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Abstract: The Internet of Things confers seamless connectivity between people and objects, and
its confluence with the Cloud improves our lives. Predictive analytics in the medical domain can
help turn a reactive healthcare strategy into a proactive one, with advanced artificial intelligence
and machine learning approaches permeating the healthcare industry. As the subfield of ML, deep
learning possesses the transformative potential for accurately analysing vast data at exceptional
speeds, eliciting intelligent insights, and efficiently solving intricate issues. The accurate and timely
prediction of diseases is crucial in ensuring preventive care alongside early intervention for people
at risk. With the widespread adoption of electronic clinical records, creating prediction models
with enhanced accuracy is key to harnessing recurrent neural network variants of deep learning
possessing the ability to manage sequential time-series data. The proposed system acquires data
from IoT devices, and the electronic clinical data stored on the cloud pertaining to patient history
are subjected to predictive analytics. The smart healthcare system for monitoring and accurately
predicting heart disease risk built around Bi-LSTM (bidirectional long short-term memory) showcases
an accuracy of 98.86%, a precision of 98.9%, a sensitivity of 98.8%, a specificity of 98.89%, and an
F-measure of 98.86%, which are much better than the existing smart heart disease prediction systems.

Keywords: cloud computing; Internet of Things; healthcare; predictive analytics; recurrent neu-
ral network

1. Introduction

Human evolution has unfolded in synergy with science and technology evolution.
Information and communication technology (ICT) advancements have laid the foundation
for innovative solutions in diverse industry domains, including healthcare, agriculture,
transportation, and logistics, among others. The Internet of Things (IoT) is a substantive
driving force to ICT technological advancement, leading prospective sectors down the road
of automation alongside decentralized intelligence [1]. The IoT evolves incessantly and
impacts every facet of our life while resembling a living entity. From household appliances
to robots in factories, the IoT connects data, people, things/objects, and processes. Mean-
while, cloud computing (CC) delivers on-demand elastic services with virtually unlimited
computation and storage capability [2]. Despite being unique and independent in their
respective evolution, cloud computing and IoT aspects complement one another. Eventu-
ally, the two technologies converged in recent years, and the confluence became known as
a Cloud–IoT paradigm [3,4], offering tremendous prospects for driving new innovative
services and applications.
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Healthcare-related applications have pushing for innovations in science and technol-
ogy since information technology applications began to remotely acquire, track and control
the status of patients. Thus, IoT drives recent innovations in healthcare and revolutionizes
them by acquiring the physiological data of patients through sensor networks and wearable
devices [5]. The Cloud–IoT harnesses the Cloud’s tremendous potential for the storage
and processing of an enormous volume of clinical records of patients including sensor data
from medical IoT for healthcare analytics.

Analytics ensues the systematic quantitative and qualitative analysis of concerned
data for efficient decision making, while predictive analytics stems from advanced analytics
aiming to elicit the prognosis of future occurrences using the available data [6]. The
analytics in healthcare is harnessed for clinical decision support, predictive risk assessment,
and remote health monitoring, among other crucial tasks. Predicting and lowering risk
based on current and past patient data are a big part of medicine. The integration of
humongous data from disparate sources comprising electronic health records, medical
imaging, screening results, and administrative information warranting swift decisions is
effectively tackled by healthcare analytics [7]. Clinicians must often make decisions with a
high degree of uncertainty; however, with the headway of predictive analytics in healthcare,
those decisions will be more informed than ever. These cutting-edge predictive analytics
approaches help identify trouble early on, avoid complication risks, improve chronic illness
management, evade hospital readmission, receive medical research aid, and minimize
overhead expenses.

Predictive analytics in healthcare deploys diverse techniques from conventional lin-
ear models to advanced algorithms of artificial intelligence (AI) and machine learning
(ML) [8]. Deep learning (DL), a subfield of ML, is sufficiently reliable and robust to au-
tomatically handle and learn from a huge amount of complex healthcare data and offers
actionable insights and solutions to intricate problems. Its deployment to a wide variety
of medical applications has surpassed the results of traditional models. Specifically, the
recurrent neural network (RNN) [9] is competent at managing the long-term dependen-
cies of input data and has grown prominent in the study of temporal events concerning
time-sequential applications.

