the predicted values are calculated under
the assumption that the tags in each slot have independent binomial distributions, which
leads to unreliable findings. In the research presented by Chen in [14], the authors apply
probabilistic modeling of the tag distribution within the frame, which they consider to be a
multinomial distribution. By doing so, they obtain the tag number estimation. For each
slot, binomial distributions provide occupancy information. However, it does not consider
the fact that the number of tags in the interrogation area is limited [16]. An improvement
of the previous model was given by research in [17], although this improvement tends
to have a high computational cost of implementation for genuine RFID systems [16].
Furthermore, a study presented in [18] offered a unique tag number estimation scheme
termed ‘Scalable Minimum Mean Square Error’ (sMMSE), which enhanced accuracy and
reduced estimation time. The efficient modification of the frame size is derived from two
principal parameters: the first one puts a limit on the slot occupancy, whereupon frame
size needs to be expanded, and the second determines the frame size expansion factor. In
the research presented in [19], the authors provided an in-depth analysis of some of the
most relevant anti-collision algorithms, taking into account the limitations imposed by
EPCglobal Class-1 Gen-2 for passive RFID systems. The study classified and compared
some of the most important algorithms and optimal frame-length selection. Based on their
research results, the authors point out that the maximum-likelihood algorithms achieve the
best performance in terms of mean identification delay. Finally, the researchers concluded
that the algorithm performance also depends on the computation time for estimating the
number of tags.

A study presented in [20] introduced a new MFML-DFSA anti-collision protocol. In
order to increase the accuracy of the estimate, it uses a maximum-likelihood estimator that
makes use of statistical data from many frames (multiframe estimation). The algorithm
chooses the ideal frame length for the following reading frame based on the anticipated
number of tags, taking into account the limitations of the EPCglobal Class-1 Gen-2 stan-
dard. The MFML-DFSA algorithm outperforms earlier suggestions in terms of average
identification time and computing cost (which is lower), making it appropriate for use in
commercial RFID readers. The rather novel research given in [21] proposes an RFID tag
anti-collision method that applies adjustable frame length modification. The original tag
number is estimated based on the initial assumption that the number of tags identified in
the first frame is known. The authors present a non-linear transcendental equation-based
DFSA (NTEBD) algorithm and compare it to the ALOHA algorithm demonstrating the
error rate for experimental results to be less than 5% and improved tag identification
throughput by 50%. The authors of [22] present an extension for an anti-collision estimator
based on a binomial distribution. They have constructed a simulation module to examine
estimator performance in diverse scenarios and have shown that the proposed extension
has enhanced performance in comparison to other estimators, no matter if the number of
tags is 1000 or 10,000.

As can be observed, the previously mentioned algorithms tend to have high compu-
tational costs since they are commonly funded by calculating probabilities. This might
present an issue for standard microprocessors that are not adjusted to perform computa-
tions of factorials that produce large numbers. To solve the issue, a diverse method for
tag estimation has been introduced by researchers in [8], namely the Improved Linearized
Combinatorial model. Their approach bypasses the conditional probability calculations by
doing them in advance. Further, the estimation model is uncomplicated and provides an
effective tag estimation n̂ based on linear interpolation given by Equation (2):

n̂ = kS + L, (2)
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where coefficients k and l are derived from Equations (3) and (4), respectively:

k =
C

(4.344L− 16.28) +
(

L
−2.282−0.273L

)
· C

+ 0.2407 · ln(L + 42.56), (3)

L = (1.2592 + 1.513L) tan(1.234L−0.9907 · C). (4)

In the event of no collision, the formula gives n̂ = S, whereas for cases when k <
0, k must be set to 0. Following the tag estimation, the Q value is calculated using
Equation (5) as

Q = round(log2(n̂− S)). (5)

The results obtained by the authors have indicated that the ILCM shows comparable
behavior to state-of-the-art algorithms regarding the identification delay (slots) but is not
computationally complex. An extension of their study was performed in [23] by presenting
a C-MAP anti-collision algorithm for an RFID system that has lower memory demands.

3. Materials and Methods
3.1. Machine Learning Classifiers for Tag Estimation

The IoT surroundings rich with sensor devices that are interconnected have also
yielded the demand for the more efficient monitoring of sensor activities and events [24].
To support diverse IoT use-case scenarios, Machine Learning has emerged as an essential
area of scientific study and employment to enable computers to automatically progress
through experience [25]. Commonly, ML incorporates data analyses and processing fol-
lowed by training phases to produce “a model”, which is onward tested. The overall
goal is to expedite the system to act based on the results and inputs given within the
training phase [26]. For the system to successfully achieve the learning process, distinc-
tive algorithms and models along with data analyses are employed to extract and gain
insight into data correlation [27]. Thus far, Machine Learning has been fruitfully applied
to various problems such as regression, classification and density estimation [28]. Specific
algorithms are universally split into disjoint groups known as Unsupervised, Supervised,
Semi-supervised and Reinforcement algorithms. The selection of the most appropriate
ML algorithm for a specific purpose is performed based on its speed and computational
complexity [27].

