
Citation: Fehér, Á.; Aradi, S.; Bécsi, T.

Online Trajectory Planning with

Reinforcement Learning for

Pedestrian Avoidance. Electronics

2022, 11, 2346. https://doi.org/

10.3390/electronics11152346

Academic Editors: Javier Alonso

Ruiz and Angel Llamazares

Received: 20 June 2022

Accepted: 25 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Online Trajectory Planning with Reinforcement Learning for
Pedestrian Avoidance
Árpád Fehér , Szilárd Aradi * and Tamás Bécsi

Department of Control for Transportation and Vehicle Systems, Faculty of Transportation Engineering and Vehicle
Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
feher.arpad@kjk.bme.hu (Á.F.); becsi.tamas@kjk.bme.hu (T.B.)
* Correspondence: aradi.szilard@kjk.bme.hu

Abstract: Planning the optimal trajectory of emergency avoidance maneuvers for highly automated
vehicles is a complex task with many challenges. The algorithm needs to decrease accident risk
by reducing the severity and keeping the car in a controllable state. Optimal trajectory generation
considering all aspects of vehicle and environment dynamics is numerically complex, especially if
the object to be avoided is moving. This paper presents a hierarchical method for the avoidance of
moving objects in an autonomous vehicle, where a reinforcement learning agent is responsible for
local planning, while longitudinal and lateral control is performed by the low-level model-predictive
controller and Stanley controllers. In the developed architecture, the agent is responsible for the
optimization. It is trained in various scenarios to provide the necessary parameters for a polynomial-
based path and a velocity profile in a neural network output. The vehicle performs only the first
step of the trajectory, which is redesigned repeatedly by the planner based on the new state. In the
training phase, the vehicle executes the entire trajectory via low-level controllers to determine the
reward value, which realizes a prediction for the future. The agent receives feedback and can further
improve its performance. Finally, the proposed framework was tested in a simulation environment
and was also compared to human drivers’ abilities.

Keywords: advanced driver assistance systems; machine learning; motion planning; reinforcement
learning; vehicle dynamics

1. Introduction

Vehicle manufacturers and legislative entities are making serious efforts to reduce the
number and severity of road accidents, resulting in developing more and more efficient
passive and active vehicle safety systems. For the EU, the measures set out in the 2001
Transport White Paper have significantly improved road safety. Between 2001 and 2010,
the number of road deaths in the EU decreased by 43%, and between 2010 and 2018 by
another 21%. However, 25,150 people still lost their lives on EU roads in 2018, and about
135,000 were seriously injured [1]. Along with cyclists and motorcyclists, pedestrians are
among the most vulnerable road users (VRU), suffering more than half of fatal accidents.
According to global statistics, pedestrians and cyclists account for 26% of all deaths, while
motorized two- and three-wheelers account for a further 28% [2]. Road transport remains
the least safe mode of transportation. Therefore, there is a greater need for improvements
to increase road safety.

While passive systems, such as seat belts, airbags, or chassis design, aim to reduce
the effects of an accident by protecting its occupants, active safety refers to technology
assisting in preventing a crash. The increase in road safety is highly affected by the rapid
development of computing technology, as the microcomputer-based onboard electronic
control units and sensors provide the basis for advanced driver assistance systems (ADAS).
For these reasons, a modern new car offers higher safety for all road users. Several
ADAS systems are defined to protect vulnerable road users. The autonomous emergency

Electronics 2022, 11, 2346. https://doi.org/10.3390/electronics11152346 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152346
https://doi.org/10.3390/electronics11152346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9491-4211
https://orcid.org/0000-0001-6811-2584
https://orcid.org/0000-0002-1487-9672
https://doi.org/10.3390/electronics11152346
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152346?type=check_update&version=2

Electronics 2022, 11, 2346 2 of 13

braking (AEB) system reduces vehicle speed when a potential collision is detected. The
forward collision warning (FCW) alerts the driver when a possible collision is detected.
The emergency steering support (ESS) system supports the driver in changing the vehicle’s
path, but its more advanced version, the autonomous emergency steering (AES) is able to
automatically actuate the steering wheel to avoid a collision.

Though the predictions and figures differ, there is a consensus that AEB systems
can prevent the fatalities from rear-end collisions significantly [3]. Furthermore, applying
emergency steering can reduce the minimal sensing distance to perform a successful
avoidance maneuver [4], which is essential in the case of pedestrians. Nowadays, many
vehicles come with AEB systems, though according to the Euro NCAP report, AES systems
will come after 2022 [5]. The main challenges for implementing active steering are the need
for more detailed environment perception and understanding, safe and feasible trajectory
planning, and steer by wire. This paper deals with the second problem, defined as a
dynamic obstacle avoidance problem.

