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Abstract: In industry, it is difficult to obtain data for monitoring equipment operation, as mechan-
ical and electrical components tend to be complicated in nature. Considering the contactless and
convenient acquisition of sound signals, a method based on variational mode decomposition and
support vector machine via sound signals is proposed to accurately perform fault diagnoses. Firstly,
variational mode decomposition is conducted to obtain intrinsic mode functions. The fisher criterion
and canonical discriminant function are applied to overcome the fault diagnosis accuracy decline
caused by intrinsic mode functions with multiple features. Then, the fault features obtained from
these intrinsic mode functions are chosen as the final fault features. Experiments on a car folding
rearview mirror based on sound signals were used to verify the superiority and feasibility of the
proposed method. To further verify the superiority of the proposed model, these final fault features
were taken as the input to the following classifiers to identify fault categories: support vector machine,
k-nearest neighbors, and decision tree. The model support vector machine achieved an accuracy of
95.8%, i.e., better than the 95% and 94.2% of the other two models.

Keywords: sound signals fault diagnosis; variational mode decomposition; intrinsic mode functions
selection; multiple feature extraction; support vector machine

1. Introduction

Benefiting from the easy availability of sound signal acquisition in industry, fault diag-
nosis methods based on sound signals have played an important role in recent years [1].
Generally, sound signals from industry have the characteristics of being non-smooth and
non-linear, so it is a challenging task to identify types of failure of mechanical compo-
nents [2]. Various signal processing methods are effective at overcoming this problem [3].
For example, a fault diagnosis method combining signal processing and intelligent classifi-
cation models has been explored [4,5]. However, traditional fault diagnosis methods based
on sound signals suffer from accuracy declines caused by multiple features. Therefore,
it is essential to put forward an effective and feasible fault diagnosis method based on
sound signals.

In the past decades, fault diagnosis methods have mainly focused on threshold meth-
ods, expert systems based on subjective experience, neural networks, and signal processing
methods. In the literature [6], a threshold fault diagnosis method based on dynamic time
warping (DTW) was proposed and achieved high recognition accuracy. However, this
method can only identify whether the device is faulty. A fault diagnosis method based
on expert knowledge was proposed for mechanical components [7], and it acquired good
interpretability. In the face of practical engineering problems, how to better combine data
with expert knowledge may be a difficult problem. Neural networks can extract deep fault
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features due to their deep structure construction [8]. Because neural networks usually need
multiple training sets, such models will be limited in some practical aspects.

A fault diagnosis method combining signal processing and intelligent classification
provides the possibility to address the problems [9]. A Fuzzy c-means and similarity
function-based fault diagnosis method was proposed; it was shown to be able to precisely
identify the fault types of turnout [10]. A signal processing method based on spectrum
analysis and support vector machine (SVM) was proposed and achieved excellent fault
diagnosis effectiveness [5]. Otherwise, the empirical mode decomposition (EMD) signal
processing method acquires excellent results in the case of non-smooth and non-linear
signals and is widely used. However, there are several problems with sifting stop criterion,
end effects, and mode mixing in the decomposition signals [11]. In order to overcome
the problems of EMD, the variational mode decomposition (VMD) signal decomposition
method was proposed [12].

Due to the effective of dimensionless features in the characterization of fault infor-
mation, such approaches have been widely applied for fault diagnoses [13]. In order
to extract the useful features, selecting the optimal intrinsic mode functions (IMFs) is a
feasible method. The authors of [14] proposed the selection of the optimal IMFs based
on the kurtosis-max principle, and then extracted dimensionless metrics from these IMFs.
Considering the fact that the single kurtosis principle may ignore higher energy IMFs, the
optimal IMFs selection method based on the dual principle of kurtosis and energy spectrum
was applied and achieved excellent fault diagnosis results [15]. The IMFs were selected as
the input of the convolutional neural network by HHT processing and quantization, and
were used for fault diagnosis [16]. The above optimal IMFs selection methods are only
for a single fault signal, and the comprehensive selection of optimal IMFs is not explored.
Otherwise, a decrease in the diagnosis accuracy will occur when dimensionless features
with high correlation and multiple features are used for fault diagnoses [17,18].

