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Abstract: Iterative compilation based on machine learning can effectively predict a program’s com-
piler optimization parameters. Although having some limits, such as the low efficiency of opti-
mization parameter search and prediction accuracy, machine learning-based solutions have been
a frontier research field in the field of iterative compilation and have gained increasing attention.
The research challenges are focused on learning algorithm selection, optimal parameter search, and
program feature representation. For the existing problems, we propose an ensemble learning-based
optimization parameter selection (ELOPS) method for the compiler. First, in order to further improve
the optimization parameter search efficiency and accuracy, we proposed a multi-objective particle
swarm optimization (PSO) algorithm to determine the optimal compiler parameters of the program.
Second, we extracted the mixed features of the program through the feature-class relevance method,
rather than using static or dynamic features alone. Finally, as the existing research usually uses
a separate machine learning algorithm to build prediction models, an ensemble learning model
using program features and optimization parameters was constructed to effectively predict compiler
optimization parameters of the new program. Using standard performance evaluation corporation
2006 (SPEC2006) and NAS parallel benchmark (NPB) benchmarks as well as some typical scientific
computing programs, we compared ELOPS with the existing methods. The experimental results
showed that we can respectively achieve 1.29× and 1.26× speedup when using our method on two
platforms, which are better results than those of existing methods.

Keywords: compile optimization; ensemble learning; optimized space search; feature extraction

1. Introduction

Atmospheric climate [1], inorganic chemistry [2], biopharmaceuticals [3], aerodynam-
ics [4], market economics [5], quality engineering [6], and many other applications require
the use of high-performance computing [7–15]. The continuous innovation and develop-
ment of high-performance hardware architecture give high-performance computing more
opportunities, and the challenges that come with them. With the failure of Moore’s Law
and Dennard Scaling, software performance limitations have severely impacted the perfor-
mance of high-performance hardware. Program execution efficiency is more dependent on
software than ever, especially for compiler optimization techniques.

Program performance optimization involves a variety of program transformations,
and every transformation needs to use appropriate optimization parameters to improve
the efficiency of program execution. Appropriate optimization parameters can significantly
reduce the run time of programs. Therefore, optimization parameter selection is a key
point in the field of program performance optimization. Most compiler designers typically
use their experience to make source code modifications manually and try multiple opti-
mization parameter options to find the optimal performance optimization parameters for a
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particular application or function. Currently, there are two methods to solve optimization
parameter selection: iterative compilation [16,17] and machine learning-based iterative
compilation [18–20].

Iterative compilation technology uses search algorithms to explore compiler opti-
mization phases, and different optimization phases can generate different versions of the
program. Then, the version with the maximum performance improvement after running
different versions on target platforms can be selected. Normally, iterative compilation
can bring a better performance improvement compared with static compilation methods.
However, the choice of compiler transformation parameters, transformation sequences, and
numbers in iterative compilation all require a very large search space. More importantly,
iterative compilation is a completely nonautomatic search, without using the effective
experience gained before. We need to use manual optimization to reduce the searching
blindness most of the time, which is impractical for programmers when the data scale is
very large.

Machine learning-based iterative compilation optimization takes advantage of the
experience obtained by the previous iteration compilation and constructs the optimization
parameter prediction model using machine learning algorithms. The inputs of the predic-
tion model are the features of a program and the outputs are the optimization parameters.
For a new program, optimization parameters can be directly predicted by the prediction
model. A mechanical search is unnecessary for the optimization parameter space. Most
of the existing machine learning-based iterative compilation optimization methods use
a genetic algorithm to determine the optimization parameter space, resulting in a long
search time and a low efficiency. In addition, the existing methods usually use the static
feature representation method to extract the program features. However, dynamic feature
representation usually works better to achieve better predictive performance, while we
need to run a program at least once to find the dynamic information. There are complex
dependencies between the program features and optimization parameters, or between the
optimization parameters themselves. Existing methods usually use a separate machine
learning algorithm to build prediction models, such as K-nearest neighbor, decision tree,
logistic regression, support vector machine, and Bayesian network [21–23]. Many theo-
retical and experimental studies have proven that building a unified classifier through
the integration of multiple learners together will make the ensemble classifier prediction
more accurate [24].

In view of the above problems, we propose an ensemble learning-based optimization
parameter selection (ELOPS) model to select the optimal parameters. ELOPS is a machine
learning-based iterative compilation optimization method, aiming at improving the effi-
ciency of choosing the parameters of optimizations that are not Boolean and maximizing
the performance of compiler optimization. Ensemble classifier technology is a method of
constructing classification models by using multiple classifiers. The prediction performance
will be improved effectively by utilizing a variety of different types of learning classi-
fiers [25]. ELOPS analyzes the complex dependencies of compiler optimization parameters
through an ensemble learning model, and implements the optimization parameter decision
at the function level.

As the existing research usually uses a separate machine learning algorithm to build
prediction models, in order to further improve the prediction accuracy, we built a statistical
learning classifier based on stacking ensemble learning techniques to predict the program
transformation optimization parameters. As most of the existing methods use a genetic
algorithm to search the optimization parameter space, resulting in a long search time and a
low efficiency, in order to further improve the search efficiency and accuracy, an improved
adaptive multi-objective particle swarm optimization (PSO) algorithm was proposed to
resolve the constrained optimization parameter problem, and the search efficiency of the
optimization parameters was improved in the search space. Furthermore, we used a
feature-class relevance (FCR) to find the best feature subset of static and dynamic features
of the program, rather than using static or dynamic features alone. The FCR can maintain
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the main information of the program, and minimize the training time overhead. The
experimental results of various benchmarks verify that the ELOPS method can bring
significant performance improvement compared with the baseline methods using only one
statistical classifier. The main contributions of this paper can be summarized as follows:

(1) For program optimization parameter search problems, an improved adaptive mul-
tiobjective PSO was proposed to explore the parameter optimization search space.
Compared with the default standard optimization level -O3 of GCC, we obtained
1.39× and 1.36× speedup on two platforms at the training phase of the model.

(2) We proposed a program feature representation method FCR, which uses the mixed
static and dynamic features to represent the programs. Based on FCR, the optimal
feature subset of the original feature was applied to the ensemble learning process to
minimize the training time cost.

(3) Program features and the optimal optimization parameters constitute the sample
data of the ELOPS model. We used the sample data to establish a statistical model,
and then integrated the model into the compiler framework. The ELOPS model can
execute the heuristic selection of optimization parameters and compile the process
drive. Given the new target program, the ELOPS model can extract the program
features as input, and predict the optimal compiler optimization parameter effectively.
We achieved 1.29× and 1.26× speedup on two platforms at the prediction phase of
the model. At the same time, we saved considerable search time.

Section 2 introduces the related work. Section 3 introduces the ELOPS method based
on ensemble learning. Section 4 elaborates the optimization space search algorithm of
choosing optimization parameters, including the GA and an improved PSO. Section 5
explains the selection of compiler parameters, including the framework and program
feature representations. Section 6 presents the experimental results and analysis, and
Section 7 is the conclusion.

2. Related Work

All kinds of optimization transformations can be embedded in the iterative compila-
tion process, and this process can find program optimization that has superior performance
relative to those in commercial compilers [26]. However, iterative compilation relies on
multiple execution of the object code to find the optimal program version, which is usually
time-consuming and costly. For the time being, the research focus on iterative compilation
can be categorized as follows: (i) The selections of compiler optimization. (ii) Iterative
compilation overhead. The selection of program optimization transformation includes
parametric and nonparametric. Parameterization means the selection of transformations
that can be parameterized, and the choices between possible values of parameters such as
loop tiling and array padding [20,27,28]. Nonparametric mainly studies the optimization
pass (phase) selection and phase order implementation problems. The selection and imple-
mentation of these optimization passes have impacts and rely on each other. It is a rather
sophisticated matter to decide the kind, order, and number of transformations [29–33]. We
concentrate on the prediction of program optimization parameters and mainly introduce
the relevant work of compiler optimization transformation as a consequence. We can
classify the optimization transformation prediction based on iterative compilation into two
categories: the analytic model method and the predictive model method.