1.1. Related Work

The obstacle avoidance trajectory planning problem has been thoroughly studied for
more than 20 years. Classic approaches include cell decomposition, artificial potential
field, and roadmap-based techniques, while in recent years, the Markov decision process
approach and reinforcement learning (RL) methods have emerged. Cell-based methods
decompose the area in 2-dimensional Cartesian cells [6]. Initially, these methods are suitable
for static environments, though, in [7], the authors applied the probabilistic velocity obstacle
approach to a dynamic occupancy grid. The artificial potential field method generates a
gradient map of the obstacles and the environment, which repels the robot subject to the
navigation [8]. Another approach, proposed in [9], uses the elastic band method to locally
modify the vehicle trajectory in real-time when pedestrians are detected. Roadmap methods
incorporate nonholonomic and dynamic constraints. As a result, feasibility is guaranteed
through the building of the roadmap, like in [10], which uses rapidly exploring random
trees (RRT*) to perform the kinodynamic programming. An integrated design method
is presented for pedestrian avoidance in [11], where the authors propose an emergency
RRT method that quickly searches for a dynamically feasible trajectory that avoids the
pedestrian by braking and steering. An optimization-based solution is shown in [12],
considering lane edges as static and pedestrians as dynamic obstacles.

Algorithms need to solve the dynamic obstacle avoidance problem in real time. How-
ever, it needs some path or trajectory planning method to define the maneuver, which,
in most cases, can be resource-intensive. This fact leads the researchers toward machine
learning approaches, where an agent can be trained previously to handle the situation in
real-time. The MDP modeling paradigm can be extended to a partially observable Markov
decision process (POMDP), as shown in [13], which uses classic dynamic programming
for path planning. Though, the pre-trained agents do not necessarily need to generate a
path to follow, as shown in [14], where an end-to-end solution is presented for emergency
steering by using the proximal policy optimization (PPO) algorithm. This end-to-end
approach can be used for different applications, such as for underwater vehicles [15]. An-
other longitudinal control method is proposed in [16], where the agent decides between
discrete deceleration and acceleration actions under a typical pedestrian crossing situation
by using cell-based scenario representation. In [17], the authors propose a strategic decision
approach by defining three discrete choices between lane change, braking, and no-action,
to avoid the collision and train its agent with a deep Q-network (DQN). Though not a road
vehicle–pedestrian application, the solution presented in [18] is interesting since it uses the
Long short-term memory (LSTM) network to handle an arbitrary number of agents and
utilize it for quadcopters in a pedestrian-rich environment.

Electronics 2022, 11, 2346 3 of 13

1.2. Contributions of the Paper

The paper proposes a hierarchical obstacle avoidance algorithm for vehicles with
Ackermann steering. A reinforcement learning agent continuously redesigns the path and
a longitudinal speed profile, executed by a model predictive controller (MPC) on a lower
level. The evaluation considers the success and the severity of the maneuver. The paper is
organized as follows: Section 2 provides the problem formulation, the proposed method,
the training environment, and the agent. Section 3 describes the simulation environment
and the agent’s performance compared to human drivers.

2. Methodology
2.1. Problem Formulation

Our research fits into the hierarchical vehicle control structure shown in Figure 1.
Global planning on the highest level defines the route based on road topology and traffic
information. The next layer is behavior planning, which considers different scenarios,
other traffic participants, and other factors. This layer can be considered as a state machine
that covers all behaviors or actions: staying in the lane, following, avoiding, overtaking,
and so on. The task of local planning is to design the trajectory or path associated with a
behavior. Finally, the low-level controllers are responsible for executing the trajectory or
path, whose outputs are the vehicle control commands. These layers can interact with each
other, resulting in a replanning of the motion. For example, in a pedestrian avoidance case,
the actual planned behavior and path are distracted by an unexpected object. Hence the
vehicle needs to reconsider its strategy and defined trajectory.

Global Planning Behaviour
Planning

Local
Planning

Abstraction level

Frequency

Low-level
controls

Figure 1. Hierarchical vehicle control structure.

This article focuses on local planning, which can consider several optimization factors.
These are in priority order: safety, feasibility, perceived safety, comfort, and route efficiency.
This optimization task needs to be solved with a high refresh rate and in real-time. Unfortu-
nately, the resource requirements of classical nonlinear optimization methods can be high
and cannot guarantee a constant run-time to achieve optimal results.

2.2. Proposed Method

The paper provides a machine learning-based solution for local planning to evade
a moving object. A reinforcement learning agent achieves the optimization goal defined
by the reward function in a learning environment through a trial and error method. In
RL terminology, training consists of episodes, while episodes consist of a series of steps.
The agent tries to solve a randomly generated scenario in each episode. Figure 2 shows
the training method where the moving object is a pedestrian. The pedestrian’s starting
position, velocity, direction, and EGO’s velocity are randomly generated when the scenario
is initialized. The state space st can be determined, from which the agent predicts the action
space at. Based on the action space, the curvature and velocity profile of the trajectory can
be generated.