1.1. Motivation

Predictive analytics is proving its worth, not just in the hospital environment, but also
at home by remote monitoring and keeping patients from relapsing into the need for acute
treatment. Predictive analytics aid in the diagnosis, prognosis, and therapy at every stage
of a patient’s treatment [10]. It also helps in designing the treatment course, providing
clinical decision support, decreasing adverse occurrences, and enhancing the overall care
quality while lowering healthcare costs. Moreover, the personalized healthcare model shifts
from treating patients as numbers to treating them as individuals, customizing treatment
to their unique medical history, environment, social risk factors, genetics, and biochemistry,
among other things [11]—rather than depending on demographic statistics that do not
apply to everyone. It tenders real-time clinical decision assistance at the point of treatment,
allowing for the most efficient delivery of individualized healthcare [12]. With deadly
diseases, spotting them early on and detecting any possible deterioration in the patients’
condition before occurrence can significantly improve the odds of an effective treatment.

The diseases affecting the heart and its related blood vessels are all classified as cardio-
vascular diseases (CVDs). These include arrhythmia, coronary artery disease, congenital
heart disease, valve disease, aortic disease, heart failure, peripheral artery disease, pericar-
dial disease, heart valve disease, cerebrovascular disease, rheumatic heart disease, deep
vein thrombosis, cardiomyopathy, myocarditis, atrial fibrillation, ischemic heart disease,
and stroke [13–15].

The most prominent cause of global mortality is cardiovascular diseases (CVDs),
claiming the lives of an estimated 17.9 million individuals and accounting for 32% of all
fatalities worldwide [16]. Heart attacks and strokes cause four out of every five CVD
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fatalities, which are 85% of all CVD mortalities, with one-third occurring before age 70.
Identifying individuals at risk for CVDs and ensuring that they receive proper therapy can
help avert untimely deaths. This is where the predictive algorithms powered by AI and ML
come into play alongside the Internet of Things, as these are adept at managing massive
and diverse data. Pattern classification, as a pattern recognition task, is a crucial supervised
learning paradigm for identifying and classifying disease patterns in the medical field [17].
The researchers working on classification algorithms concerning heart disease strive to
achieve the maximum classification accuracy possible as patients’ lives are at stake.

Many individuals are at risk of heart disease due to long-term conditions such as
persisting high blood pressure. With the increase in the aging population across the globe,
most of them are diagnosed with chronic heart conditions. This warrants the continuous
real-time monitoring of individuals at in-home care and the patients in treatment within
hospital premises, entailing timely treatment upon the fluctuation of vital signs. The
prolonged tracking of health conditions in the elderly helps minimize hospitalization cost
and enhance the quality of life, but conventional methods are tedious and tiring. This
necessitates efficient facilities to mitigate the overwhelming workload of clinicians and
hospital staff while minimizing the cost of health monitoring. The pervasive nature of
IoT has incited the proliferation of smart, interconnected devices and wearables with
sensors, thereby facilitating remote patient monitoring pertaining to heart disease. The
IoT for healthcare monitoring includes smart health watches, wearable blood pressure
monitors, and wearable ECG monitors equipped with medical sensors. Thus, the healthcare
IoT acquires vital patient data and transmits them to the Cloud for storage and complex
deep learning analytics along with prior electronic clinical records for accurate heart risk
diagnostics. These IoT devices can swiftly notify the clinicians and caretakers of the
patient’s condition. This enables clinicians to better make timely decisions for individuals
as well as the population at large by estimating patients’ chance of developing a specific
heart disease, their prognosis for the given condition, and the corresponding treatment.

1.2. Contribution

The pivotal outcomes of this research initiative are listed as follows:

1. The data collected from IoT sensors pertaining to heart disease risk prediction are
subject to the data pre-processing tasks of data cleaning and data filtering at the
Cloud layer;

2. The ensuing data are sent to the fuzzy information system (FIS) for the initial classifi-
cation task;

3. Finally, the proposed Bi-LSTM model is used to accurately predict the risk of heart
disease in patients.

The remaining sections of this article are organized into related work, methodol-
ogy, experimental setup, performance assessment, experimental results and discussion,
comparative analysis, future directions, and conclusions.

1.3. Related Work

In recent times, diverse systems for heart disease prediction have been propounded.
For enhancing heart disease risk prediction accuracy, the deployment of several ensemble
classifiers displays an accuracy of 85.4% [18]. A model for diagnosing heart disease
diagnosis that combines rough sets-based attribute reduction involving the chaos firefly
algorithm with an interval type-2 fuzzy logic system showcases an accuracy of 86% [19]. A
machine learning hybrid model to predict heart disease [20] by combining random forest
(RM) with linear method (LM) approaches exhibits a performance accuracy of 88.7%.