2.1. Analytic Models

Program optimization parameter selection based on the analytic method constructs
analytic models for target programs and traverses the optimization space on the basis of the
analytic model. The analytic models use the cost assessment model to obtain the benefits or
costs of each optimization configuration in the optimization space and select optimization
parameters with the largest income and the minimum cost.

Programs, computationally, take a large proportion of the running time for the nested
loops. The polyhedral model brings about a very useful abstract description to explain
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transformations in these loop nests through a dynamic iteration of the respective statement
as an integer set in a clearly defined space, and the space is named the polyhedron of
the statement. Pouchet et al. [34] classified the program transformation into iterative
fields, iterative scheduling, and access functions modification and used the polyhedron
framework to represent these three types of operations, which have been implemented in
the Open64 compiler.

Nobre et al. [35] employed the compiler optimization selections generated beforehand
for iterative compilation. Purini et al. [29] utilized lower sampling methods to make the
optimization search space tend to decrease, and then recognize compiler optimization for
application programs. Fang et al. [36] put forward an iterative compilation technology
through the data warehouse and implemented compilation optimization combination and
cost-benefit analysis by marking performance on the master server.

These methods based on the analysis model can effectively select the program transfor-
mation optimization parameters, but it is very complicated to construct an analysis model
that can fully reflect the complexity of the modern architecture and the compiler. When the
target platform architecture changes, the original analysis model must be adjusted. This
makes the analytical model method inefficient, and the model generalization is poor. This
makes the method of analytical modeling inefficient and poor in model generalization.

2.2. Predictive Models

The predictive model of program optimization transformations is based on machine
learning theory. The model transforms the application program through the patterns
that machine learning can be used as its input and makes the prediction model learn by
means of artificial intelligence. In principle, the prediction does not rely on either platform
or program and is able to provide evaluations for various program versions, drastically
lowering the overhead of the compiling process.

Milepost is a compiler using the machine learning on different target platforms; the
compiler can automatically adjust optimization parameters for the optimum compiling and
running time, program length, and so on [37,38]. Ashouri et al. [39] first clustered the good
optimizations and then used the results on a predictive modeling to find good ordering of
phases. The research put forward MiCOMP, which makes use of subsequences generated
from LLVM and a full-sequence speedup predictor. Agakov et al. [19] concentrated on
constructing a machine learning algorithm to predict the optimum compiler optimization
parameters, and the learning algorithm depends on features gathered offline or online.
After model training, it is able to generate a series of compiler optimization selections for
elevating program performance if the target application has been assigned. Wang et al. [40]
used profile-driven parallelism detection to overcome the drawback of static code analysis,
and the recognition of further parallel applications became possible. They employed a
prediction method based on machine learning to enable a better suited mapping mechanism
automatically when using various target architectures. This method counted on the ultimate
agreement from the user, so it was a semiautomatic approach, while our approach can
automatically predict the value of the optimization parameters.

Park et al. [21] adopted a polyhedral compiler structure that which can predict the
speedup for an application that has not been seen before. Loop-level optimization in
the optimization space is employed, and the average speedup is obtained by utilizing
various machine-learning algorithms in the WEKA environment. Their prediction model
is constructed through the program features collected from performance counters. Our
method uses mixed static and dynamic features, which can select the most useful features
at the compiling time and the running time for each program. Furthermore, we propose a
new optimization parameter search algorithm, and we use the stacking ensemble learning
prediction model.

Cummins et al. [41] proposed CLgen; in order to create the performance autotuning, a
benchmark synthesizer was put forward to form integrated programs. Ashouri et al. [42]
proposed a Bayesian network model to derive the optimum compiler optimization parame-
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ter for an embedded processor. They utilized the program’s mixed features as the input
of the trained model and showed that the method can surpass 50% of the GCC default
optimization performance. Our work focused on choosing the optimization parameters
that are not Boolean for the programs, such as the factors of unrolling loop, tiling loop, and
array padding, while the existing work mainly focuses on finding good phase ordering.
We believe our work is a useful supplement to existing work.

Leather et al. [43] proposed a method of learning static code features for compilers
heuristically in the optimization process. Ding et al. [44] proposed an analytical approach,
in which the method can automatically define which learning algorithms are suitable
for the optimization process. Using a clustering algorithm, Martins et al. [45] proposed
a frame closely related to the program. Kulkarni et al. [46] explored the optimization
space exhaustively on function-level granularity, and solved the optimization selection
problem through a search tree algorithm. Ballal and Kumar et al. [47,48] proposed compiler
optimization based on genetic programming, and implemented compiler optimization
selection through parallelism GA programming on the architecture with multiple cores.

Machine learning-based iterative compilation optimization methods use experience
obtained by the previous iterative compilation and build the compiler optimization pa-
rameter prediction model through a machine learning algorithm. The prediction model
is employed for predicting the optimization parameters of the fresh target program and
avoids the repetitive test of the traditional iterative compilation method. However, when
collecting the prediction sample collection, most of the existing methods use the static
program feature representation and use the GA to explore the optimization parameter space
of different compilers. In addition, the existing methods generally use a single machine
learning algorithm when building models. Therefore, there are some problems, such as in-
complete features, inefficient search algorithms, and low model prediction accuracy. In this
paper, an FCR technique was used for program feature representation, and an improved
adaptive multiobjective PSO algorithm was proposed to improve search efficiency. Based
on the stacking ensemble learning technique, we built an effective prediction model for
choosing program optimization parameters.

3. Modeling the Program Optimization Parameters Selection Problem
3.1. Definition of Optimization Parameters

To better describe the problem of parameter selection in program transformation
optimization, we formulate the problem first.

Transformation indicates that a partial function F, which can take program P as its
input, and a semantics equivalent program P′ as its output, that is, F can change the order
of a code segment while keeping the semantics.

Optimization parameters are the main part related to parameterization transforma-
tion. For example, the transformation parameters of loop unrolling are unrolling factors.

Assuming that an application program has s performance critical parameters {q1, q2, · · ·, qs},
each parameter qi is called an optimization parameter. The parameters in program perfor-
mance optimization are usually integers, so qi ∈ Z, i = 1, 2, · · ·, n. In addition, based on
the knowledge of compiler optimization, each optimization parameter qi has a lower and
upper bound, i.e., low ≤ qi ≤ top. The order of optimization parameters {q1, q2, · · ·, qs} is
called an optimized parameter vector defined as q = {q1, q2, · · ·, qs}.

The optimization parameter selection aims to find the optimal optimization parameter
vector q to minimize the runtime of the target programs. Assuming T(x) is the execution
time when using optimization parameter vector q, the optimization parameter selection
problem is transformed into an equal problem: the vector q = {q1, q2, · · ·, qs} is chosen if
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the execution time T(x) is the smallest, which is a constrained optimization problem with
multiple objectives, defined as:

minT(q) = (t1(q), t2(q), · · ·, tk(q))
s.t.

gi(q) ≤ 0, i = 1, 2, · · ·, p
hj(q) = 0, j = 1, 2, · · ·, m

q = {q1, q2, · · ·, qs}, q ∈ RS

qmin
i ≤ qi ≤ qmax

i , i = 1, 2, · · ·, s

(1)

where T(q) is the objective function, and the vector q = {q1, q2, · · ·, qs}, q ∈ RS is an S
dimensional decision vector, called a feasible solution. gi(q) and hj(q) are the constraints.
qmin

i and qmax
i are the upper and lower bounds of the ith decision variable. The space

formed by all feasible solutions is called the solution space, denoted as Ω. The allowable
error δ > 0 can be set to transform the equality constraint hj(x) = 0 into an inequality
constraint, i.e.,

∣∣hj(x)
∣∣ ≤ δ.