Electronics 2022, 11, 2346 4 of 13

Evaluate

State

Next state

TD3 agent

Trajectory generator

curvature and

velocity profile

State (st)

Reward calculation

Vehicle dynamics

MPC &

Stanley
Reward (rt)

Init

Training loop

Next state (st+1)

Environment

Action

(at)

Figure 2. Training architecture.

A longitudinal Stanley and a lateral MPC controller drive along the entire trajectory
while observing the vehicle and environmental conditions and calculating reward value rt.
In order to provide sufficiently accurate calculations of the vehicle dynamics with decent
computational requirements, a nonlinear planar single-track vehicle model with a dynamic
wheel model is applied. The vehicle executes only a dtplan length part of it. With this, the
agent learns to look ahead. The performance of the trained agent can be examined in the
evaluation phase.

The following simplifications were introduced at the beginning of the research to keep
the problem in focus.

• The maneuver is performed on a straight section of the road.
• The vehicle has ideal high-level sensor signals.
• Constant road–tire friction coefficient.
• The pedestrian makes a rectilinear motion.
• No other dynamic objects are considered.

2.3. Environment

The training process can take up to million steps, so the balance between detail and
run-time had to be found when creating the models and the reward function. The structure
defined in Open-AI Gym was used as a basis to facilitate the integration of the agent.
The problem presented in the article is numerically complex because the state and action
space consist of several continuous values. The following subsections describe each of the
software modules in the environment.

2.3.1. State Space

The state space consists of eight continuous variables. The first four describe the state
of the pedestrian, and the others represent the vehicle’s state:

[xped − xego, yped − yego, vped, αped, vego, v̇ego, θego, ψ̇ego], (1)

where xped − xego and yped − yego are the distance along the x and y axis between the EGO
and the pedestrian, vped is the velocity, and αped is the moving direction of the pedestrian.
vego, v̇ego, θego, and ψ̇ego are the velocity, acceleration, heading angle, and a yaw-rate of the
EGO vehicle.

As shown in Figure 3, the origin of the global coordinate system is located on the
centerline of the right lane, where the vehicle starts the episode with v0 initial velocity. To
improve the training stability of the agent, the elements of the state space are normalized
to the range of [0, 1].

Electronics 2022, 11, 2346 5 of 13

y

x

CoG
planned path

[xped, yped, vped, αped]

α

[xego, yego, vego, vego, θego, ψego]

w
/2

w
/2

Figure 3. State representation of the training environment.

2.3.2. Action Space

The action space contains four continuous values. A curvature and a velocity profile
define the agent’s planned trajectory.

As shown in Figure 4, a polynomial is defined by arc length and curvatures. As the
agent provides curvature values, polynomial coefficients have to be calculated.

κ(s) = a3s3 + a2s2 + a1s + a0 (2)

The κ0 curvature value at the beginning of the polynomial is equal to the coefficient
a0. According to κ1, κ2, and κ3 the coefficients a1, a2, and a3 are determined by analytical
curve fitting. As Figure 4 shows, κ1 and κ2 are evenly distributed along the length of the
polynomial in the middle. The curvature value at the end of the curve κ3 is always 0.

K 1

K 3

K 0

K 2

s p

Figure 4. Polynomial path.

The arc-length integral of the curvature function κ(s) is θ(s) and its arc-length integral
is the position x(s), y(s). θ(s) is the angle along the arc length, for which a numerical
integration can provide a good approximation.

θ(s) = θ0 +
∫ s

0
a3s′3 + a2s′2 + a1s′ + a0 ds′ (3)

x(s) = x0 +
∫ s

0
cos(θ(s′)) ds′ (4)

y(s) = y0 +
∫ s

0
sin(θ(s′)) ds′ (5)

The track points can be determined at a distance of 0.5 m along the arc length. The arc
length s of a polynomial is velocity dependent. The planning horizon is 2 s.

Electronics 2022, 11, 2346 6 of 13

The velocity profile is obtained by third-order B-spline interpolation. The first deriva-
tive at the beginning of the profile is equal to the current acceleration of the EGO. The
curve’s control points are given by the second two continuous elements of the action space.
These two velocity values are evenly distributed along the arc length.

2.3.3. Models

For accurate calculation of the vehicle’s motion with a fast run-time, a custom nonlinear
single-track model with a dynamic wheel model is used [19]. Three elements build the multi-
body model: the chassis and two rigidly connected virtual wheels. The main parameters of
the chassis are the moment of inertia θ, the mass m, the horizontal distance between the
CoG and the wheel centers l f and lr, the CoG’s height h, the moments of inertia θ[f /r] and
the radii r[f /r] of the wheels. The precisely developed wheel model uses the Magic Formula,
which defines the transmittable amount of force between the road and the tires [20]. The
vehicle model must be solved in ms time steps, which is the most resource-intensive part of
the training due to the detailed wheel model. The pedestrian makes a rectilinear motion
with the direction and speed specified at the beginning of the episode.