Machine Learning applications range from prediction, image processing, speech
recognition, computer vision, semantic analysis, natural language processing, as well
as information retrieval [29]. In a problem like the estimation of the tag number based on
the provided input, one must consider the most applicable classifiers that can deal with a
particular set of data. Currently, classification algorithms have been applied for financial
analyses, bio-informatics, face detection, handwriting recognition, image classification,
text classification, spam filtering, etc. [30]. In a classification problem, a targeted label
is generally a bounded number of discrete categories, such as in the case of estimating
the number of tags. State-of-the-art algorithms for classification incorporate Decision
Tree (DT), k-Nearest Neighbour (k-NN), Support Vector Machine (SVM), Random Forest
(RF) and Bayesian Network [31]. In the last decade, Deep Learning (DL) has manifested
itself as a novel ML technique that has efficiently solved problems that have not been
overcome by more traditional ML algorithms [26]. Considered to be one of the most
notable technologies of the decade, DL utilizations have obtained remarkable accuracy in
various fields such as image and audio-related domains [26,32]. DL has the remarkable
ability to discover the complex configuration of large datasets using a backpropagation
algorithm indicating in what manner the machine’s internal parameters need to be altered to
calculate and determine each layer’s representation based on the representation of previous
layers [33]. The essential principle of DL has been displayed throughout growing research
performed in Neural Networks or Artificial Neural Networks (ANN). This approach
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allows for a layered structure of concepts with multiple levels of abstraction, in which
every layer of concepts is made from some simpler layers [26]. Deep Learning has made
improvements in problem-solving with regards to discovering intricate configurations
of large-sized data and thus has been applied in various domains ranging from image
recognition, speech recognition, natural language understanding, sentiment analysis and
many more [33]. Machine Learning classifier performance has been extensively analyzed in
the last decade [34–37], providing a systematical insight into the classifiers’ key attributes.
Table 1 provides a comparison of the advantages and limitations of commonly utilized
ML classifiers.

Table 1. The advantages and limitations of commonly utilized ML classifiers [34–37].

ML Classifier Advantages Limitations

DT Solves multi-class and binary problems;
Fast

Prone to overfitting; Sensitive to outliers

Can handle missing values; Easily inter-
pretable

k-NN Solves multi-class and binary problems;
Easy to implement

Sensitive to noisy attributes; Poor inter-
pretability
Slow to evaluate large training sets

SMV Solves binary problems; High accuracy Training is slow; High complexity and
memory requirements

Durable to Noise; Excellent to model non-
linear relations

RF Solves multi-class and binary problems;
Higher accuracy compared to other mod-
els

Can be slow for real-time predictions;
Not very interpretable

Robust to noise

Naive Bayes Solves multi-class and binary problems;
Simple to implement; Fast

Ignores underlying geometry of data; Re-
quires predictors to be independent

ANN Solves multi-class and binary problems;
Handles noisy data

Prone to over-fitting on small datasets;
Computationally intensive

Detects non-linear relation amongst data;
Fast

Tag number estimation can be regarded as a multi-class classification problem. Amongst
many classifiers, Random Forest has been considered a simple yet powerful algorithm for
classification, successfully applied in numerous problems such as image annotation, text
classification, medical data etc. [38]. RF has been proven to be very accurate when dealing
with large datasets; it is robust to noise and has a parallel architecture that makes it faster
than other state-of-the-art classifiers [39]. Furthermore, it is also very efficient in stabilizing
classification errors when dealing with unbalanced datasets [40]. On the other hand, Neural
Networks offer great potential for multi-class classification due to their non-linear archi-
tecture and prominent approximation proficiency to comprehend tangled input–output
relationships between data [41].

Discriminative models, such as Neural Networks and Random Forest, can model
the decision boundary between the classes [42], thus providing vigorous solutions for
non-linear discrimination in high-dimensional spaces [43]. Therefore, their utilization for
classification proposes has proven to be successful and efficient [44]. Both algorithms
are able to model linear as well as complex non-linear relationships. However, Neural
Networks have a greater potential here due to their construction [45]. On the other hand,
RF outperforms NN in arbitrary domains, particularly in cases when the underlying data
sizes are small, and no domain-specific insight has been used to arrange the architecture
of the underlying NN [21]. Although NN is an expressively rich tool for complex data
modeling, they are prone to overfitting on small datasets [46] and are very time-consuming
and computationally intensive [45]. Furthermore, their performance is frequently sensitive
to the specific architectures used to arrange the computational units [21] in contrast to
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the computational cost and time of training a Random Forest, requiring much less input
preparation [45]. Finally, although RF needs less hyper-parameter tuning than NN, the
acquisitive feature space separation by orthogonal hyper-planes produces typical stair or
box-like decision surfaces, which can be beneficial for some datasets but sub-optimal for
others [46].

Following the stated reasoning, Neural Network and Random Forest have been
applied in this research for tag number estimation based on the scenarios that occur
during slot interrogation.