Based on the understanding of the program transformation optimization parameters,
the most effective parameterization code transformations are loop unrolling, loop tiling,
and array padding [20,27,49]. Therefore, this paper focused on the constrained multiob-
jective optimization parameters of these three typical transformations. For these three
parameterized optimizations, we utilized ensemble learning for optimization parameter
predictions. For other nonparametric optimizations we used the default optimization
of GCC.

Loop unrolling copies the statements in the loop basic block many times and reduces
the number of loop iterations to reduce loop branches and better prefetch data. Among
them, the number of copies of the loop body is called the loop expansion factor. Loop
unrolling is often used to reduce loop overhead, providing instruction-level parallelism
for processors with multiple functional units. However, this transformation may also lead
to negative effects on program performance. For example, excessive loop unrolling will
cause register spilling, and the register resource will be wasted when the unrolling factor is
too small. As a result, the key issue in loop unrolling is the choice of unrolling factor. As
shown in Figure 1a, if the unrolling factor is set to 2, the unrolling of the loop is presented
in Figure 1b. If the factor is set to 4, as shown in Figure 2, the unrolling technique improves
the program performance by executing the same operations parallel. The constraint in the
unrolling factor is:

c1U1 ∗ c2U2 ∗ · · · ∗ cnUn ≤ NR

1 ≤ Un ≤ NR(i = 1, 2, · · ·, n), Ui ∈ N
(2)

where ci is the program-related constant that represents the number of registers in the body
of the loop body corresponding to the i-th loop. Ui is the unrolling factor, and NR is the
number of registers in the processor.

Figure 1. Loop unrolling transformation. (a) Before loop unrolling; (b) After loop unrolling.
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Figure 2. The unrolling factor is set to 4 for program transformation.

Loop tiling uses the affine transformation to change the access order of the loop
iteration, improving the locality of the data. The approach can fully exploit tiling data
reuse and reduce data transformation and cache misses. Using the appropriate loop
transformation technique, loop tiling can realize data parallelism between tilings and within
the tiling by eliminating the data dependency. The choice of the tiling factor determines the
performance of the tiling code. The constraint in the tiling factor is shown in Equation (3),
where Ti, Sk, M, and Lk are the tiling factor, size of the array element, memory capacity,
and array dimension, respectively. The tiling factor of the loop nesting Li(i = 1, 2, · · ·, n) is
bi. If Ti is the jth dimension tiling factor of the array, Ti = bi when bi = 0. Otherwise, this
dimension is not to be tiled and Ti = ti, where ti represents the number of elements of the
jth dimension. x(k,j) = 1 means we can tile the jth dimension of the array while x(k,j) = 0
means we cannot.

∑m
k=1

(
Sk ∗∏lk

i=1 Ti

)
≤ M

Ti =

{
bi, x(k,j) = 1
ti, x(k,j) = 0

(3)

Array padding is typically for multidimensional array optimization by filling the
minimum dimension length of the multidimensional array with a multiple of the vector
registers. Each access is address-aligned and a nonaligned address should be avoided.
Array padding requires additional space overhead and an excessive array filing factor
increases the number of translation lookaside buffer (TLB) failures. In this paper, we
limited the array padding factor within a range from 0 to 64. As shown in Figure 3a,
assuming that the length of the vector register is 256 bits, each vector register can load
four floating-point array elements. The minimum length of array a is 623, not an integer
multiple of 4. It is difficult to determine whether the array reference a [i] [0] is aligned
or not in each iteration. If the array dimension length is increased by 1 and becomes 624,
which can be divisible by 4, we can use the aligned vector instructions for code generation,
although we need slightly more storage space. The loop after array padding is shown
in Figure 3b.

Figure 3. Multidimensional array padding example. (a) Before array padding (b) After array padding.

3.2. Program Transformation Optimization Parameter Selection Model

The main goal of ELOPS is to determine the optimal compiler optimization parameters
to be applied by the target program. The ELOPS model associates program features with
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the optimization parameter of the compiler to gain the maximum execution efficiency.
The structure of ELOPS is displayed in Figure 4, including the model training (learning
phase) and prediction process (inferring phase). The benchmark program is divided into
two sections in the phase of training the model, namely training set P1, P2, · · ·, PN and test
set PN .

Figure 4. Compiler optimization parameter selection model framework.

Function features were extracted both statically and dynamically, and the best feature
subset of the original set was selected through the feature-class relevance method. Using an
optimization space search algorithm, an ensemble learning method was used to establish
the statistical model framework. The model takes the function features as its input, and
the approximate optimal optimization parameter of the function is the output. The details
of this ensemble learning are described in Figure 5. The function feature values and the
approximate optimal optimization parameters in the training set construct the training
samples of the ELOPS model. For the sake of improving the generalization efficiency of
the program and prediction accuracy, we chose the leave-one-out cross validation method
for our model training implementation. In the model prediction phase, we extracted the
function features of a new program first and then predicted the best compiler optimization
parameters based on the knowledge stored in the ELOPS model.



Electronics 2022, 11, 2452 9 of 26

Figure 5. Stacking ensemble learning framework.

4. Optimization Space Search Algorithm for Optimized Parameters

The optimization space search is a type of algorithm with global optimum performance,
which is very general and well suited for parallel computing. The method of space search
requires a strict theoretical basis and searches solution spaces according to certain rules.
Instead of the experiences from experts being reused, the search algorithm is capable of
finding the solution that is optimum or being an approximation with a guaranteed period
of time. The commonly used optimization space search algorithms include the genetic
algorithm (GA), particle swarm optimization (PSO), simulated annealing, tabu search, etc.
In this paper, we proposed an improved PSO algorithm to search the optimization space of
compiler optimization parameters, and we used GA for comparison.

4.1. Genetic Algorithm

The genetic algorithm (GA) is a group search algorithm based on the natural selection
of the biological evolution process. It has a strong search ability and is not limited to the
specific model. In addition, GA can provide effective support for most kinds of complex
decision optimization problems [50–52]. The GA can be understood as follows: given a map
f : S→ Rn and parameter optimization problem minx∈S f (x), we need to determine the

set G = {T|T = (a1, a2, · · ·, al), ai ∈ A, i = 1, 2, · · ·, l}, in which A is a nonempty set and i is
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a positive integer. We can construct mapping g : G → Rn and d : G′ → S, G′ ⊂ G defined
on G and its subsets G′, respectively. On this basis, we can obtain the following formula.

∀T∗ ∈ G′, g(T∗) = minT∈Gg(T)⇒ f (d(T∗)) = minx∈S f (x) (4)

We use various genetic operations to search the element T∗ ∈ G, s.t. g(T∗) = minT∈Gg(T).
As a result, the optimization problem can obtain the optimum solution Xo = d(T∗). In
practical applications, the coding space G is generally a finite set, which usually cannot
guarantee that the original problem’s optimum will exist in its representation space.

Consequently, we modify Formulas (4) to (5), in which ε is the error acceptable for
the optimal solution which is also called the precision requirement, and Nε(Xo) is the ε
neighborhood of Xo.

∀T∗ ∈ G′, g(T∗) = minT∈Gg(T)

⇒ d(T∗) ∈ Nε(Xo)(Xo ∈ S) = minx∈S f (x), ε > 0
(5)

In this paper, we used the same GA configuration for all hotspot functions in the test
set to minimize the search space and selected the optimal solution from the search space.
The optimal solution is the best compiler optimization parameter vector q = {q1, q2, · · ·, qS}.
We created an initial chromosome population, where each chromosome is represented by a
certain optimization parameter vector, and similarly, each gene in that chromosome was
represented by an optimization parameter. Each generation created 40 chromosomes and
evolved for 50 generations. Algorithm 1 shows the details of the evolution.