2.3.4. Reward Function

The reward function defines the goals of the agent. In other words, it gives the
goodness of the actions represented by a single scalar value. In our case, the goal is to
evade the pedestrian while maintaining the vehicle’s stability. The planned trajectory has
to be evaluated to give feedback to the agent.

The primary optimization condition is to avoid a collision or minimize the collision’s
severity if the collision is unavoidable. The non-slip maneuver and travel comfort are
ranked lower in order of priority. The agent is penalized when the following terminating
events occur, and the current episode is over:

• The euclidean distance between vehicle CoG and the nearest point of the path (distance
error) greater than 1 m;

• The angle difference between at closest point of the path and vehicle (angle error)
greater than 20 degrees;

• Longitudinal rear or front slip greater than 0.1;
• Lateral rear or front slip greater than 0.2 radians;
• The vehicle hit a pedestrian;
• The vehicle leaves the road.

The penalty is a linear function of the velocity, saturated at −2.5 to consider the
severity of the caused accident in a simplified way:

rt = max(−2.5;−2.5 · vego/60) (6)

where the vego ego speed is in km/h. If the vehicle has accomplished the planned trajectory
without a terminating event, the agent gets a weighted reward value:

rt = wvrv + wprp + wlarla + wlorlo + wara (7)

where rv is the reward of speed deviation from the velocity profile. rp penalizes the distance
between EGO’s CoG and the centerline of the right lane. rla and rlo are the reward for the
low lateral and longitudinal slip of the tires. ra penalizes the angle deviation of the road
and the end of the trajectory. All of the reward values are saturated and normalized. wv,
wp, wla, wlo, and wa are the weights. The maximum achievable reward value is 2.5.

2.3.5. Low-Level Controllers

As mentioned before, an MPC is responsible for the lateral, while a Stanley controller
is responsible for the longitudinal control. Model predictive control can handle well the
significant time delays of sensors or actuators and the high-order dynamics of vehicles,
thus widespread in automotive applications [21]. During its operation, the MPC predicts

Electronics 2022, 11, 2346 7 of 13

the response of the process to the calculated control input with a dynamic model. The
simplified two degrees of freedom model represented by the lateral position, and angle of
rotation of the vehicle [22] has been integrated into the controller. For optimal control, a J
cost function (8) is minimized using the control input.

J =
p

∑
i=1

Wee2
i +

p

∑
i=1

W∆u∆u2
i (8)

where ei is the ith error between the reference value and the predicted output, p is the
prediction horizon. The We weight can specify the importance of reference tracking. ui
is the ith control variable and W∆u weight can penalize significant changes in ui. MPC
calculates the best control input over the control horizon by minimizing the cost function
at each timestep and defines the future plant output. The vehicle is controlled by the first
calculated control signal in each time step. The controller can be tuned by adjusting the
weighting coefficients, defining the sample time between predictions, and by the control
horizon.

The longitudinal Stanley [23] is a simple proportional-integral (PI) controller where
the integrator term is saturated to prevent windup:

u = (Kp + Ki
z

z− 1
) e (9)

where u is the control signal, Kp is the proportional gain, Ki is the integral gain, and e is the
difference between current and reference velocity. The control signal is also saturated.

2.3.6. Rendering and Carla Integration

To facilitate the evaluation of the trained agent, a top-view 2D visualization interface
has been integrated into the environment. Figure 5 shows a snapshot of the training that
also shows the predicted position of the EGO and the pedestrian by the reward function.

Figure 5. Top-view visualization.

In addition to the 2D display, a Carla 3D visualization (see Figure 6) has also been
integrated with the environment for display purposes and to create a simulator environment
for comparing the capabilities of human drivers to the performance of the RL.

Figure 6. Carla visualization.

Electronics 2022, 11, 2346 8 of 13

2.4. Agent

The RL agent uses the twin-delayed deep deterministic policy gradient (TD3) [24]
algorithm, an improvement of the deep deterministic policy gradient (DDPG) [25]. DDPG
can efficiently solve autonomous vehicle control tasks with a continuous state and action
space [26,27]. Tuning hyperparameters (e.g., learning rate, noise process parameters, etc.)
is challenging, especially for complex tasks with large action space.

In our previous work, the DDPG was detailed [26], hence in this article, the differences
are in focus. TD3 has better performance due to three improvements.

• The overestimation can cause divergence in actor-critic solutions. As shown in Table 1
TD3 updates the weights of the actor network only every second step. It can reduce
the error, resulting in a more stable and efficient training process.

• TD3 agent uses two critic networks with a clipped double Q learning method [28]. The
smaller worst of the two critic networks is selected, which reduces underestimation bias.

