
Citation: Chen, C.; Wu, T.; Gu, Y.;

Shi, C. A Novel Non-Isolated

Step-Up DC/AC Inverter with Less

Switches. Electronics 2022, 11, 2477.

https://doi.org/10.3390/

electronics11162477

Academic Editors: Damien Guilbert

and Michel Zasadzinski

Received: 20 July 2022

Accepted: 7 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Non-Isolated Step-Up DC/AC Inverter with
Less Switches
Chao Chen 1, Tao Wu 1, Yixing Gu 2 and Changli Shi 3,*

1 Grid Pinghu Power Supply Company, Pinghu 314200, China
2 Pinghu General Electric Installation Co., Ltd., Pinghu 314200, China
3 Institute of Engineering Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: shichangli@mail.iee.ac.cn; Tel.: +86-18610225883

Abstract: In order to solve the problem of leakage current and step-up voltage capability associated
with the single-phase single-stage non-isolated inverter, a new topology is proposed in this paper.
The proposal has the advantages of less switch components, high step-up voltage capability and no
leakage current. The three operation modes are discussed and the modulation strategy is designed.
Finally, the prototype of the proposed new single-phase single-stage non-isolated inverter is estab-
lished. The TMS320F28335 DSP and Xilinx XC6SLX9 FPGA are used to provide the system with
digital control. The experimental results show that the proposed inverter achieved the boosted ability
as well as the sinusoidal output voltage, whose total harmonic distortion is well below 5%, which
meets the IEEE Std. 519-2014.
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1. Introduction

Renewable energy installation is increasing rapidly, and the world added nearly
290 gigawatts of renewable power capacity in 2021. The IEA’s Renewables Market Report
forecasts that the planet’s renewable electricity capacity will jump to more than 4800 GW
by the year 2026. As one of the most prevalent renewable energy sources (Figure 1), solar
energy is undoubtedly a powerful engine that can drive the planet past “carbon peak” and
towards “carbon neutrality”.
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Figure 1. Evaluation of renewable energy annual installation.
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Traditional photovoltaic inverters are divided into two types: isolated and non-
isolated [1,2]. Isolated grid-connected inverters are divided into power frequency trans-
former isolation mode and high-frequency transformer isolation mode. At the beginning of
the development of photovoltaic grid-connected inverters, power frequency transformer
isolation mode was mostly used, but these inverters have obvious disadvantages, including
size, weight and cost.

In recent years, grid-connected inverters with high-frequency transformer isolation
modes have developed rapidly, and non-isolated grid-connected inverters have gradually
been accepted for their high efficiency and simple control. Therefore, non-isolated invert-
ers have not been the focus of development [3,4]. Many novel inverter topologies have
appeared in recent years, such as Heric, H5, H6, etc. [5–16]. This type of topology changes
the common mode characteristics of the circuit by adding switches, which reduces the
leakage current of the system to a certain extent. However, since the parasitic capacitance
voltage is still affected by the low frequency grid voltage, the resultant ground leakage
current cannot be fundamentally eliminated. In addition, these non-isolated inverters are
all step-down in structure. Due to the low voltage level generated by the photovoltaic array,
it is necessary to add a front-stage DC/DC boost circuit [17], resulting in a complicated
system control scheme that needs to coordinate pre-stage and post-stage power control.
Besides, additional switching devices in the front-end circuit of the system increase the
system cost.

The objective of this paper is to propose a novel step-up inverter. The rest of the paper
is organized as follows: Section 2 presents the theoretical analysis and design the proposed
inverter, as well as its modulation strategy, Section 3 provides the experimental test results
of the proposed inverter, and the conclusion is drawn in Section 4.