Algorithm 1 Optimization parameter selection algorithm based on GA

1: Input: Hotspot function h, optimization parameter vector q
2: Output: The best optimization parameter vector q∗ and its corresponding program running
time T(q∗)
3: Algorithm:
4: Step 1: Initialization: Read the input parameters and set the population size N, the largest
genetic generation M. Then, generate the initial population Pop = [x1, x2, · · ·, xN ] with N
individuals and each individual corresponds to an optimized parameter vector.
5: Step 2: For every chromosome in the current generation, calculate the fitness value. Ftness
function Fitness(T) is represented as reciprocal form on the summed time for both compilation and
execution of the function when the corresponding optimization parameter is adopted:
Fitness(T) = 1

Tcompilation+Texecution

6: Step 3: Select: choose the individual to participate in the cross, select operator using a roulette
selection method and elite strategy. First, choose a small proportion of the elite from the current
generation Popj, directly into the next generation of population, and then select the remaining
individuals based on roulette method.
7: Step 4: Cross: perform arithmetic cross operation, set the crossover probability
Pcrossover = Pmutation = 0.6.
8: Step 5: Variation: mutate the individual in the population, set the mutation probability to
Pmutation = 0.3.
9: Step 6: algorithm termination condition judgment. When the genetic generation arrives at the
peak genetic generation M or the number of optimal individuals’ consecutive generations does
not change, the algorithm terminates, go to step 7; otherwise k = k + 1, go to step 2.
10: Step 7: Select the optimization parameter vector q∗ and the program run time T(q∗)
corresponding to the individual and the output will be the one that has the highest value of fitness
in the current population.
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4.2. Multiobjective PSO Based on Adaptive Constraints
4.2.1. Standard PSO Algorithm

Particle swarm optimization (PSO) is a multipoint search algorithm whose basic idea
is that there are D-dimensional search spaces and some particles without weight [53,54].
The volumes are randomly distributed in the search space. Each particle has two values:
position and speed vector. The particle’s position represents a possible solution, and the
particles move in the direction of the speed vector in the solution space. For each iteration,
the particles will fly a distance to produce a new position. The individual and population-
optimal positions of the particles are determined by the fitness function. On this basis, we
can decide the new speed vector and continue to adjust the position until the best is found.
The standard PSO evolutionary learning formula is as follows:

vid(k + 1) = vid(k) + c1r1(Pid(k)− xid(k)) + c2r2(Pgd(k)− xid(k)) (6)

xid(k + 1) = vid(k + 1) + xid(k) (7)

where vid = (vi1, vi2, · · ·, viD), 1 ≤ i ≤ N denotes the speed information of the ith particle,
and xid = (xi1, xi2, · · ·, xiD), 1 ≤ i ≤ N the location information. k stands for the number
of iterations. c1, along with c2, acting as the learning factors that determine the value of
the speed change vector. r1 ∈ [0, 1] and r2 ∈ [0, 1] represent two random coefficients used
to prevent particles from flying out from the search space. The standard PSO algorithm
can only solve the optimization problem with no constraint and only one objective being
present. For the multiobjective optimization accompanied with constraints, we need to
consider the constraint processing method and the boundary formed by the Pareto optimal
solution, namely, the Pareto front end [55].

4.2.2. Adaptive Multiobjective Particle Swarm Optimization

When the constrained problem is optimized, the degree of particle constraint violation
can be defined according to the constraints conditions, and the particles can be divided
into feasible particles (FP) and infeasible particles (IFP). According to the standard PSO
algorithm, if a particle falls into a feasible domain, the IFP near the constraint boundary will
deviate from the boundary because of being fascinated by the global optimal solution in
the feasible domain when the optimal solution exists in the feasible domain boundary. This
phenomenon will result in missing the useful information around the bounds. Therefore,
we propose a method to mitigate the speed of IFP flying near the constraint boundary
through adaptive learning, namely, the adaptive multiobjective PSO algorithm (AMPSO).

In the AMPSO algorithm, we update vid and xid for FP according to the standard
PSO algorithm. For the IFP generated in the population evolution process, the normalized
processing method is used to obtain the constraint violation degree:

Cnor(x) =
c(x)−minxC(x)

maxxC(x)−minxC(x)
(8)

Using Cnor(x) to influence the IFP learning factor and modifying Cnor(x) and xid, we
can obtain the adaptive evolutionary learning formula:

vid(k + 1) = vid(k) + c1r1(Pid(k)− xid(k)) + c2Cnor(x)r2(Pgd(k)− xid(k)) (9)

xid(k + 1) = vid(k + 1) + xid(k) (10)

According to (9) and (10), IFP learns adaptively according to Cnor(x). Particles with a
large degree of constraint violation, c2Cnor(x) ≈ c2, maintain the ability to follow the global
optimal solution, and can deviate from the existing location to implement an unknown
feasible domain search. For the particles around the constraint boundary,Cnor(x) ≈ 0 and
c2Cnor(x) is the minimum. The attraction of the global optimal solution to such particles
is weakened, and the search for the useful information near the constraint boundary is
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completed. For comparison, while the standard PSO algorithm only improves the constraint
boundary search ability, the AMPSO algorithm also makes full use of the particles with
different c2Cnor(x) to complete the global optimal search to ensure that the particles can
converge quickly to the real Pareto front end.

When using the PSO algorithm, the use of crowding distance (CD) can guide the
particles to move from dense places to loose places to improve the diversity of the Pareto
solution and maintain the algorithm search coordination. The CD strategy is used to
describe the degree of density of other solutions distributed around an optimal solution.

For each objective function to be optimized, the nondominated solution with the
concentrated optimal solution is sorted by the objective function size. For each solution, the
average side length of the cube surrounded by two adjacent solutions is calculated. When
the CD of all the optimal particles are determined, the CD values are sorted in descending
order. CD with a smaller solution has a larger probability of being removed. If there is
more than one CD with the smallest solution, we will remove the CDs randomly. Then we
determine whether the particles in the external file exceed the limit and remove them if
beyond. The remaining are the individuals with the minimum CD in the optimal Pareto
solution. This process is repeated until the size of the particles in the external file meets the
set value. We present a new CD calculation method, and the formula is:

Di =
1
m∑m

k=1

∣∣∣ f i+1
k − f i−1

k

∣∣∣ (11)

I2
i =

∑m
k=1 (

∣∣∣ f i+1
k − f i−1

k

∣∣∣− Di)
2

m
(12)

DDi =
Di

ln 1
I2
i

(13)

where Di represents the CD with m objective functions and f i
k is the object function value

of the ith individual after being sorted from small to large on the kth target dimension. I2
i

is the CD variance of adjacent individuals, which reflects the degree of CD difference on
each dimension. The larger the difference degree is, the easier it is to keep the particle. DD
is the CD of particle i. Delete only the smallest CDs at a time, and the optimal solution of
the affected CD component on each target dimension is found by the position information
of the deleted optimal solution. Let Formula (13) recalculate the CD component of the
affected optimal solution, update the CD, and continue until the Pareto optimal solution
scale reaches the given value. This method can make the Pareto optimal solution have the
best distribution and avoid falsely deleting the Pareto optimal solution. Algorithm 2 is the
optimization parameter selection algorithm based on AMPSO.

This AMPSO algorithm’s time complexity is O(n(N + L)2) in which n, N, and L are
the problem’s objective function number, the population size, and the Pareto nondominated
solution scale, respectively. That is, the time to finish computing the whole algorithm is
mainly concentrated on the Pareto nondominated solution construction. Therefore, the
AMPSO proposed in this paper does not raise the overall algorithm’s time complexity.