To address this problem, the authors of [19] used principal component analysis to
reduce the dimensionality of features. The authors of [20] used sensitivity to characterize
the importance of the features, and then obtained a ranking of the features with high
sensitivity as the final fault features. A method based on the fisher criterion (FC) and self-
weight criterion was conducted to search for the useful features [21]. The authors of that
paper realized the reduction and extraction of metrics from the perspective of selecting the
optimal IMFs and solved the problem whereby the high-dimensional features in complex
samples leads to decreased fault diagnosis accuracy. Otherwise, based on the advantages
of VMD in processing non-smooth nonlinear, the superiority of SVM in small samples and
the contactless and convenient acquisition of sound signals, in our work, a fault diagnosis
method via sound based on VMD-SVM and FC for IMFs selection is proposed.

The main steps of the proposed fault diagnosis method are as follows. Firstly, the
superiority of the VMD signal decomposition method was confirmed compared with
EMD in the processing of nonlinear, non-stationary signals. Subsequently, the IMFs were
obtained through the VMD signal processing approach from sound signals. Then, the
optimal IMFs were selected by FC, and a discriminant function based on the importance of
the feature was acquired to determine the top-ranked features of each fault type. These
features were used as the final fault features as the input for the classification model. Based
on our experimental data, the superiority of the proposed method for optimal IMF selection
based on VMD-SVM is demonstrated.

The rest of this study is structured as follows. Section 2 introduces the method
proposed in this work. Section 3. describes the collection process and the experimental
results. Finally, The conclusions of this paper are summarized in Section 4.
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2. Materials and Methods
2.1. Diagnosis Approach Based on Sound Signals

Based on the proposed IMF selection method with VMD and SVM, a fault diagnosis
method for mechanical components is proposed. A diagram describing the method is given
as Figure 1.

Figure 1. Diagram of the proposed method.

The main steps are as follows:

1. Sound signals processed

The sound signals of mechanical components are processing through VMD to acquire
a set of IMFs.

2. Feature extraction

Six dimensionless features are extracted from the unselected IMFs.

3. Optimal IMF selection

The top-ranked IMFs are obtained by fisher FD and the optimal IMFs that can fully
characterize fault information are selected through the canonical discriminant function
(CDF).

4. Fault recognition

In this step, SVM is used to verify the effectiveness of the proposed fault diagnosis
method based on the sound signal.
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2.2. Variational Mode Decomposition

VMD is a non-recursive, adaptive signal processing technique. The original signal
is split into IMFs in the VMD architecture, and each obtained IMF is compressed around
the matching center frequency. The bandwidth of the component can be evaluated using
constrained variation. The constrained variation is expressed as [22]:

min
{uk}{ωk}

{
∑
k

∥∥∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥∥
2

2

}
s.t. ∑

k
uk = f

(1)

where uk is the k th component of the signal and ωk denotes the center frequency of the
signal whose kth component, f, is the original signal; δ is the Dirac distribution, t is the time
script, and ∗ denotes convolution.

By introducing a quadratic penalty and Lagrangian multipliers, the above constrained
optimization problem can be expressed as follow [22]:

L
({

uk

}
,
{

ωk

}
, λ
)
= α ∑

k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

+‖ f (t)−∑
k

uk(t)‖2

2
+

〈
λ(t), f (t)−∑ uk(t)

〉 (2)

where α denotes the balancing parameter of the data-fidelity constraint.
Parameter α is inversely proportional to the bandwidth of the IMFs. If α is too small,

the mode bandwidth is wide; however, decreasing the bandwidth by increasing α comes
with the risk of not properly capturing the correct center frequency. There are too few IMFs
for the number of IMFs, k, resulting in inadequate data segmentation. Some components
are reused in subsequent patterns, while others are eliminated as “noise”. In this study, we
established the parameters of IMF and k, keeping this in mind.