2. Analysis and Design of New Type Inverter

Figure 2 shows the single-phase monopole inverter topology proposed in this paper,
which includes: input source Vin, inductor L3, capacitor C3, switching device S1, inductor
L1, L2, capacitor C1, C2 and switching device S2, S3. This topology has the advantages of
boost ability and double-end common ground. The circuit principle is analyzed as follows:
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The working state 1 is shown in Figure 3a. The switches S1 and S3 are turned on and
S2 is off. The input source charges the inductor L3 and capacitor C3 through the switch
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S1, and charges the inductor L1, L2 and capacitors C1 and C2 through S3. According to
Kirchhoff’s law, the variables of working state 1 are expressed as follows:

VL0 = Vin − VC3 − Vo
VL1 = VC3 − VC2
VL2 = VC3 − VC1
VL3 = Vin

(1)


iC1 = iL2
iC2 = iL1
iC3 = iL0 − iL1 − iL2
iCo = iL0 − io

(2)

Working state 2 is shown in Figure 3b. At this time, the switches S1 and S2 are turned
on and S3 is off. The inductor L3 is charged, while the capacitor C3 is in the discharge state.
The inductor L1 and inductor L2 are in the charging state, but the capacitance C1 and C2
are in the discharge state. According to Kirchhoff’s law, the expressions of the variables of
working state 2 are as follows: 

VL0 = Vin − VC3 − Vo
VL1 = VC1
VL2 = VC2
VL3 = Vin

(3)


iC1 = −iL1
iC2 = −iL2
iC3 = iL0
iC0 = iL0 − io

(4)

The working state 3 is shown in Figure 3c. The switches S2 and S3 are turned on, and
S1 is off. The capacitor C1, C2 and C3 are in the discharge state. According to Kirchhoff’s
law, the expressions of the variables of working state 3 are as follows:

VL0 = Vin − VC1 − VC2 − Vo
VL1 = VC1
VL2 = VC2
VL3 = Vin + VC3 − VC1 − VC2

(5)


iC1 = iL3 + iL0 − iL1
iC2 = iL3 + iL0 − iL2
iC3 = −iL3
iCo = iL0 − io

(6)

According to the above analysis, the corresponding relationship between input voltage
Vin and the four capacitor voltages, output current io, and four inductor currents can be
obtained. If the duty cycle of S1 and S2 is D1 and D2 respectively, the duty cycle of S3
can be expressed as 2 − D1 − D2. If the time of a working cycle is Ts, the running time
from working state 1 to working state 3 is (1 − D2)Ts, (D1 + D2 − 1)Ts and (1 − D1)Ts
respectively. Based on the volt-second principle, the corresponding relationship between
inductor voltage and capacitor current is constructed as follows:

Vo
Vin

= VC0
Vin

= 2D2−1
1−D1

VC1
Vin

= VC2
Vin

= 1−D2
1−D1

iL0
io = iL1

io = iL2
io = 1

iL3
io = D1+2D2−2

1−D1

(7)
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According to (7), the output voltage Vo is influenced by variables D1 and D2, and the
maximum output range is mainly determined by the value of D1. Hence, D1 is set to an
appropriate value to ensure that the output voltage can reach the expected range and that
D2 changes as sinusoid to produce a sinusoidal output voltage. For ease of analysis, define{

vo = AVin sin ωt
k = 1

1−D1
− 2 (D1 > 0.5) (8)

Among them, the peak gain A is equal to Vomax/Vin. Vomax is the maximum output
voltage, and k is the maximum boost ratio. D1 can be expressed as:

D1 =
k + 1
k + 2

(9)

By substituting (9) into (7), the new inverter voltage gain g can be obtained:

g =
vo

Vin
= (k + 2)(2D2 − 1) (10)

When D1 is constant and (8) is substituted into (10), then D2 can be expressed as:

D2 =
1
2
+

A
2(k + 2)

sin ωt (11)

According to (11) and (7), the duty cycle D2 is changed by modulating A to control the
output voltage vo of the inverter.

The new topology modulation process is shown in Figure 4: First, D1 is determined
according to (9), and then D1 and the carrier signal are input to the comparator at the same
time to get the driving signal of switch S1. D2 is determined according to (11), then D2
and the carrier signal are input to the comparator at the same time. After that, the driving
signal of the switch S2 is obtained through the NOT gate. Finally, the driving signal of S3 is
obtained by passing the driving signal of S1 and S2 through the XOR gate.
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3. Experimental Result

In order to verify the feasibility of the proposed method, a low power experimental
platform of the new inverter was built. This system adopted digital control, in which
DSP (TMS320F28335) is used to control the output voltage of the inverter, and FPGA (Xil-
inxXC6SLX9) is used to generate three switch driving signals. The experimental parameters
of the system are listed in Table 1.