• The action noise regularization can smooth the target policy and make it more robust.
As also shown in Table 1, saturated noise is added to the selected action, which favors
higher values for the action.

Table 1. Hyperparameters of the training.

Parameter Value

Soft-update parameter (τ) 0.005
Batch size 64

Batch selection method random choice
Warmup steps 200

Actor main, target networks

Learning rate (αa) 0.001
Hidden F.C. layer structure [512, 512, 4]

Update steps 2

Critic main, target networks

Learning rate (αc) 0.002
Discount factor (γ) 0.99

Hidden F.C. layer structure [512, 512, 1]

Action and Target-action noise

Mean (µ) 0.0
Stddev (σ) 0.2

Target action noise clip values −0.5, 0.5

Network Architecture and Hyperparameters

The tuning of the hyperparameters of the agent was done partly on a scientific basis
and partly empirically. The agent uses two actor and four critic networks with the same
layer structure. Table 1 shows that the networks consist of only a few layers with relatively
few neurons, which is advantageous in terms of runtime, mainly for training but also for
evaluation. The first two layers for both the actor and critic networks use the relu activation
function. The activation function for the output layer of the critic is linear, and tanh for the
actor. The target actor has saturated to a [0, 1] interval.

3. Results

The TD3 agent’s training results in a relatively small neural network using low re-
sources. It can plan an optimal feasible trajectory for the vehicle based on its state and the
dynamically moving object. Planning takes place online, and the trajectory is updated as
the environment changes. As the car moves toward the pedestrian, it replans based on the
changed state. On a medium-performance PC configuration (i7-7700 with GTX 1080 Ti), the
agent learned in 26,464 episodes in 9 h and 24 min with randomized scenarios (see Figure 7).

Electronics 2022, 11, 2346 9 of 13

First, the vehicle starts on a straight track at a random speed. Then, the pedestrian appears
in a randomized position and crosses the road at a random speed and direction. Noise is
applied to the elements of the action space for exploration during training, according to
Table 1.

0 0.5 1 1.5 2 2.5
Episodes 104

0

0.5

1

1.5

2

2.5

T
ra

in
in

g
R

ew
ar

d

Figure 7. Evaluation of the reward during training.

An average driver rarely encounters dangerous traffic situations during their lifetime.
Therefore, it is not easy to prepare for these situations. In addition to the vehicle’s type,
equipment, and technical condition, much depends on the driver’s current condition and
individual abilities to avoid or reduce the severity of the accident.

The performance of the trained agent was evaluated in comparison with human
drivers. Eleven drivers with different qualifications participated in the research. The skills
differed from not having a driving license to the one who was the driver for the Formula
Student race team. The age distribution ranged from 25 to 45 years.

A simulation environment has been created to perform the tests, which consists of the
following elements:

• Logitech G29 Racing wheel with force feedback;
• High-end PC with powerful graphics card (Nvidia 2080Ti);
• CARLA Simulator (version 0.9.13);
• The developed Python environment.

Table 2 shows the randomly generated test cases, also known as scenarios, that had
to be solved by drivers for five consecutive rounds. Each round contains ten scenarios,
so one driver completed 50 runs. For the sake of comparability, all drivers perform the
same scenarios.

Table 2. Init parameters of the scenarios.

Vehicle Speed
(km/h)

Ped. Longitudinal
Distace (m)

Ped. Velocity
(km/h)

Ped. Moving
Direction (°)

1 63.7 25.1 3.0 255.5
2 56.3 31.4 2.7 60.2
3 53.2 30.0 3.7 123.9
4 50.0 20.2 1.6 231.9
5 52.9 25.1 2.5 75.5
6 69.5 26.2 2.5 239.8
7 50.0 28.0 3.0 253.3
8 60.9 30.8 2.1 122.2
9 56.1 26.8 2.5 270.3

10 66.6 31.8 2.5 111.0

The minimum speed of the vehicle at the beginning of the scenario was between 50
and 70 km/h. The pedestrians crossed the road at different angles, walking or running
at different speeds, and started from different longitudinal distances (20–32 m) compared
to the vehicle, resulting in a time-to-collision range of 1.4–2 s from the appearance of the
pedestrian, making it quite challenging to sense, react, and avoid.

Electronics 2022, 11, 2346 10 of 13

In all cases, the task of human drivers was to avoid an accident by steering and braking
or accelerating, with a 3–5 s random time elapsing between each attempt, which simulates
a surprising situation. Slightly wet asphalt was simulated during training for the agent to
deal with more challenging conditions. The wheel–asphalt friction coefficient has been set
to 0.7, significantly increasing the braking distance. Figure 6 shows that rainy weather was
also set in the Carla for a more realistic simulation. As the focus of the research was not on
creating highly accurate models, the vehicle model used in the tests and training did not
include an electronic stability program (ESP). However, a simplified anti-lock braking logic
was built into the model, which does not allow full locking even at maximum braking force
for maneuverability. In addition, the steering ratio has been set lower than an average car,
allowing faster steering response.