3.1.1. Experimental Setup

To obtain valuable data for model comparison, Monte Carlo simulations were per-
formed to produce an adequate number of possible scenarios that may happen during the
interrogation procedure in DFSA. Detailed elaboration of the mathematical background
of the Monte Carlo method that has been applied for this research has been elaborated in
research prior to this one and presented in [11]. The selected approach for Monte Carlo sim-
ulations of the distribution of tags in the slots follows the research performed in studies [8]
and [23]. Simulations were executed for frame sizes L = 4, 8, 16, 32, 128 and 256, i.e., for
Q = 2, 3, 4, 5, 7 and 8, where the number of tags was in the range of [1, 2Q+2] (this range
was chosen based upon experimental findings elaborated in [23]). For each of the frame
sizes and the number of tags, random 100,000 distributions of E empty slots, successful
slots S and collision slots C were realized and are presented in Table 2.

Table 2. Snapshot of the obtained data.

Q L S C E N (Number of Tags)

2 4 2 1 1 6
2 4 0 3 1 15

. . . . . . . . . . . . ... . . .
8 256 79 122 55 401
8 256 18 229 9 943

Data obtained from the simulations were given to Neural Network, Random Forest
and the ILCM models for adequate performance comparison and analyses of the accuracy
of tag estimation.

All of the models and simulations were performed on a dedicated computer for such
tasks. To be precise, the machine has an Intel(R) Core(TM) i7-7700HQ@2.80 GHz processor,
16 GB of RAM and NVIDIA GeForce GTX 1050 Ti with 768 existing cores running on a
64-bit Windows 10 operating system. Furthermore, to realize more efficient computing with
the GPU, the Deep Neural Network NVIDIA CUDA library (cuDNN) [47] was applied.
The Keras 2.3.1. Python library was employed, which operates on top of a source built
upon Tensorflow 2.2.0 with CUDA support for different batch sizes.

3.1.2. Neural Network Model

In general, a Neural Network is made out of an artificial neuron and layer: the input,
the hidden layer (or layers) and the output layer are all interconnected [26], as exhibited in
Figure 2.
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3rd hidden  layer1st hidden  layer
2nd hidden  layer

Output layer 
(number of tags)

Input layer

Q

S

L

C

Figure 2. Architecture of the Neural Network model.

Aiming to imitate the behavior of real biological neurons, the course of learning within
a NN unfolds through uncovering hidden correlations amongst the sequences of input data
throughout layers of neurons. The outputs from neurons in one layer are onward given as
inputs to the neurons in the next layer. A formal mathematical definition of an artificial
neuron given by Equation (6) is as follows.

Definition 1. An artificial neuron li is the output of the non-linear mapping θ applied to a weighted
sum of input values x and a bias β defined as :

li(x) = θ(ωix + β), (6)

where ωi represents the matrix of weights and is called an artificial neuron.

The weights are appointed considering the inputs’ correlative significance to the
other inputs, and the bias ensures a consistent value is added to the mapping to ensure
successful learning [48]. Generally, the mapping θ is known as the activation (or transfer)
function. Its purpose is to keep the amplitude of the output of the neuron in an adequate
range of [0, 1] or [−1, 1] [49]. Although activation functions may be linear and non-linear,
usually the non-linear ones are more frequently utilized. The most recognizable ones are
ordinary Sigmoids or the Softmax function, such as the hyperbolic tangent Φ(x) = ex−e−x

ex+e−x ,
in contrast to Rectified Linear Unit (ReLU) function: θ(a) = max(0, a) [33]. The selection
of a particular activation function is based on the core problem to be solved by applying
the Neural Network [50].

The architecture of the NN model displayed in this research is constructed of five
layers, as depicted in Figure 2. The first one is the input layer, followed by three hidden
layers (one Dropout layer), and the final is the output layer. Applied activation functions
were ReLU (in hidden layers) and Softmax (within the output layer). Data used for the
input layer were number Q, frame size L and the number of S successful, E empty and C
collision slots. The number of tags that are associated with a particular distribution of slots
within a frame is classified in the final exit layer.

The data were further partitioned in a 70% : 30% ratio, with 70% of the data used for
training and the other 30% for testing, with the target values being the number of tags,
and all other values were provided as input. The training data were pre-processed and
normalized, whereas target values were coded with One Hot Encoded with Keras library
for better efficiency. By doing so, the integer values of the number of tags are encoded
as binary vectors. The dropout rate (probability of setting outputs from the hidden layer
to zero) was specified to be 20%. The number of neurons varies based on the frame size,
ranging from 64 to 1024 for the first four layers.

Since the classification of the number of tags is a multi-class classification problem,
for this research, the Categorical Cross-Entropy Loss function was applied as the loss
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(cost) function with several optimizer combinations. Another important aspect of the NN
model architecture was thoroughly examined, and that is the selection of optimizers and
learning rates. Optimizers attempt to help the model converge and minimize the loss or
error function, whereas the learning rate decides how much the model needs to be altered
in response to the estimated error every time the model weights are updated [48]. Tested
optimizers were Root Mean Square Propagation (RMSProp), Stochastic Gradient Descent
(SGD) and Adaptive Moment Optimization (Adam). Adam provided the most accurate
estimation results and was onward utilized in the learning process with 100 epochs and a
0.001 learning rate.