Table 1. Experimental parameters.

Parameters Value

Input voltage 35 V
Inductor L1 1.2 mH
Inductor L2 1.2 mH
Inductor L3 0.5 mH

Capacitor C1 4.7 µF
Capacitor C2 4.7 µF

Not-polarized capacitor C3 4.7 µF
Switching frequency f s 20 kHz

Inductor L0 1 mH
Not-polarized capacitor C0 9.4 µF

Load resistance 3.3 Ω
Output voltage 50 V

Output frequency 50 Hz

Figure 5a shows the experimental waveform of the switch drive signal, which is the
driving logic signal of the switches S1, S2 and S3 respectively from top to bottom. It can
be seen that only two switches of S1, S2 and S3 are turned on at the same time, which is in
accordance with the theoretical analysis and design of Figure 4. Figure 5b demonstrates the
experimental voltage waveforms of the capacitors C1, C2, C3, and the output filter capacitor
C0 in the inverter topology. Due to the circuit impedance network being symmetrical, the
voltage waveforms of capacitors C1 and C2 are the same. On the other hand, the C3 and C0
voltages are raised, which validates the boost ability of the circuit. It should be noted that
spikes occur on vc1, vc2, vc3. The main reason behind it is the high-frequency interference
from the measurement due to the high-frequency switching operation in the circuit.

Figure 5c shows the voltage and current waveforms of the impedance network in-
ductors L1, L2, the boost inductor L3, and the output filter inductor L0 in the topology.
According to the inductor voltage and current waveform, it can be seen that when the
forward voltage is added at both ends of the inductor, the inductor is in the charging state,
and the inductor current rises, which is consistent with the theoretical analysis. Figure 5d
shows the output voltage vo and current io waveform of the inverter. It can be seen that the
proposed inverter can achieve sine wave output and boost ability at the same time. The
total harmonic distortion of the output voltage is well below 5%, which meets the IEEE Std
519-2014. Therefore, the effectiveness of the proposed scheme is validated.

Table 2 shows the comparison analysis. The traditional inverters, such as H5, CH5 H6,
and H8, have more switches, heat sinks and complicated isolated gating driver circuits. This
all results in higher costs. On the other hand, the numbers of inductors and capacitors are
more for the proposed inverters, however, they do not need the complicated isolated gating
driver circuits and heat sinks. Also, with the high-frequency operation of the switches,
the capacitor and inductors can be optimally reduced. Finally, the proposed inverter has
the advantages of both boost capability and dual-grounded features, while others do not.
Therefore, the proposed inverter is promising.
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Table 2. Comparison analysis.

H5 [7] CH5 [8] H6 [9] H8 [10] Proposal

Switch 5 5 6 8 3
Inductor 2 2 2 2 4
Capacitor 1 1 1 1 4

Boost capability 7 3 7 7 3

Dual-grounded 7 7 7 7 3

4. Conclusions

This paper has presented a novel topology and modulation strategy of a step-up
inverter. The theoretical analysis was presented to verify the boost ability regarding the
output voltage by controlling the duty cycle of the proposed circuit. The experimental
results show that the proposed scheme has the advantages of less switching devices, boost
ability and dual-grounded features. Also, the designed modulation strategy is simple to
implement with the sinusoidal output voltage. Our future research is towards the extension
of the proposed scheme to the three-phase non-isolated step-up inverter systems.

Author Contributions: Conceptualization, C.C.; methodology, C.C.; investigation, C.C. and C.S.;
writing—original draft preparation, C.C.; writing—review and editing, C.C., T.W., Y.G. and C.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Provincial Management Industry Unit Funding Projects
(2021KJLHPH027).

Conflicts of Interest: The authors declare no conflict of interest.
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