Algorithm 2 Optimization parameter selection algorithm based on AMPSO

1: Input: Test program P, optimization parameter number n, evolutionary parameters (w, c1, c2),
population size N, Pareto nondominated solution size S, maximum number of iterations M.
2: Output: The best optimization parameter vector q∗ and its corresponding program running
time T(q∗).
3: Algorithm:
4: Step 1: The range of values Ω is defined for each optimization parameter, and initializes the
population location xid and speed vid in the given search field.
5: Step 2: Calculate the target function value of each particle in the population, i.e., the program
execution time ti(x) and the constraint violation degree Cnor(x).
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6: Step 3: Select all feasible solutions,
x = (x1, x2, x · ··, xD), x ∈ RD, xmin

i ≤ xi ≤ xmax
i , i = 1, 2, · · ·, n, and construct the current Pareto

nondominated solution set based on Pareto domination relation. If the current nondominated
solution is larger than the given scale S, the CD algorithm is used to maintain the scale of the
nondominated solution set at a given scale.
7: Step 4: If the current Pareto nondominated solution set is empty, select the particle with the
smallest Cnor(x) as the global optimal position. Otherwise, the solution with the largest CD in the
solution set of Pareto nondominated will be selected and be the global optimal position.
8: Step 5: Update the individual optimal position of the particles: if there are two particles, one is
feasible, and the other is unfeasible, then we select the feasible particles as excellent. If the two
particles are all unfeasible, then select particle with small Cnor(x) is better. If both particles are
feasible, the nondominated particle is chosen based on the Pareto domination relation.
9: Step 6: Update the position xid and speed vid of all particles according to AMPSO.
10: Step 7: Determine if the biggest number of iterations M is achieved; if not, return to Step 2;
otherwise, the loop ends and output the best optimization parameter vector q∗ and its
corresponding minimum program running time T(q∗) are selected.

5. Optimized Parameter Prediction Based on Ensemble Learning

The traditional machine learning classifier is simply a classifier, and there are some
problems in model fitting together with the degree of accuracy to classify. There is one valid
solution for both called ensemble learning, which would better address the issues on the
capabilities of the classifier. The ensemble classifier technology is a method of integrating
multiple classifiers to construct the classification model. By utilizing the diversity of
different classifiers, the variance is reduced without increasing the deviation to effectively
improve the prediction performance. In the process of classifier construction, to ensure
that the combined classifier produces a better classification effect than a single classifier,
two principles need to be followed: one is that the prediction errors generated by different
classifiers are irrelevant, and the other is that the classification effect of each classifier is at
least better than that of random prediction.

5.1. Data Preprocessing

During the time that the sample data are being gathered, problems such as data
redundancy, data loss, and data errors may exist. Using such problematic materials, the
model that predicts may cause some unreliable accuracy. Therefore, we need to perform
preprocessing of the original data dataset. The preprocessed dataset is segmented into
two parts: the set for training and the set for testing and validation. In addition, due to
the difference between the different parts of the program, the preprocessing of the dataset
may lead to unbalanced data. We used the resampling strategy to resample the unbalanced
dataset and then constructed the model based on the balanced sample distribution.

5.2. Stacking Ensemble Prediction Model

At present, the boosting and bagging ensemble learning algorithm is more extensive.
The algorithm can integrate some weak predictors into a new strong predictor to enhance
prediction accuracy and generalization ability. We used a different approach from boosting
and bagging, called stacked generalization or stacking ensemble learning technology.
Stacking differs from boosting and bagging since it uses a different learning algorithm
to construct a learner, not just a simple combination of the same types of basic learners.
Although we did not improve the ensemble learning algorithm itself, to the best of our
current knowledge, we are the first to use this algorithm for the compiler optimization
parameter selection.

Figure 5 shows the stacking ensemble learning framework, which has level-0 (base-
learner) and level-1 (meta-learner). Level-0 is formed with training data through bootstrap-
ping, and the output of level-0 is taken as level-1 input. During the model training phase,
we use diverse learning algorithms, such as logistic regression, to generate level-0 learners.
Then, we can obtain the Meta-learner LT′ ’s training data, which contains the predicted
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results {P1, P2, · · ·, PT} of the Base-learner and the real classification results of the validation
set. The goal of level-0 is to assemble output sets reasonably and amend predictive errors
in the base learner. For fresh data, predictions of each base learner are taken as the input
of level-0, while level-1 can predict the result simultaneously. Algorithm 3 shows the
optimization parameter selection algorithm based on the Stacking ensemble model.

Algorithm 3 Optimization parameter selection based on the Stacking ensemble model

1: Input: Dataset D(x, y) = {(x1, y1), (x2, y2), · · ·, (xn, yn)}; level-1 learning algorithm
L1, L2, · · ·, LT and level-2 learning algorithm L.
2: Output: Program optimization parameter classification.
3: Algorithm:
4: for t = 1, 2, · · ·, T
5: ht = Lt(D)
6: end for
7: D′ = ∅
8: for i = 1, 2, · · ·, n
9: for t = 1, 2, · · ·, T
10 Zit = ht(xi)
11 end for
12 D′ = D ∪ {((zi1, zi2, · · ·, ziT), yi)}
13 end for
14 h′ = L(D′)

5.3. Program Feature Extraction

We can divide program features into two categories: static and dynamic. When
extracting static features of a program, there is no need to execute the program, and it
can be obtained during the process of compiling the program. Dynamic features need
to be extracted during the running process of the program, and we can use tools such as
performance counters to collect them. Since the use of dynamic features needs to actually
run code, there is a very large execution time penalty. Our ELOPS model uses both dynamic
and static features, which are extracted by the Gprof tool and our own compiler instruction
script. Another study by Liu et al. [56] presented the specific static and dynamic features we
want to use. The static features we use include the number of basic blocks in the function,
number of basic blocks with a single successor, and so on. The dynamic features we use
involve cache line access, level-1 cache, and so on.

Since the machine learning modeling process is time-intensive, we use the feature-
class relevance (FCR) to find the optimum feature subset. This method can implement
correlation statistics of the program features and the compiler parameters category, and
improve model prediction accuracy effectively while using as few main features as possible.
Different from the method in reference [30], this paper calculated the correlation between
program features and program optimization categories to select the FCR method that is
most relevant to the target problem for the construction of program feature subsets.

We took three FCRs as follows:
Information gain (IG) is calculated based on information entropy, which is the de-

creasing part from a priori entropy to a posteriori entropy and reflects the degree of
information eliminating uncertainty. We can implement feature selection through the sort
of feature f based on the size of information gain. The relation between the amount of
information and probability is monotonically decreasing; the smaller the probability is, the
greater the information that can be contained. When using {ci}m

i=1 as the set of optimization
parameter classes, the IG of feature f is:

IG( f ) = −∑m
i=1 p(ci) log2 p(ci) + p( f )∑m

i=1 p(ci| f ) log2 p(ci| f )

+p( f )∑m
i=1 p(ci

∣∣∣ f ) log2 p(ci

∣∣∣ f ) (14)
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Chi-square examination is a nonparametric test, and the chi-square checking can
determine whether the class distribution is closely related to the features of the program.
The degree of deviation determines the value of the chi-square:

χ2 = ∑r
i=1 ∑nc

j=1

(
Oi,j − Ei,j

)2

Ei,j
(15)

In Formula (15), r expresses how many eigenvalues feature f has. nc shows the number
of classes. When the feature is i and the category is j, Oi,j is the actual observation value,
and Ei,j is the theoretical expectation value.

ReliefF is a feature-relevance computational method that determines the features’
capabilities for classification according to the significance of those features. Each time, the
ReliefF algorithm collects a sample M from the training set and finds K neighboring samples
with distances as short as possible from both identical and different samples; then, the
weights of every feature are upgraded.