3.1.3. Random Forest Model

At the beginning of this century, L. Breiman proposed the Random Forest algorithm,
an ensemble-supervised ML technique [51]. Today, RF is established as a commonly
utilized non-parametric method applied for both classification and regression problems
by constructing prediction rules based on different types of predictor variables without
making any prior assumption of the form of their correlation with the target variable [52].
In general, the algorithm operates by combining a few arbitrary decision trees and onward
aggregating their predictions by averaging. Random Forest has been proven to have
exceptional behavior in scenarios where the amount of variables is far greater than the
number of observations and can have good performance for large-scale problems [53].
Studies have shown RF to be a very accurate classifier in different scenarios, it is easily
adapted for various learning tasks, and one of its most recognizable features is its robustness
to noise [54]. That is why Random Forest has been used for numerous applications such as
bioinformatics, chemoinformatics, 3D object recognition, traffic accident detection, intrusion
detection systems, computer vision, image analysis, etc. [11,53].

A more formal definition of Random Forest is as follows. A Random Forest classifier
is a collection made out of tree-structured classifiers, namely {r(x, Θk), k = 1, ..., L}, where
Θk are independent random vectors that are identically distributed for an input x, every
tree will toss a unit vote for the most favored class [55], as shown in Figure 3.

Training dataset (N instances)

Bootstrap 
Samples

Decision  
Tree  
growing

Majority voting

Tree 1 Tree 2 Tree N


Figure 3. Visualization of the Random Forest classification process.

The bagging approach is used for producing the tree, i.e., by generating random slices
of the training sets using substitution, which means that some slices can be selected more
than once and others not at all [56]. Given a particular training set S, generated classifiers
{r(x, Θk)} toss a vote, thus making a bagged predictor and, at the same time, for every pair
y, x from the training set and for every Θk that did not contain y, x, votes from Θk are set
aside as out-of-the-bag classifiers [51]. Commonly, a partition of samples is on the training
set by taking two-thirds for tree training and leaving one-third for inner cross-validation,
thus removing the need for cross-validation or a separate test set [56]. The user is the
one defining the number of trees and other hyper-parameters that the algorithm uses for
independent tree creation performed without any pruning, where the key is to have a low
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bias and high variance, and the splitting of each node is based on a user-defined number of
features that are randomly chosen [52]. In the end, the final classification is obtained by
majority vote, i.e., the instance is classified into the class having the most votes over all
trees in the forest [54].

Aiming to produce the best classification accuracy, in this research, hyper-parameter
tuning has been performed by utilizing the GridSearchCV class from the scikit-learn library
with five-fold cross-validation.

This is performed following the above reasoning for making a structure for each
particular tree. By controlling the hyper-parameters, one can supervise the architecture
and size of the forest (e.g., the number of trees (n_estimators)) along with the degree of
randomness (e.g., max_features) [52]. Therefore, for every frame size, the hyper-parameters
presented in Table 3 were tested, resulting in a separate RF model for each of the frame
sizes, as presented in Table 4.

Table 3. Tested Hyper-parameters for Random Forest.

Hyper Parameter Values

n_estimators 50, 100, 200, 500
criterion gini, entropy

max_depth 3, 5, 10, 20
max_features auto, sqrt

min_samples_split 2, 4, 6, 10

Table 4. Grid search results of RF Hyper-parameters for a particular frame size.

Frame Size n_Estimators Criterion max_Depth max_Features min_Samples_Plit

L = 4 50 gini 5 auto 2
L = 8 50 gini 5 auto 2
L = 16 100 gini 10 auto 4
L = 32 100 entropy 20 sqrt 2
L = 128 500 gini 20 sqrt 2
L = 256 200 gini 20 sqrt 4

4. Results and Comparison

For ILCM, Neural Network and Random Forest, the same data were used to make
a comprehensive performance comparison. To provide a comprehensive classifier per-
formance comparison, several measures were taken into account. First, to compare the
performance of each classifier as a Machine Learning model, the accuracy measure was
taken (since it is a standard metric for evaluation of a classifier), this being the categorical
accuracy. Categorical accuracy is a Keras built-in metric that calculates the result by finding
the largest percentage from the prediction and then compares it to the actual result. If
the largest percentage matches the index of 1, then the measured accuracy increases. If
it does not match, the accuracy goes down. Our experimental results point out that RF
has out-preformed the NN model in the classification task, as shown in Table 5, but this
measure alone is not enough to determine which of the two ML models would be preferred
for utilization in the scenario of tag estimation. Therefore, due to the nature of the problem
of tag estimation, we have considered Mean Absolute Errors (MAE) and Absolute Errors
(AE) as measures of classifier performance (see Equations (7) and (8), respectively). An
accumulated estimation error will degrade the whole performance [57], meaning that
the overall smaller MAE and AE for a classifier would determine the overall estimator
efficiency, i.e., better system throughput. For the approximated number of tags n̂ and the
exact number of tags n, MAE is defined as:

MAE =
1
m

m

∑
i=1
|n̂(i) − n(i)|. (7)
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For every frame size, AE was calculated as:

AE = |n− n̂|. (8)

Table 5. Classification accuracy of NN, RF and the ILCM model for a particular frame size.

Frame Size
ACCURACY

NN ILCM RF

L = 4 33.54% 23.55% 33.59%
L = 8 28.56% 27.28% 28.22%

L = 16 24.05% 23.27% 24.37%
L = 32 19.78% 17.06% 19.54%

L = 128 11.25% 4.42% 12.12%
L = 256 5.74% 2.8% 9.46%

As can be noticed from Table 5, as frame size rises, the accuracy decreases for all of the
three compared models. Furthermore, Random Forest seems to outperform other classifiers
for the most challenging task for L = 256. Furthermore, ILCM performed similarly to NN
and RF for smaller frame sizes.