Equation (2) is then solved with the alternate direction method of multipliers, and
then all the modes gained from solutions in the spectral domain are written as [22]:

un+1
k (ω) =

f (ω)− ∑
i 6=k

ui(ω) + λ(ω)
2

1 + 2α(ω−ωk)
2 (3)

where, f (ω), ui(ω), λ(ω) and un+1
k (ω) are the Fourier transforms of y(t), yi(t), λ(t), y

n+1

i (t)
and ω denotes the center frequency of the signal. It is noted that Equation (3) contains the
Wiener filter structure. The component in the time domain can be obtained from the real
part of the inverse Fourier transform of the filtered signal.

2.3. Dimensionless Indicators

Mechanical failures are common [23], and may be seen in sound signals as changes
in time-domain amplitude and frequency. These features can be rapidly obtained. In this
paper, six time-domain feature parameters are extracted [24]. As shown in Table 1.
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Table 1. Time-domain features.

Feature Equation

Mean x =
∑N

i=1|x(i)|
N

Skewness xske =
∑N

i=1(x(i)−x)3

(N−1)x3
std

Kurtosis xkur =
∑N

i=1(x(i)−x)4

(N−1)x4
std

Peak xp = max
∣∣x(i)∣∣

Impulse factor xi f =
xp

(1/N)∑N
i=1|x(i)|

Margin factor xm f =
xp(

(1/N)∑N
i=1
√
|x(i)|

)2

Note: N is the length of the corresponding sound signal, x is the time-domain signal variable.

2.4. Fisher Discriminant

Fisher’s discriminant criterion takes into account the interclass information in the
training samples. Its main purpose is to select features with larger and smaller intraclass
distances as the distinguishing features, and to reflect the distinguishing degree of the
features by the value of the discriminant function. The larger the value of the discriminant
function, the more effective the corresponding feature for classification [25].

The Fisher criterion is simple and efficient and is used in this section to select the
best set of features. Thus, there are 120 sets of feature matrices in three categories, each of
which corresponds to three four-valued vectors, for the Fisher’s discriminant analysis. The
calculation process is as follows [25].

Step 1: Calculate the average of the feature vectors in each category

µi = ∑
en∈Ci

en/ni, (i = 1, 2, · · · , K) (4)

where Ci (i = 1, 2, · · · , K) denotes the different working conditions, denotes the feature
vector, and ni denotes the number of samples corresponding to each working condition.

Step 2: Calculate the mean of each sample

µ =
K
∑

i=1
(niµi)/

K
∑

i=1
ni (5)

Step 3: Calculating intra-class dispersion

Sw =
K
∑

i=1
∑

en∈Ci

‖en−µi‖2 (6)

where ‖ en− µi ‖=
√
(en− µi)

T(en− µi) denotes the distance between vectors en and µi.
Step 4: Calculate the dispersion between classes

Sb =
K
∑

i=1
ni‖µi − µ2‖ (7)

where ‖ µi − µ ‖=
√
(µi − µ)T(µi − µ) denotes the distance between vectors µ and µi.

Step 5: Calculate the value of the discriminant function J

J =
Sb
Sw

(8)
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where J is a criterion for selecting the optimal IMFs. It can characterize the sensitivity of the
sample used for classification. A higher value of J indicates better discrimination between
the samples.

2.5. SVM

In Figure 2, circles and squares each represent one sample from the sample set.

T = {(x1, y1), · · · , (xi, yi)} (9)

where xi ∈ X = Rn, yi ∈ Y = {1,−1}, i = 1, 2, · · · , n.

Figure 2. The principle of SVM.

The role of SVM is to build an optimal hyperplane that can separate these two types
of samples and maximize the interval. In the figure, H is the classification line where the
samples are completely separated, and H1 and H2 pass through the nearest distance from
H in their respective sample points, remaining parallel to H. The interval between H1 and
H2 serves to satisfy the maximum condition [26].

According to the analytic principle [27], the expression of classification line H can be
set as

mx + b = 0, y ∈ {1,−1} (10)

yi[mxi + b] ≥ 0, i = 1, 2, · · · , na (11)

This leads to a classification interval:

H =
2∥∥m
∥∥ (12)

It is obvious that max(H) is equivalent to min(‖ m ‖). As such, the classification line
minimizes ‖ m ‖2/2. The minimum classification line is optimal. When this classification
case is realized on a higher dimensional space, the SVM can control the classification
interval to control the generalization ability of the algorithm.