5.4. Evaluating Indicator

In terms of evaluating the model’s prediction performance, our research takes the
indicators including precision, recall, and F1 metrics. We also express the prediction
results with a confusion matrix. In the process of program training, we find the finite
optimization parameter combinations, and we treat each combination as one class. In other
words, we have class 1, · · ·, class n optimization parameter combinations. When predicting
optimization parameters for the new function, if the best optimization parameters of the
function belonging to class i can be classified into class i correctly, record as True Positive
(TP). If the best optimization parameters that do not belong to class i are misclassified into
class i, record as False Positive (FP). If the best optimization parameters belonging to class
i are misclassified to other classes, record as True Negative (TN). If the best optimization
parameter does not belong to class i, it is correctly classified into other classes and recorded
as False Negative (FN). On this basis, we can obtain the following measurement values:

(1) Precision: precision = TP
TP+FP

(2) Recall: recall = TP
TP+FN

(3) F1 metrics: F1 = 2×precision×recall
precision+recall

(4) AUC: the area under the ROC curve. The ROC curve was originally used to
describe the trade-off relationship between income and cost. We use the Y axis to represent
the true rate, and the X axis to represent the true negative rate. The range of a AUC is [0, 1].
The larger the area, the better the model.

We take the program execution efficiency speedup to analyze and evaluate the perfor-
mance of the program when using different optimization parameters.

(5) Speedup: speedup =
Tde f ault
TELOPS

where Tde f ault expresses the program running time using the compiler’s standard optimiza-
tion parameters. TELOPS denotes the running time through the ELOPS model proposed in
this paper.

6. Experiment Analysis
6.1. Experiment Environment

We applied the training and testing of our model on two platforms. The inputs are the
program features of the functions and the outputs are the optimal optimization parameters
of the functions.

Platform I: Redhat Enterprise AS 5.0 and the Chinese Shenwei 26,010 were used as
the operation system and processor, with 2.5 GHz CPU clock, 32 KB L1 data cache, 256 KB
L2 cache, and 8 KB basic page. The compiler version is GCC 5.1.
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Platform II: Redhat Enterprise AS 5.0 and Intel Xeon E5520 were used as the operation
system and processor, with 2.26 GHz CPU, 32 KB L1 data cache, and 1 MB L2 cache. The
compiler version is GCC 5.1.

Training set: We used the SPEC CPU2006 benchmark [57] as the training set, which is
developed for estimating the general-purpose CPU performance. In our research, we took
the reference scale for our experiments. We selected 2500 hotspot functions from the training
set and chose the best optimization parameter according to the AMPSO algorithm. This is
because in order to better optimize program performance, we must find the performance
bottleneck, that is, the hot function. We used the Gprof tool to select the hotspot functions
of different programs. Then, we used the method proposed to predict the best compilation
optimization parameters for the new programs.

Testing set: We used the NPB benchmark [58] as the testing set, which was selected for
extensive comparison for parallel architectures. We also tested our ELOPS model for large-
scale scientific calculation programs as shown in Table 1. The program involves atmospheric
diving waves, seismic wave simulations, hydrodynamics, and weather forecasts.

Table 1. Scientific computation programs with large scale.

Program Description Code Lines

SWE Shallow water equation 12,000
OpenCFD An Open CFD code with High Order Accuracy Method 13,000

FDM Seismic 3D forward modeling computing program 2847
WRF The weather research and forecasting model 860,000

GKUA Algorithm has been applied to the gas flow simulations 14,000

6.2. Experiment Design

Based on the two different experimental platforms, the experiments were mainly
designed from four aspects: (1) comparison of search performance between the genetic
algorithm and AMPSO method; (2) comparison of program performance for different fea-
ture selection methods; (3) ELOPS method prediction performance analysis; and (4) ELOPS
method offline learning and online prediction time analysis.

We first selected the 2500 hotspot functions of SPEC CPU2006 for training, comparing
and analyzing the search performance between the traditional GA and our AMPSO method.
Then, we applied the optimization parameters obtained by the two methods to the training
set and record program performance speedup. Based on the ensemble learning model,
we compared the speedup when using three different FCRs to obtain the program feature
subset. The prediction performance of the ELOPS method was analyzed in two aspects:
precision, recall, and F1 metrics analysis and speedup analysis when predicting optimiza-
tion parameters for new programs (from NPB and large scientific calculation program).
Finally, we analyzed the offline learning and online prediction time of our ELOPS method.

6.3. Experimental Results
6.3.1. Comparison of GA and AMPSO Search Performance

When the GA and AMPSO were used for the program transformation parameter
search, we set the control parameters first. The GA’s population size is 40, the crossover
and mutation probability are 0.6 and 0.3, respectively, and the maximum genetic generation
was set as 50; AMPSO’s population size is 20, and the maximum evolutionary generation
is 30. At this time, the optimal solution of the GA appears in the 45th generation, while
AMPSO appears in the 16th generation. A GA and AMPSO performance comparison is
shown in Figure 6.
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Figure 6. Overview of the stacking ensemble model.

GA and AMPSO have a lot in common: both start with random initialization of the
population, using the evaluation function to measure the program optimization parameters
and implementing a certain degree of random searching through the fitness value obtained
by the evaluation function. However, we can see that the AMPSO algorithm searches faster
and better than the GA in search performance. The following are the detailed reasons:

(1) The AMPSO algorithm does not include commonly used genetic operations such as
crossover and mutation. AMPSO uses the speed information and position information
of the individual in the solution space to make individual changes, which makes its
computational complexity significantly smaller than that of GA.

(2) The AMPSO algorithm makes the particles have a “memory” function. The next
generation of solutions can inherit more information from their ancestors through
their own learning or learning from other particles. As a result, the AMPSO algorithm
can select the optimum solution faster.

(3) The AMPSO algorithm has a special information sharing system. For the GA, chro-
mosomes share information with each other, and all populations move to the optimal
position at a more uniform speed. For AMPSO, the information moves in a one-way
fashion, which means that only the best particles transmit messages to other particles.

When using GA and AMPSO to search the best optimization parameters of the training
set, we obtain the speedup both on platform I and platform II relative to the GCC-O3 default
optimization parameter settings, as shown in Table 2. The average speedup of the GA
on the two platforms is 1.30 and 1.26, while the average speedup of AMPSO is 1.39 and
1.36, respectively.

We used (U, T, P) to indicate three factors, which correspond to loop unrolling, loop
tiling factor and array padding. On Platform I, the default compiler optimization param-
eters of the form function in 416.gamess were (1,0,0). When using the best optimization
parameters searched by GA and AMPSO, they were (4,0,0) and (8,0,0). Consequently, the
function running time was 0.60, 0.53, and 0.52, respectively. AMPSO can alter the control
flow to obtain the fastest running time. When the innermost loop has function reuse, this
variation can decrease the number of judgments and memory access.
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Table 2. Speedup of the SPEC CPU2006 benchmark.

Benchmark
Platform I Platform II

AMPSO GA AMPSO GA

401.bzip2 1.51 1.42 1.49 1.38
429.mcf 1.48 1.35 1.49 1.34

445.gobmk 1.41 1.48 1.34 1.38
456.hmmer 1.38 1.25 1.36 1.27

462.libquantum 1.47 1.35 1.46 1.34
464.h264ref 1.38 1.21 1.36 1.17

473.astar 1.35 1.29 1.24 1.30
410.bwaves 1.46 1.37 1.35 1.29
416.gamess 1.37 1.25 1.35 1.26

433.milc 1.57 1.45 1.36 1.24
435.gromacs 1.46 1.37 1.29 1.28
437.leslie3d 1.31 1.24 1.34 1.24
444.namd 1.35 1.25 1.40 1.25
447.dealII 1.38 1.31 1.34 1.28

453.povray 1.45 1.29 1.44 1.23
454.calculix 1.47 1.35 1.48 1.26

459.GemsFDTD 1.36 1.37 1.30 1.25
470.lbm 1.08 1.11 1.12 1.13
481.wrf 1.23 1.17 1.34 1.19

482.sphinx3 1.41 1.05 1.29 1.11
Average 1.39 1.30 1.36 1.26

The experimental results showed that the GA achieved 1.30× and 1.26× speedup,
while AMPSO achieved 1.39× and 1.36× speedup for the SPEC2006 benchmark on Plat-
forms I and II. The reason why AMPSO performs better than GA has been analyzed in
detail in the previous content. In some cases, AMPSO has a lower speedup than GA because
it has a local rather than the global optimal solution. AMPSO’s search ability is better than
that of the GA in most cases, so we used the optimization parameters searched by the
AMPSO algorithm as training samples for our model.