On the other hand, the results presented in Table 6 indicate that the Neural Network
model produces error rates comparable to RF, although RF has better accuracy. What is
more, for the largest frame size, NN will have an overall smaller MAE, as can be seen from
Table 6 for frame sizes L = 128 and L = 256. Overall, both Machine Learning classifiers
perform substantially better than the ILCM model.

Table 6. MAE of NN, RF and the ILCM model for a particular frame size.

Frame Size
MAE

NN ILCM RF

L = 4 2.23 2.182 2.23
L = 8 2.56 2.61 2.5
L =16 3.57 4.31 3.69
L = 32 5.23 6.98 5.324

L = 128 11.27 17.38 11.93
L = 256 16.06 27.29 18.19

This observation is further emphasized in the calculations of Absolute Errors of
classification for RF, NN and the ILCM model. AE was derived for every frame size, and
the histograms presented in Figure 4 provide a pictorial comparison of the errors. As can be
seen from Figure 4a, for smaller frame sizes, the NN model performs quite complementary
to the RF model, but for the largest frame size, the NN (see Figure 4c) will have an overall
smaller AE. These histograms are consistent with the MAE results from Table 6, confirming
that the NN classifies values n̂ nearer to the true values of the number of tags n. This
observation is important for estimating the length of the next frame because the closer the
estimated number of interrogating tags is to the actual number of tags, the better the frame
size setting. Incorrect estimates of the total number of tags result in lower throughput.
Results from this analysis show that, in comparison to the RF model, the NN model is
generally “closer” to the real tag number.
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Figure 4. Comparison of absolute errors for Neural Network, Random Forest and ILCM model for
frame sizes (a) L = 8, (b) L = 16 and (c) L = 256.

The overall goal is to reach maximum throughput, and this cannot be achieved if
the frame size adaptation is inadequate. The development of an effective and simple tag
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estimator is burdened by the variables that must be taken into account, i.e., the frame size,
the number of successful slots, and the number of collisions or empty slots. As was stated
in Section 2, the major drawbacks of current estimators lie in their estimation capabilities,
computational complexity and memory demands. Therefore, to achieve a better setting of
the next frame size, the focus of the estimation should be on the variable that contributes
the most to the overall proficiency of the system [23]. Based on the obtained results, one
final measure was performed, i.e., a comparison of throughput for the NN model, ILCM
and Optimal model. The Optimal being used as the benchmark is the one where the frame
adaptation was set by the known number of tags. Results of the comparison are presented
for the scenario of frame size L = 32 realizations and are exhibited in Figure 5. As can
be observed from Figure 5, the Neural Network model is close to the optimal one and
outperforms the state-of-the-art ILCM model. This is particularly shown as the tag number
increases, as can be seen in Figure 5b.
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Figure 5. Comparison of throughput for the NN model, ILCM and Optimal model for the scenario
of frame size L = 32 realizations. (a) Throughput for the NN model, ILCM and Optimal model;
(b) Throughput for the NN model, ILCM and Optimal model for a larger number of tags.

Based on the result of this examination of the performance of classifiers and compar-
ison to the ILCM model, architectures of the Neural Network models were selected for
further utilization.
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5. Mobile RFID Reader—Implementation Feasibility
5.1. Current State-of-the-Art

In recent years, there has been an evident effort to enable the execution of Neural Net-
works on low-power and limited-performance embedded devices, such as microcontrollers
(MCU) and computer boards [58]. The most common benefit that this approach can bring
is not needing to transmit data (e.g., radio) to a remote location for computation. With
the local implementation of ML capabilities on the MCU-like devices, everything can be
executed on a device itself, thus saving the power and time that would be used for data
transmission. The sensitivity of the data collected and sent to the remote device also raises
concerns about expected security. With this approach, IoT devices that locally run trained
ML models significantly reduce the amount of data exchanged with the server through
secured or unsecured communication channels. While keeping most of the collected data on
the local embedded system, some of the aforementioned privacy concerns are reduced [59].
Researchers are increasingly working on adapting existing embedded Machine Learning
algorithms or applications on MCU-like devices, which were previously only possible on
high-performance computers [60–62].