The agent completes all scenarios with a 100% success rate. A successful performance
was defined as avoiding a collision and keeping the vehicle on the road in a controllable
condition. The human drivers’ success is broken down into the scenarios and drivers,
as shown in Figure 8 and Table 3. The diagrams also show that there is also a difference
between scenarios and drivers. Scenario 5 was the easiest, and it was successfully completed
49 times, while the 10th was the most difficult, and was only completed in half the attempts.
The 11th driver was the most skillful with 44 successful attempts, while the first driver
was the weakest. The majority of unsuccessful attempts are collisions with pedestrians.
The second most common reason is to leave the road, and the third is to lose control of
the vehicle. The drivers performed worst in the first round, though surprisingly, their
performance fell after the third round. Their success rate for the individual rounds was
65%, 70%, 82%, 75%, and 69%, respectively.

Table 3. Number of successful attempts of each driver on each scenario.

Human Drivers

1 2 3 4 5 6 7 8 9 10 11 Sum

Sc
en

ar
io

s

1 1 5 3 3 1 3 0 4 3 1 4 28
2 1 4 2 3 2 3 3 4 4 1 5 32
3 1 2 5 3 4 2 3 1 5 2 3 31
4 2 5 3 5 4 5 5 5 5 4 5 48
5 2 5 5 5 3 5 4 5 5 5 5 49
6 2 5 2 4 1 4 2 2 3 3 4 32
7 2 2 4 4 1 3 5 4 4 1 4 34
8 2 5 3 4 3 4 5 5 3 2 5 41
9 1 4 1 5 2 5 5 4 4 4 5 40
10 0 4 3 2 1 4 3 2 2 1 4 26

Sum 14 41 31 38 22 38 35 36 38 24 44

In Figure 9 the diagrams from Scenarios 10, 7, 2, 3, and 6 are presented for a deeper
understanding. The left columns show successful attempts (agent and humans), while the
right ones provide the routes of unsuccessful attempts of the humans. Paths were given
speed-dependent coloring according to the color bar, the faster the vehicle, the fainter the
route. The path of the agent is marked with a thick line.

The drivers performed surprisingly well, but Figure 9 shows some critical differences.
Human drivers rarely braked, while the agent applied high braking force in almost all
cases, reducing the potential severity of the accident. In Scenarios 10 and 6, drivers chose
a different strategy than the agent. In both cases, the human drivers drive at high speed
in front of the pedestrian while the agent passes behind them more slowly. In Scenario 7,
some human drivers pass in front of the pedestrian, while the others behind them only
rarely brake. In Scenario 10, most incidents occurred when a pedestrian was passed, but
finally, the vehicle became uncontrollable.

Electronics 2022, 11, 2346 11 of 13

0 10 20 30 40 50

1

2

3

4

5

6

7

8

9

10

11

Attempts

H
u

m
an

 d
ri

ve
r

Successful attempt
Vehicle has become uncontrollable
Collision with the pedestrian
Leaving the road (right)
Leaving the road (left)

0 5 10 15 20 25 30 35 40 45 50 55

1

2

3

4

5

6

7

8

9

10

Attempts

Sc
en

ar
io

Successful attempt
Vehicle has become uncontrollable
Collision with the pedestrian
Leaving the road (right)
Leaving the road (left)

Figure 8. Distribution of successful and unsuccessful cases per human drivers (left) and per
scenarios (right).

10 15 20 25 30 35 40

x [m]

-1.75

0

1.75

5.25

y
[m

]

10 15 20 25 30 35 40 45 50 55 60
[km/h]

10 15 20 25 30 35 40

x [m]

agent
human drivers
pedestrian

10 15 20 25 30 35 40

x [m]

-1.75

0

1.75

5.25

y
[m

]

10 15 20 25 30 35 40

x [m]

10 15 20 25 30 35 40

x [m]

-1.75

0

1.75

5.25

y
[m

]

10 15 20 25 30 35 40

x [m]

10 15 20 25 30 35 40

x [m]

-1.75

0

1.75

5.25

y
[m

]

10 15 20 25 30 35 40

x [m]

10 15 20 25 30 35 40

x [m]

-1.75

0

1.75

5.25

y
[m

]

10 15 20 25 30 35 40

x [m]

Figure 9. Routes of successful (left) and unsuccessful (right) completions of Scenarios 10, 7, 2, 3, and
6. The path of the agent is marked with a thick line.