6.3.2. Comparison of Feature Selection

As mentioned earlier, we employed three approaches to obtain program feature sub-
sets, and took the features selected as the input of the prediction part. In this situation, the
prediction generated three optimization parameter categories when comparing the running
time speedup of the program achieved by these three different parameter predictions with
the default -O3 optimization of GCC. The experimental results are shown in Table 3, where
IG, CS, and RF represent the information gain, the Chi-square value, and the ReliefF used
in our framework, respectively. AMPSO means the results obtained by our optimization
parameter search algorithm, which has the best performance.

As seen from Table 3, the stacking ensemble learning model has the fastest running
time when using IG as an FCR to obtain the program features. The reason for the better
performance of IG is that it is suitable for global feature selection and uses the statistical
attributes of all samples to reduce the sensitivity to noise. Platform I and platform II
can obtain the average speedups of 1.29× and 1.27×, respectively, which are 93% of the
AMPSO method. The performance is close to that of AMPSO, while our prediction model
can greatly save time overhead.
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Table 3. Running time while using different features.

Benchmark
Platform I Platform II

IG CS RF AMPSO IG CS RF AMPSO

401.bzip2 1.31 1.19 1.15 1.51 1.35 1.34 1.21 1.49
429.mcf 1.33 1.13 1.10 1.48 1.33 1.26 1.24 1.49

445.gobmk 1.29 1.16 1.06 1.41 1.24 1.09 1.08 1.34
456.hmmer 1.29 1.25 1.27 1.38 1.18 1.16 1.17 1.29

462.libquantum 1.34 1.14 1.12 1.47 1.34 1.13 1.12 1.46
464.h264ref 1.23 1.05 1.03 1.38 1.29 1.17 1.18 1.36

473.astar 1.23 1.23 1.21 1.35 1.21 1.19 1.17 1.24
410.bwaves 1.33 1.22 1.21 1.46 1.23 1.21 1.22 1.35
416.gamess 1.25 1.14 1.14 1.37 1.26 1.14 1.12 1.35

433.milc 1.34 1.35 1.37 1.57 1.31 1.24 1.19 1.36
435.gromacs 1.34 1.23 1.22 1.46 1.29 1.27 1.27 1.36
437.leslie3d 1.23 1.19 1.17 1.31 1.26 1.16 1.14 1.34
444.namd 1.32 1.30 1.29 1.35 1.34 1.29 1.27 1.40
447.dealII 1.24 1.23 1.22 1.38 1.21 1.18 1.19 1.34

453.povray 1.36 1.23 1.21 1.45 1.29 1.23 1.21 1.44
454.calculix 1.32 1.25 1.24 1.47 1.32 1.21 1.19 1.48

459.GemsFDTD 1.31 1.29 1.31 1.36 1.27 1.25 1.23 1.30
470.lbm 1.03 1.01 1.01 1.08 1.09 1.07 1.06 1.12
481.wrf 1.35 1.29 1.18 1.23 1.28 1.09 1.10 1.34

482.sphinx3 1.33 1.09 1.08 1.41 1.21 1.15 1.13 1.29
Average 1.29 1.20 1.18 1.39 1.27 1.19 1.17 1.36

6.3.3. Prediction Performance Analysis

The performance of different machine learning models

The above experimental results indicate that the ELOPS model can effectively improve
the performance of the testing programs. In the model training process, we take the program
features obtained by information gain as input and the optimization parameters searched
by the AMPSO algorithm as output to construct the training samples. We implement the
prediction result for the SPEC CPU2006 training set with leave-one-out cross-validation
(LOOCV), as shown in Table 4, in which DT, LR, BN, and NN represent decision tree,
logical regression, Bayesian network, and neural network algorithms, respectively.

Table 4. Predictive results of different machine learning models.

Benchmark Platform Model Precision Recall F1

SPEC 2006

Platform I

DT 0.482 0.257 0.335
LR 0.549 0.209 0.303
BN 0.528 0.259 0.359
NN 0.546 0.269 0.366

Platform II

DT 0.483 0.257 0.335
LR 0.550 0.211 0.305
BN 0.527 0.256 0.357
NN 0.536 0.268 0.365

Table 4 shows that the LR algorithm obtained the optimum prediction accuracy, but
the recall and F1 values were both the lowest. The BN and NN had relatively higher F1
values while the prediction time overhead was larger. For the DT and LR algorithms,
experiments could be performed in a few minutes, while BN and NN needed several hours.
The results indicate that the optimum machine learning algorithm is not exactly the same
when using different evaluation indicators. For example, the precision of LR was higher
than those of other algorithms, while the BN algorithm was better in terms of recall. When
comparing the comprehensive evaluation indicator F1, BN and NN are better, but their
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complexity is larger and the time overhead is too high, especially for programs with larger
datasets and feature metrics.

Because BN and NN have the best F1, we separately added the results of these two to
the training set for the following prediction. The experimental result is shown in Table 5.
From the results, we can see that the prediction performance of the stacking model using
the DT + NN results was similar to that of simply using the DT algorithm. The reason
may be that the DT prediction accuracy is not high and some data are incorrectly classified
into other classes, which influences the correct classification of the model when the wrong
results are adjusted into the training data. While the BN results were added to the training
data for model prediction, most of the evaluation indices showed quite good improvement.
In particular, the F1 score was better than the result of the LR-only prediction, and the time
cost was greatly reduced. The reason why adding BN can achieve better performance is
that BN uses conditional probability to express the correlation between various information
elements, and can learn and reason under limited, incomplete, and uncertain information
conditions. Therefore, our ELOPS stacking ensemble prediction model uses the LR + BN
model. The experimental results showed that ELOPS can improve the evaluation indicators
to a certain degree and had a great performance improvement when compared with the
single machine learning algorithm.

Table 5. Predictive Results of Different Machine Learning Models.

Benchmark Platform Model Precision Recall F1

SPEC 2006

Platform I

DT + BN 0.483 0.257 0.335
LR + BN 0.686 0.273 0.391
DT + NN 0.482 0.256 0.334
LR + NN 0.710 0.247 0.366

Platform II

DT + BN 0.484 0.256 0.335
LR + BN 0.691 0.272 0.390
DT + NN 0.480 0.254 0.332
LR + NN 0.711 0.245 0.364

Comparison with state-of-the-art prediction models

Further checking ELOPS performance, we contrast with the prediction accuracy of the
work in [19,21]. The definition of prediction accuracy is as follows:

prediction accuracy =
parpredict

parAMPSO

where parpredict indicates the optimal optimization parameters predicted by the different
machine learning models and parAMPSO represents the optimal optimization parameters
searched by the AMPSO algorithm.

Because the prediction benchmarks in refs. [19] and [21] are different from ours, we
used the methods in refs. [19] and [21] to optimize the parameters of the SPEC CPU2006
training set. The results are shown in Table 6, where KNN is the K nearest neighbor
algorithm [19], SVM is the support vector machine method [21], ELOPS is the method
proposed in this paper, and GCC represents the GCC default heuristics optimization for
the optimal parameter selection.