Led by the idea of implementing ML on embedded systems, several IT industry giants
have released support for such devices. As a notable example, Google has released the
TensorFlow Lite platform, which enables the user to convert TensorFlow Neural Network
(NN) models, which were commonly trained for high-performance computers (e.g., Per-
sonal Computers), into a reduced model that can be stored and executed on compatible
resource-constrained machines [63]. With a similar idea, Microsoft has published EdgeML,
which is also designed to work on common Edge Devices [64], and even reported to
work on 8-bit AVR-based Arduino (which holds only 2 KB of RAM and 32 KB of FLASH
memory) on common single-board computers, such as the Raspberry Pi family. Such
an example is that the same ML model (e.g., produced by TensorFlow Lite library), of
course, if device resources allow it, can be executed on a microcontroller (running on Arm
Cortex-M7 MCU at 600 MHz and only 51KB RAM) and computer board (e.g., Raspberry
Pi4B running on quad-core Cortex-A72 1.5 GHz and 4 GB RAM). Power consumption and
possible autonomy on batteries, which is a common requirement for some IoT devices,
prefer microcontroller implementation (typical 3 A/5 V for RaspberryPi4 vs. 0.1 A/3.3
V typical for Arm Cortex-M7-based MCU), and for this reason, the following text is fo-
cused on ML implementation on microcontrollers with comments on implementation on
computer boards. Some semiconductor manufacturers have notably supported the effort
to implement ML capabilities in MCU devices. STM has released X-Cube-AI with deep
learning capabilities on STM 32-bit microcontrollers [65]. An open-source library Micro-
controller Software Interface Standard Neural Network (CMSIS-NN), published by ARM
enables today’s most popular series of Cortex-M processors’ execution of ML models [66].
Another interesting example can be seen by third-party microcontroller board manufacturer
OpenMV [67]. They produce an OpenMV microcontroller board (based on Arm Cortex-M7
MCU), which is a smart vision camera that is capable of executing complex machine vision
algorithms for a low-cost device (typically below 80 USD). The common bottleneck of
current microcontroller boards that run deep CNN is a relatively low amount of RAM,
which stores NN weights and data. OpenMV H7plus board overcomes this limitation by
adding another 32 MB SDRAM in addition to 1 MB RAM, which already came embedded
with the microcontroller itself. Additional RAM, in turn, enables the microcontroller to
store and run several complex NN models, a task that is commonly impossible on standard
MCU-s and can be executed on more complex computer boards, such as the Raspberry
Pi family of computer boards. Today’s increasing demand for ML-enabled embedded
end-devices, constant improvement in computing power and affordability would introduce
new industry standards for smart cities and smart homes.
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5.2. Experimental Setup

Common microcontroller boards, as compared to dedicated Personal Computers, are
exceptionally bad with floating number calculations (in terms of execution times) as they
are designed to work flawlessly with peripheral components rather than execute complex
calculations. TensorFlow library can be configured to use 32-bit floating-point data types
in a model for both data and weights, which generates a large model. MCU-compatible
models implement an approach where integer numbers (8-bit or 16-bit) are used instead of
floating-point numbers in calculations, which would considerably decrease the model size
but dramatically increase execution speed. The original model (with 32-bit or 64-bit weights)
can be executed on a microcontroller, of course, if the model size is small enough for the
microcontroller’s available RAM, but the full power of TFLiteConverter will not be used.
TensorFlow Lite library for microcontrollers allows us to optimize a pre-trained Neural
Network model to a selected microcontroller and implement it on the device. This ability is
possible only with smart quantization, which, in turn, approximates 32-bit floating-point
values into either 16-bit float-point values or 8-bit integer values. In some scenarios (such
as in most complex models presented in this work), there is an evident loss in inaccuracy,
which is, on the other hand, greatly compensated by a reduction in memory requirements
and improvement in execution times. Finally, for some models, quantization makes all
the difference if the model can or cannot be run on a memory-restricted microcontroller.
TFLiteConverter, which is part of the TFLite library, can offer several optimization options;
float16 quantization of weights and inputs that cut the original model size in just half, with
a barely visible reduction in accuracy, dynamic range quantization where weights are 8-bit
while activations are floating-point and computation is still performed in floating-point
operations (optimal trade-off for some low-performance but still capable computer boards).
The third optimization option showed to be ideal for low-power microcontroller devices,
with forces of full integer quantization, where weight and activations are both 8-bit and all
operations are integers. The aforementioned quantization is slightly more complicated than
the other approaches, as the converter is required to be fed with a representative dataset
before the quantization of the whole model. The data shown in Table 7 provide a simple
insight into the accuracy decrease due to the performed quantization for models used in
our paper.

Table 7. Model accuracy before and after quantization.

Original Model Quantized Model

Model L = 4 33.33% 32.72%
Model L = 8 28.53% 27.58 %

Model L = 16 23.11% 22.04%
Model L = 32 19.00% 12.08%
Model L = 128 8.03% 4.08%
Model L = 256 6.71% 3.03%

It can be observed that a decrease in accuracy is observable for the two most complex
NN architectures (L = 128 and L = 256), while for the least complex NN architectures (L = 4
and L = 8) the loss due to quantization is merely measurable. The loss inaccuracy for the
two most complex architectures is possibly the result of output quantization where more
than 256 classes are possible (notably 512 for L = 128 and 1024 for L = 256).

After the quantized model is created, a file containing the model that the microcon-
troller will understand is created. The Linux command tool xxd takes a data file and outputs
a text-based hex dump, which we copy-paste as a c array, and add to a microcontroller
project source code (as an additional header file).