Electronics 2022, 11, 2346 12 of 13

4. Conclusions

The paper presents an emergency pedestrian avoidance algorithm using reinforcement
learning. Contrary to the end-to-end solutions found in the literature, it defines a path and
a velocity profile to follow for the agent, which continuously replans its behavior based on
the new state. In addition, the algorithm considers the severity, success, and controllability
of the vehicle. Finally, we have compared the results to the capabilities of human drivers
on the same simulation with the result that the agent can significantly outperform human
performance. Though the algorithm presented is defined for Ackermann steering vehicles
on the road with crossing pedestrians, one can apply its principles to various other dynamic
object avoidance problems.

Author Contributions: Conceptualization, T.B. and S.A.; methodology, S.A. and Á.F.; software, Á.F.;
resources, T.B.; writing—original draft preparation, Á.F.; writing—review and editing, T.B. and S.A.;
visualization, S.A. and Á.F.; supervision, T.B. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was supported by the European Union within the framework of the National
Laboratory for Autonomous Systems (RRF-2.3.1-21-2022-00002). The research reported in this paper
is part of project No. BME-NVA-02, implemented with the support provided by the Ministry of
Innovation and Technology of Hungary from the National Research, Development and Innovation
Fund, financed under the TKP2021 funding scheme.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

VRU Vulnerable Road Users
ADAS Advanced Driver Assistance Systems
AEB Autonomous Emergency Braking
FCW Forward Collision Warning
ESS Emergency Steering Support
AES Autonomous Emergency Steering
RL Reinforcement Learning
RRT Rapidly Exploring Random Trees
MDP Markov Decision Process
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
DQN Deep Q-Network
LSTM Long Short-Term Memory
MPC Model Predictive Control
CoG Center of Gravity
PI Proportional-Integral
TD3 Twin-Delayed Deep Deterministic Policy Gradient
DDPG Deep Deterministic Policy Gradient
ESP Electronic Stability Program

References
1. Next Steps towards ‘Vision Zero’: EU Road Safety Policy Framework 2021–2030. Available online: https://op.europa.eu/en/

publication-detail/-/publication/d7ee4b58-4bc5-11ea-8aa5-01aa75ed71a1 (accessed on 20 July 2022).
2. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018.
3. Haus, S.H.; Sherony, R.; Gabler, H.C. Estimated benefit of automated emergency braking systems for vehicle–pedestrian crashes

in the United States. Traffic Inj. Prev. 2019, 20, S171–S176. [CrossRef] [PubMed]
4. Eckert, A.; Hartmann, B.; Sevenich, M.; Rieth, P. Emergency steer & brake assist: A systematic approach for system integration of

two complementary driver assistance systems. In Proceedings of the 22nd International Technical Conference on the Enhanced
Safety of Vehicles (ESV), Washington, DC, USA, 13–16 June 2011; pp. 13–16.

5. Euro NCAP 2025 Roadmap; EuroNCAP: Leuven, Belgium, 2017.

https://op.europa.eu/en/publication-detail/-/publication/d7ee4b58-4bc5-11ea-8aa5-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/d7ee4b58-4bc5-11ea-8aa5-01aa75ed71a1
http://doi.org/10.1080/15389588.2019.1602729
http://www.ncbi.nlm.nih.gov/pubmed/31381447

Electronics 2022, 11, 2346 13 of 13

6. Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991,
7, 278–288. [CrossRef]

7. Fulgenzi, C.; Spalanzani, A.; Laugier, C. Dynamic Obstacle Avoidance in uncertain environment combining PVOs and Occupancy
Grid. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007;
pp. 1610–1616. [CrossRef]

8. Shimoda, S.; Kuroda, Y.; Iagnemma, K. Potential Field Navigation of High Speed Unmanned Ground Vehicles on Uneven Terrain.
In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005;
pp. 2828–2833. [CrossRef]

9. Gelbal, S.Y.; Arslan, S.; Wang, H.; Aksun-Guvenc, B.; Guvenc, L. Elastic band based pedestrian collision avoidance using V2X
communication. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017;
pp. 270–276. [CrossRef]

10. hwan Jeon, J.; Cowlagi, R.V.; Peters, S.C.; Karaman, S.; Frazzoli, E.; Tsiotras, P.; Iagnemma, K. Optimal motion planning with
the half-car dynamical model for autonomous high-speed driving. In Proceedings of the 2013 American Control Conference,
Washington, DC, USA, 17–19 June 2013; pp. 188–193. [CrossRef]

11. Chen, Y.; Peng, H.; Grizzle, J.W. Fast Trajectory Planning and Robust Trajectory Tracking for Pedestrian Avoidance. IEEE Access
2017, 5, 9304–9317. [CrossRef]

12. Wu, W.; Jia, H.; Luo, Q.; Wang, Z. Dynamic Path Planning for Autonomous Driving on Branch Streets With Crossing Pedestrian
Avoidance Guidance. IEEE Access 2019, 7, 144720–144731. [CrossRef]

13. Schratter, M.; Bouton, M.; Kochenderfer, M.J.; Watzenig, D. Pedestrian Collision Avoidance System for Scenarios with Occlusions.
In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1054–1060. [CrossRef]