3. Rearview Mirror Folding Sound Signal Experiment
3.1. Results and Analysis

Sound signals were obtained using an audio recording device. An Audi A6L was
used. Two of the experiments were conducted in a semi-anechoic chamber. The signal
sampling interval was 20 ms, the collection device model was SQobold, and the model of
the semi-anechoic chamber was ZY-2XSS200.

The experimental setup is shown in Figure 3. The first two experiments were carried
out in a semi-muffled laboratory, so the signals obtained had little influence from the
environment, whereas the third experiment was carried out in the main laboratory. Table 2
shows the operating conditions of the three mirrors and the number of samples, while
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Figure 4 shows the time domain diagrams from three rearview mirror folding experiments.
The folding function of the rearview mirror was monitored without contact.

Figure 3. Experimental setup. Semi-muffled laboratory (experimental setup 1), and laboratory
(experimental setup 2).

Table 2. Description of the Working conditions.

The Serial Number Descriptions Sample

1 Abnormal sound of rearview mirror folding
in the semi-muffled laboratory 40

2 Normal sound of rearview mirror folding in
a semi-muffled room 40

3 Normal sound of rearview mirror folding in
the laboratory 40

Total 120
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Figure 4. Time domain signals for the three operating conditions. Number of samples on the x-axis,
magnitude on the y-axis, (a): Abnormal sound of rearview mirror, (b): Normal sound of rearview
mirror, (c): Normal sound of rearview mirror under routine laboratory conditions.

The decomposition, using EMD and VMD, of anechoic chamber noise signals was
utilized to extract the IMF components, as illustrated in Figure 5a,b. In terms of the
number of dissected IMF components, EMD produces nine, whereas VMD’s four-level
decomposition yielded four. VMD decomposition decreases the computing size as well
as the computation time. Notably, the IMF components dissected by EMD appear to be
mode aliased in Figure 5a. VMD divides the amplitude of high frequency components
into smaller segments, which aids in classification error reduction [22]. As a result, VMD
outperforms EMD in signal processing.

The distribution of the features in the three different signal samples is shown in
Scheme 1a–c. The features extracted from the IMFs under each sample have different
diagnostic capabilities for the three different signal types. Ideally, the extracted features
should have good classification discrimination ability when the features of the three types
of signals are clearly separated in the plane space. In contrast, a weak discrimination ability
is indicated when there is more overlap in the features of each type. Scheme 1d has more
overlap in the distribution of each type of feature, which will be detrimental to the fault
identification. As shown in Figure 6, the recognition accuracy of SVM was only 61%.
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Figure 5. The decomposed signal and the corresponding spectrum of the sound signal (Sample 1)
processed by EMD (a) and VMD (b), respectively. Number of samples on the x-axis, magnitude on
the y-axis.
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Scheme 1. The distribution of unselected IMFs, sample 1–3 (a–c). The collective distribution of the
three samples (d). The x- and y-axes are the two discriminant functions.

Figure 6. Identification results when IMFs were not selected.

As shown in Figure 7, the kurtosis and sensitivity of each IMF in sample 1 showed
good consistency, i.e., IMFs with high kurtosis always had higher sensitivity. In addition,
Equations (4)–(8) show that the calculation of sensitivity takes into account not only intra-
sample correlation but also inter-sample correlation. In this way, the sensitivity for selecting
IMFs can be used to increase the differentiation among samples and improve the accuracy
of fault identification compared with a single principle such as kurtosis.
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Figure 7. Sensitivity and Kurtosis of each IMF of sample 1. The x-axis is the number of IMFs and the
y-axis is the sensitivity value of each IMF.

Considering that the sensitivity of each IMF directly affects the diagnostic results, the
Fisher criterion is used to evaluate the diagnostic ability of IMFs, which is helpful to select
high-priority IMFs for feature extraction. Sensitivity factor J is calculated for each IMF
using Equation (8). The values of J for 480 IMFs are shown in Figure 8, where the x-axis is
the number of IMFs and the y-axis is the sensitivity value of each IMF. Figure 8 also shows
the IMFs obtained from the three-type failure samples.