5.3. MCU hardware

The Teensy 4.0 microcontroller board features an ARM Cortex-M7 processor with an
NXP iMXRT1062 chip clocked up to 600 MHz without additional cooling (faster stable
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speeds are possible with an additional heatsink). To our knowledge, this computer board
is the fastest microcontroller board available on today’s market that can be used out-of-
the-box [68] for complex calculations. When running at 600 MHz, Teensy 4.0 consumes
approximately 100 mA current (at 3.3 V supplied voltage), considerably more than some
common microcontrollers, such as the Arduino AVR family, but significantly less than any
desktop computers or computer boards. The Teensy 4.0 microcontroller features 1024K
RAM (of which 512K is tightly coupled) available for storing local data. The ML model is
stored in FLASH memory during programming, after which it is read in whole or segment-
per-segment into the RAM (this option is library dependant and tweakable). Another
microcontroller board in the ML domain that was considered was AMR M3-based Arduino
Due, which sports an Atmel SAM3X8E microcontroller clocked at 84 Mhz and offers a
significantly smaller amount of RAM (96 KB) [69]. Considerably lower amounts of available
RAM for this microcontroller can make it unusable in executing more complex ML models,
where constant reading data from slower FLASH memory can lead to significantly longer
execution times. The third microcontroller board that was initially considered was the
popular STM32F103C8T6 (known as “blue pill”), which is also based on the Arm Cortex-M3
microcontroller. This board clocks 72 MHz but holds only 20 KB of RAM and 64 KB of
FLASH memory, which makes holding and execution of most of our opposed NN models
impossible citexcube. All three devices that have been tested are presented in Figure 6.

Figure 6. Devices used in the test: Teensy 4.0 (left), Arduino DUE (center) and Raspberry Pi4 (right).
Source: Own photo.

To provide better insight into the microcontroller’s performance in executing proposed
NN models, the same quantized TensorFlow models were tested on a common computer
board. A Raspberry Pi 4B computer board was used, which holds a quad-core Cortex-
A72 1.5 GHz SOC with 4 GB of RAM, and runs Raspian desktop OS with kernel version
5.10. With simplicity in mind, all coding for the microcontroller side was performed in
Arduino IDE [70], which offers a simple and intuitive interface and the availability of
numerous additional libraries for a project extension. The ML model was implemented to
the project by adding a hexdump file as an additional header file, which is then converted
into a binary format and transferred to the microcontroller’s FLASH memory during
programming. The Raspberry Pi computer uses a simple Python script with an additional
TFLite interpreter library.

Several proposed model architectures on the Teensy 4.0 microcontroller board were
trained that have been considered as the optimal solution for executing the proposed NN
models. The presented analysis aims to indicate the real limits of the NN architecture that
can be fluently run on selected hardware. ANN layers’ configuration was kept intact, while
the complexity of the model was achieved by increasing the number of neurons in the third
and fifth layers. By utilizing a microcontroller-integrated timer, the average ANN execution
time has been measured on the microcontroller. Another interesting piece of information
obtained was the quantized model size and amount of RAM commonly assigned for storing
global variables after initial programming. Please note that microcontrollers usually do
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not possess the possibility of measuring free RAM space during execution, as compared
to computers. The used library offers some tweaking of tensor size, which may reduce
or increase available RAM size and consequently affect execution time, but we kept this
option on default for all tested models and all devices. It is recommended to keep at least
10 % of available RAM for local variables for stable performance. The results for all six
models’ execution times and model size on Teensy 4.0 ARM Cortex M7 microcontroller,
Arduino DUE ARM Cortex M3 microcontroller and the Raspberry Pi4 computer board are
listed in Table 8.

Table 8. Model performance on Teensy 4.0 MCU, Arduino DUE and Raspberry Pi4.

Frame Size Model Size Execution Time (ms)

(Bytes) Teensy 4.0 Arduino DUE Raspberry Pi4

L = 4 4320 22 897 143
L = 8 5152 32 1284 159

L = 16 6592 48 1983 173
L =32 13,824 120 4928 187

L = 128 75,776 692 29,615 270
L = 256 283,264 1669 111,374 648

5.4. Discussion

As can be observed from Table 8, increasing the number of neurons in hidden layers
(notably hidden layers 3 and 5) and in output layers increases the model size and prolongs
execution. As an example, comparing models for L = 4 and with the model for L = 16, which
have exactly twice as many neurons as in layers 3 and 5, the total model size increases by a
factor of 1.5, while the execution time on the Teensy 4.0 microcontroller observes an increase
of 2.2. The last presented model (L = 256) features an increase in model size by a factor of
65 and in execution time by a factor of 75, as compared to the simplest model (L = 4). It is
worth mentioning that the last model represents an example of the most complex ANN
model that our microcontroller can hold, where after importing it to the microcontroller,
only 13% of the RAM was free for local variables. We also observed that increasing the
depth and/or increasing the number of neurons per layer of an NN poses a significant
memory demand, which can be afforded only by high-end edge devices (e.g., Raspberry
Pi). The average execution time for the most complex exemplary model was 1.7 ms, which
is surprisingly fast for this type of device and can offer real-time performance. The ARM
Cortex M3-based Arduino DUE behaved similarly to the Teensy 4.0 microcontroller with
significantly longer execution times (41 times slower on the simplest model and 67 times
slower on the most complex model). The execution of the most complex model took
111 ms, which makes it impractical for some real-time scenarios. Execution times on
the Raspberry Pi4 computer varied greatly (due to non-real-time OS architecture) and
surprisingly showed to be much slower for less complex models (up to L = 32). For more
complex models, Raspberry Pi was able to benefit from its enormous computing power, and
the most complex model executed in 0.6 ms, which, when compared to Teensy 4.0, is not
significantly better to persuade us to use computer boards instead of the microcontroller.
This once more proves that if the loss in accuracy due to quantization is acceptable, the
only real limitation is available RAM and FLASH memory on the used microcontroller.