14. Yoshimura, M.; Fujimoto, G.; Kaushik, A.; Padi, B.K.; Dennison, M.; Sood, I.; Sarkar, K.; Muneer, A.; More, A.; Tsuchiya, M.; et al.
Autonomous Emergency Steering Using Deep Reinforcement Learning For Advanced Driver Assistance System. In Proceedings
of the 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Chiang Mai, Thailand,
23–26 September 2020; pp. 1115–1119. [CrossRef]

15. Yang, J.; Xi, M.; Wen, J.; Li, Y.; Song, H.H. A digital twins enabled underwater intelligent internet vehicle path planning system
via reinforcement learning and edge computing. Digit. Commun. Netw. 2022 . [CrossRef]

16. Deshpande, N.; Spalanzani, A. Deep Reinforcement Learning based Vehicle Navigation amongst pedestrians using a Grid-based
state representation. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, NZ, USA,
27–30 October 2019; pp. 2081–2086. [CrossRef]

17. Li, J.; Yao, L.; Xu, X.; Cheng, B.; Ren, J. Deep reinforcement learning for pedestrian collision avoidance and human-machine
cooperative driving. Inf. Sci. 2020, 532, 110–124. [CrossRef]

18. Everett, M.; Chen, Y.F.; How, J.P. Collision Avoidance in Pedestrian-Rich Environments with Deep Reinforcement Learning. IEEE
Access 2021, 9, 10357–10377. [CrossRef]

19. Hegedüs, F.; Bécsi, T.; Aradi, S.; Gáspár, P. Model Based Trajectory Planning for Highly Automated Road Vehicles. IFAC-
PapersOnLine 2017, 50, 6958–6964. [CrossRef]

20. Pacejka, H.B. Chapter 8—Applications of Transient Tire Models. In Tire and Vehicle Dynamics, 3rd ed.; Pacejka, H.B., Ed.;
Butterworth-Heinemann: Oxford, UK, 2012; pp. 355–401. [CrossRef]

21. Mehta, B.; Reddy, Y. Chapter 19—Advanced process control systems. In Industrial Process Automation Systems; Mehta, B., Reddy,
Y., Eds.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 547–557. [CrossRef]

22. Rajamani, R. Vehicle Dynamics and Control; Springer: Berlin, Germany, 2012; p. 27. [CrossRef]
23. Hoffmann, G.M.; Tomlin, C.J.; Montemerlo, M.; Thrun, S. Autonomous automobile trajectory tracking for off-road driving:

Controller design, experimental validation and racing. In Proceedings of the 2007 American Control Conference, New York, NY,
USA, 9–13 July 2007; pp. 2296–2301.

24. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018,
arXiv:1802.09477.

25. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

26. Fehér, Á.; Aradi, S.; Bécsi, T. Hierarchical Evasive Path Planning Using Reinforcement Learning and Model Predictive Control.
IEEE Access 2020, 8, 187470–187482. [CrossRef]

27. Fehér, Á.; Aradi, S.; Hegedüs, F.; Bécsi, T.; Gáspár, P. Hybrid DDPG approach for vehicle motion planning. In Proceedings of the
16th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2019, Prague, Czech Republic, 29–31
July 2019.

28. Hasselt, H. Double Q-learning. Adv. Neural Inf. Process. Syst. 2010, 23, 2613–2621.

http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/ROBOT.2007.363554
http://dx.doi.org/10.1109/ROBOT.2005.1570542
http://dx.doi.org/10.1109/IVS.2017.7995731
http://dx.doi.org/10.1109/ACC.2013.6579835
http://dx.doi.org/10.1109/ACCESS.2017.2707322
http://dx.doi.org/10.1109/ACCESS.2019.2938232
http://dx.doi.org/10.1109/IVS.2019.8814076
http://dx.doi.org/10.23919/SICE48898.2020.9240358
http://dx.doi.org/10.1016/j.dcan.2022.05.005
http://dx.doi.org/10.1109/ITSC.2019.8917299
http://dx.doi.org/10.1016/j.ins.2020.03.105
http://dx.doi.org/10.1109/ACCESS.2021.3050338
http://dx.doi.org/10.1016/j.ifacol.2017.08.1336
http://dx.doi.org/10.1016/B978-0-08-097016-5.00008-5
http://dx.doi.org/10.1016/B978-0-12-800939-0.00019-X
http://dx.doi.org/10.1007/978-1-4614-1433-9
http://dx.doi.org/10.1109/ACCESS.2020.3031037

	Introduction
	Related Work
	Contributions of the Paper

	Methodology
	Problem Formulation
	Proposed Method
	Environment
	State Space
	Action Space
	Models
	Reward Function
	Low-Level Controllers
	Rendering and Carla Integration

	Agent

	Results
	Conclusions
	References