The prediction accuracy of the ELOPS method for predicting the best parameters on
both platforms was 0.71 and 0.72, respectively. The prediction accuracy corresponding to
the best parameters was taken as the overall prediction accuracy of the model, because
when using the model for prediction, we used the best parameters as the best compiler
optimization parameter combination of the program. The prediction accuracy of SVM
was 0.65 and 0.63, while the GCC default optimization parameters were only 0.15 and
0.16. The KNN prediction accuracy was slightly worse than that of SVM. The experimental
results showed that ELOPS had a higher prediction accuracy. The reason ELOPS can obtain
better prediction accuracy is that it uses mixed static and dynamic features to represent
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the programs and an adaptive multiobjective PSO algorithm to improve optimization
search efficiency. At the same time, based on the stacking ensemble learning technique, an
effective prediction model for choosing program optimization parameters was constructed.
In most cases, GCC default optimization cannot obtain the best optimization parameters.
In addition, the experiment illustrates that the best parameter class is distributed in all
parameter classes, that is, none of the parameter classes are optimal in all cases.

Table 6. Prediction accuracy on the different platforms.

Platform I Platform II

KNN SVM ELOPS GCC KNN SVM ELOPS GCC

Best parameter 0.63 0.65 0.71 0.15 0.61 0.63 0.72 0.16
Second best parameter 0.63 0.64 0.65 0.15 0.59 0.63 0.65 0.26
Third best parameter 0.14 0.14 0.12 0.23 0.09 0.10 0.11 0.24

Fourth best parameter 0.08 0.04 0.01 0.23 0.07 0.06 0.08 0.17
Fifth best parameter 0.06 0.04 0.04 0.14 0.03 0.03 0.03 0.06
Sixth best parameter 0.03 0.01 0.01 0.05 0.02 0.02 0.01 0.03

Seventh best parameter 0.03 0.02 0.01 0.05 0.02 0.01 0.01 0.03

To test the predictive performance of ELOPS for new programs, we implementED the
test using the NPB benchmark and five large scientific computational programs to compare
the optimization performance with that of GCC default optimization. At the same time, we
compareD the prediction results of the ELOPS with the methods of refs. [19,21]. The results
are shown in Figures 7 and 8, where KNN stands for the method of ref. [19] and SVM
represents the method of ref. [21]. ELOPS and Best represent the performance speedup
that is achieved by using the methods presented in this paper and the best optimization
parameters searched by the AMPSO method, respectively. In addition, we used Table 7 as a
confusion matrix to represent the predicted results; some experimental results on platform I
are listed, because there are many experimental results on the two platforms and the effects
are similar.

Figure 7. The speedup of the new programs when taking the ELOPS model on Platform I.
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Figure 8. The speedup of the new programs when taking the ELOPS model on Platform II.

Table 7. Predicted results of time on the different platforms.

Benchmark Model Precision Recall F1 AUC

IS
KNN 0.682 0.267 0.329 0.732
SVM 0.749 0.289 0.331 0.735

ELOPS 0.828 0.359 0.378 0.885

SP
KNN 0.783 0.217 0.331 0.699
SVM 0.789 0.299 0.327 0.721

ELOPS 0.817 0.389 0.366 0.883

SWE
KNN 0.762 0.243 0.366 0.688
SVM 0.749 0.278 0.334 0.721

ELOPS 0.833 0.369 0.388 0.888

WRF
KNN 0.773 0.258 0.317 0.688
SVM 0.819 0.277 0.316 0.722

ELOPS 0.831 0.371 0.391 0.887

The experimental results showed that our ELOPS had an adequate prediction perfor-
mance for the new programs. On platform I, the average speedup of the Best and ELOPS
was 1.37 and 1.29, respectively, and our ELOPS was up to 94% of the Best. ELOPS had
better performances of IS and SP than those of the Best, since one function’s best parameter
class does not depend on the others and the AMPSO search will sometimes fall into the
local optimal solution. This may also be caused by some noise during data collection.
The average speedup of Best on platform II was 1.35, and the average speedup of ELOPS
on platform I was 1.26, which is up to 93% of Best. The reasons we performed well in
the speedup and the prediction precision are our different feature selection, optimization
parameter searching method, and stacking ensemble method. In the KNN model, the
author uses static features and GA search algorithms to construct the perdition model. In
SVM model, the author uses dynamic features. However, our method used mixed static
and dynamic features, which can select the most useful features at the compiling time
and the running time for each program. Furthermore, we proposed a new optimization
parameter search algorithm better than GA, and we used the stacking ensemble learning
prediction model, which are better than the single machine learning algorithms, such as
KNN and SVM.
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6.3.4. Offline Learning and Online Prediction Time

If the time is placed into different segments, the time consumed by ELOPS to obtain
compiler optimization parameters for the fresh code can be partitioned into two sections:
the stage of training, which is offline, and the stage of prediction, which is online. The
training process should be completed once, and the time spent gathering the data for
training is attributed to the program numbers. Let us take WRF as an example to illustrate;
Table 8 displays the time needed for each exact stage of the two platforms.

Table 8. Prediction time on the different platforms.

Phase
Platform I (Time) Platform II (Time)

KNN SVM ELOPS KNN SVM ELOPS

Offline training Data collection 11 d 11 d 12 d 11 d 12 d 13 d
Model construction 57 s 55 s 69 s 63 s 70 s 76 s

Online prediction Feature extraction 11 s 15 s 12 s 12 s 16 s 14 s
Model prediction 0.79 s 0.84 s 0.36 s 0.98 s 0.97 s 0.45 s

Experimental results demonstrated that ELOPS can finish the prediction for the fresh
target programs in a rather low-time-cost manner. The reason why our model had a shorter
prediction time is that the Stacking integrated learning model can overcome the defects of
a single model, optimize the input of the meta learner, improve the prediction effect, and
shorten prediction time. At the same time, it is obvious to see that the ELOPS works better
than both the KNN and the SVM approaches from the aspects of the accuracy of prediction
and program performance through the explanation in the previous paragraph. Therefore,
the ELOPS approach can surpass some of the existing means with respect to the prediction
accuracy, the time consumed on it, and the true performance of the program.

7. Conclusions

In this paper, we proposed a compiler optimization parameter selection model, ELOPS,
which can automatically generate compiler optimization parameters for different programs.
The model takes the program features as its input, and the approximate optimal compiler
optimization parameter as its output. In the training data construction stage of the ELOPS
model, an improved PSO algorithm for compiler optimization parameter space search was
proposed, which can resolve the constrained multiobjective optimization more efficiently.
Compared with the default standard optimization level -O3 of GCC, we obtained 1.39× and
1.36× speedup on two platforms. The improved PSO is a mechanical search of the compiler
optimization space, which can obtain more accurate sample data in the model construction
stage. We proposed a program feature representation method, FCR, which uses the mixed
static and dynamic features to represent the programs. Through the search of compiler
optimal parameters and the new method of program feature representation, we can pro-
vide more and better sample parameters for the construction of the compiler optimization
prediction model. On this basis, we used Stacking ensemble learning to establish the statis-
tical model and integrated into the compiler framework, then the optimization parameter
selection decision and the compilation process were implemented. Given the new target
program, the ELOPS model can automatically extract the features of the new program
first and then predict the best compile optimization parameters based on the knowledge
stored in the model. Relative to the compiler default standard optimization level -O3, the
ELOPS method realized 1.29× and 1.26× program execution time averaging speedup on
two platforms, respectively, which are better than results of the existing method.

When compiling the program, it needs to go through a large number of optimization
phases to obtain more efficient object code. The current compiler implements relatively
fixed optimization phases; however, the research shows that programs with different
features should have various optimization phases. Our current work mainly solves the
prediction of compilation optimization parameters. In future work, we will study applying
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our method to other compilers for compiling and running programs, selecting of compiler
optimization phases, and enlarging the benchmarks to more various application scopes.
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