Figure 8. Sensitivity ranking of IMFs for the three samples. The x-axis is the number of IMFs of each
sample and the y-axis is the sensitivity value of each IMF.

As shown in Chart 1, the IMFs were obtained after VMD processing for the three fault
types. Some of these IMFs had better differentiation and characterization of the different
classes of fault information. In addition, not all the IMFs obtained after the VMD pattern
decomposition of the samples contained fault information. In contrast, the recognition
ability of the extracted features decreased in some VMD modes. Therefore, it will be
necessary to find a method to select sensitive and superior IMFs from the original and
multimodal VMD signals.

The IMFs obtained from these samples are arranged from smallest to largest sensi-
tivity, as shown in Figure 8. Among these IMFs, redundant IMFs also inevitably led to
inaccurate recognition. Therefore, the first 40 IMFs were selected from 480 IMFs to reduce
the dimensionality of the input features of the classifier. The sensitivity values of the first
40 IMFs of the three samples are shown in Figure 8.

The IMFs are better classified when they are clearly separated in the feature space.
These highly sensitive IMFs can enhance the identification accuracy. After extraction and
evaluation, these 40 IMFs are fed into the classifier, thus reducing the computational effort
while improving the classification accuracy. The feature distribution of each type of IMF is
presented separately in Scheme 2a–c, while Scheme 2d shows the distribution of the three
types of IMFs in a uniform feature space.
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Scheme 2. The distribution of selected IMFs in samples 1–3 (a–c). The collective distribution of the
three samples (d). The x and y-axes are the two discriminant functions.

The recognition results for the features of the selected IMFs are shown in Figure 9. It
can be seen from the confusion matrix that a high level of fault recognition accuracy was
obtained. Specifically, the recognition accuracy for Type 3 reached 100%.

Figure 9. Identification results of the proposed method.

3.2. Comparison with Different Classifiers

To demonstrate the superiority of SVM in the method proposed in this paper, we
used some commonly used classifiers for a comparison, i.e., KNN and DT. The recognition
results of different classifiers are shown in the Table 3.
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Table 3. Number of correctly identified samples.

Type
Classifiers

SVM TREE KNN

1 37 38 36
2 38 36 37
3 40 40 40

Total 115 114 113
Accuracy (%) 95.8 95 94.2

Overall, SVM had the worst performance compared to the other two classifiers. The
performance of DT was slightly better than that of KNN. However, the diagnostic accuracy
of Type 2 from DT was too low. One the other hand, the overall accuracy of SVM was 95.8%,
which was better than KNN and DT. In addition, SVM’s Type 1 and Type 2 recognition
accuracy was also better than those of DT and KNN.

3.3. Discussion

This paper proposed a contactless and effective fault diagnosis method based on
sound signals. The feasibility and superiority of the proposed method were verified by
experiments on a folding car mirror. The overall identification accuracy reached 95.8%.
The proposed method provides the possibility to realize contactless fault diagnoses based
on sound signals, which can provide a form of non-destructive monitoring of mechanical
components. At the same time, the experimental environment was influenced by external
factors. In order to improve the anti-interference ability of the model, it will be important to
explore the robustness and accuracy of the proposed sound signal fault diagnosis method.

4. Conclusions

This paper proposed a contactless fault diagnosis method based on VMD and SVM
via sound signals. In order to overcome the fault diagnosis accuracy decline caused by
IMFs with multiple features sets, the top-ranked IMFs were obtained by FD, and the
optimal IMFs for the characterization of fault information were selected through CDF. Then,
six dimensionless features were extracted from the selected IMFs which were fed to the
classifier as the final features. Experiments on a car mirror folding were conducted to prove
the validity of the method proposed. The feasibility and superiority of proposed method
were highlighted by comparing different classifiers. Specifically, the three models achieved
recognition accuracies of 95.8%, 95%, and 94.2%, respectively. The overall identification
accuracy of SVM reached 95.8%, and the SVM obtained the best performance compared to
other models.

In future, work will be conducted to establish a model with a higher fault recognition rate.
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