In some scenarios, RF can offer better or comparable results to deep NN with only
a fraction of the execution time required on MCU [71]. As the aim of our study was to
increase throughput, which is achieved by better estimating the number of interrogating
tags, which is best performed by the NN model, only the NN model was considered for
implementation on the microcontrollers. Additionally, NN models can offer numerous
optimization and quantization possibilities, which is worth further investigation.

Based on the overall result, one final observation is made. As can be noticed in
Figure 5, the η for ILCM and NN is quite different. Such diversity is a result of the
ILCM’s interpolation, even though it contributes to lower computation complexity. When
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examining the worst case for both models, i.e., frame size L = 256, the Neural Network
model reaches ηNN = 0.2498 in contrast to ηILCM = 0.2265. This results in a difference
of 0.0233, which is approximately 6 successful slots per given frame. The reader setting
determines the execution time per frame and such a time cost needs to be compared with
the time for a successful tag read, i.e., successful slot time. Based on empirical evidence
from research studies, such as the ones in [72], the time for standard reader setting in a
general scenario is 3 ms. Therefore, the read tags that are marked as Neural Network
computational burden are equal to 1.7 ms/3 ms = 0.57.

5.5. Limitations to the Study

There are a few noteworthy limitations to this study. First, this study is based on data
obtained from Monte Carlo simulations. Although simulated data are not the same as
experimentally measured data, the Monte Carlo method creates sampling distributions
of relevant statistics and can be efficiently implemented on a computer. What is more,
the method allows the creation of the desired amount of sample data. The number of
sample data used for training and testing ML algorithms is a crucial parameter when
testing algorithms’ performance. Furthermore, by using data obtained by Monte Carlo
simulations, this research has remained consistent with the methodology presented in
research [8] regarding the ILCM model.

Secondly, more frame sizes could have been considered to obtain better insight into
models’ performance and as such, they can be considered in future work. Thirdly, other
Machine Learning classifiers cloud be employed, tested and compared to the utilized
Random Forest and Neural Network.

Finally, as one of the aims of this study was to find a model that can be executed in
resource-constrained microcontrollers, we were bounded by the relative “simplicity” of
the proposed models (e.g., the model presented in this research is based on multilayer
perceptron), while more complex NN models were not considered at this moment (e.g.,
recurrent networks, convolutional network), which is also planned for future work.

6. Conclusions

The research presented in this study aimed to explore how broadly utilized Machine
Learning classifiers can be applied for tag number estimation within ALOHA-based RFID
systems to increase the systems’ throughput. The strengths and weaknesses of each of
the models are explored on a particularly designed dataset obtained from Monte Carlo
simulations. The state-of-the-art algorithm, namely the Improved Linearized Combinatorial
Model (ILCM) for tag estimation, is used to compare the performance of the ML algorithms,
namely Neural Network and Random Forest.

The obtained results demonstrate that the Neural Network classifier outperforms the
ILCM model and achieves higher throughput.

Furthermore, this study tested to see if ML classifiers can be deployed on mobile
RFID readers, aiming to maximize tag identification performance with suitable energy
and processing demands. Experimental results show that the NN model architecture can
be executed on resource-limited MCUs. These results imply that the conventional RFID
readers may be equipped with Machine Learning classifiers that use the maximum of the
available information acquired from Monte Carlo simulations. The overall results prove
that the execution time on MCU is enough to meet protocol needs, keep up with the latency
and improve system throughput.

Author Contributions: Conceptualization, L.D.R., I.S. and P.Š.; methodology, L.D.R., I.S. and P.Š.;
software, L.D.R. and I.S.; validation, L.D.R., I.S., P.Š. and K.Z.; formal analysis, L.D.R. and P.Š.;
investigation, L.D.R. and I.S.; resources, L.D.R., I.S. and K.Z.; data curation, L.D.R.; writing—original
draft preparation, L.D.R., I.S., P.Š., K.Z. and T.P.; writing—review and editing, L.D.R., I.S., P.Š., K.Z.
and T.P.; visualization, L.D.R., T.P. and I.S.; supervision, P.Š. and T.P. All authors have read and agreed
to the published version of the manuscript.



Electronics 2022, 11, 2605 18 of 20

Funding: This research was funded by by the Croatian Science Foundation under the project “Internet
of Things: Research and Applications”, UIP-2017-05-4206.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
RFID Radio Frequency Identification
WIPT Wireless Information and Power Transfer
DFSA Dynamic Framed Slotted ALOHA
TDMA Time-Division multiple-access
ILCM Improved Linearized Combinatorial model
ML Machine Learning
DT Decision Tree
k-NN k-Nearest Neighbour
SVM Support Vector Machine
RF Random Forest
DL Deep Learning
ANN Artificial Neural Networks
NN Neural Network
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
Adam Adaptive Moment Optimization
RMSProp Root Mean Square Propagation
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