An integrated decision support system for predicting the risk of heart failure, which
combines a fuzzy analytic hierarchy process and artificial neural network for feature weight-
ing and classification tasks, respectively, achieves 91.0% accuracy [21]. A smart system for
diagnosing heart disease deploying a χ2 statistical model and a deep neural network for
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feature refinement and classification tasks, respectively, is proposed. The model attains an
accuracy, specificity, and sensitivity of 91.57%, 93.12%, and 89.78%, respectively [22].

An adaptive weighted fuzzy rule-based system for assessing the heart disease risk
level is presented. This automatic diagnostic system of a fuzzy model based on a genetic
algorithm along with a deployed modified dynamic multi-swarm particle optimization
approach shows an accuracy of 92.3% [23]. A heart disease identification model deploying
algorithms of univariate and relief feature selection alongside a decision tree for classifica-
tion achieves an accuracy of 92.8% [24].

A coronary artery disease prediction model with a neuro-fuzzy medical decision
support system is presented. This system involves an artificial neural network and an
adaptive neuro-fuzzy inference system, which displays an accuracy, sensitivity, specificity,
and precision of 94.15%, 91.44%, 95.59%, and 92.61%, respectively [25]. A system for
automatically predicting heart disease is proposed, which deploys cluster-based Bi-LSTM
(bidirectional long short-term memory). When tested with the UCI dataset, this model
exhibits an accuracy of 94.78% [26].

An expert system for diagnosing heart disease by combining fuzzy rules and deep
neural networks is presented, showing an overall accuracy of 96.5% [27]. A method that
integrates CNN with deep learning algorithms referred to as CardioHelp is introduced,
which uses CNN for early heart failure prediction involving a temporal model. This
approach outperforms other state-of-the-art methods, with a 97% accuracy rate [28].

An IoT-based hybrid system for cardiovascular disease prediction is offered, including
sequential forward selection (SFS) as the feature selection technique and a random forest
for classification. This system recommends physical as well as dietary plans to patients in
function of their age and gender, showing 98% accuracy compared to other heuristic model
recommender systems [29]. A model capable of handling medical data from multiple
sensors involving an ensemble classifier—Kernel random forest [30]—shows 98% accuracy
when deployed on a heart disease dataset.

A new IoT framework based on deep convolutional neural networks, which are con-
nected to a wearable sensor that measures the blood pressure and ECG of a patient, is
suggested. When compared to logistic regression and existing deep learning neural net-
works, this technique performs better with 98.2% accuracy [31]. A smart system predicting
the risk of heart disease [32] from data acquired by wearable sensors and patient medical
history, based on the ensemble deep learning model Logitboost along with feature fusion
technique, was presented. The system shows 98.5% accuracy in heart disease diagnoses
while automatically recommending dietary plans in function of the health condition.

A model for predicting heart disease is presented by combining the method of embed-
ded feature selection involving the LinearSVC algorithm with deep neural networks. This
system achieves an accuracy, recall, precision, and F-measure of 98.56%, 99.35%, 97.84%,
and 98.3%, respectively, when evaluated with the heart disease dataset [33].

The aforementioned state-of-the-art works pertaining to heart disease risk diagnosis
harnessing the UCI heart disease dataset predominantly avail statistical and machine
learning algorithms and methods. The classification accuracy shown by the existing
methods has the possibility of further enhancement when deep learning approaches are
emphasized. Moreover, utilizing the fuzzy systems alongside recurrent neural network
algorithms has the potential to offer better outcomes. The ensuing sections elaborate
on the proposed fuzzy-based recurrent neural network model for accurate heart disease
risk prediction.

2. Materials and Methods

IoT technology acts as the critical acquisition component for innumerable real-time
applications that promote object–individual interaction. The massive amount of data
generated by IoT devices poses a significant challenge to the healthcare system pertaining
to the processing, storage, and management of data.
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The proposed smart healthcare system for heart disease risk prediction includes
modules such as (1) the data acquisition/collection layer; (2) data pre-processing; and
(3) the disease prediction layer, which is depicted in Figure 1.
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2.1. Data Acquisition/Collection Layer

The propounded healthcare system acquires data from two primary data sources.
The physiological data of patients such as their blood pressure (BP), heart rate, blood
sugar/glucose level, respiration rate, blood oxygen, cholesterol level, activity, electrocar-
diogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) are gathered
from the patient’s routine health monitoring. These data are transmitted through Blue-
tooth/Zigbee to related remote gateway devices and then to the cloud data center, where
data pre-processing and disease prediction takes place. The other data source is the
electronic clinical data (ECD), which comprise the patient’s medical history (including
their history of smoking and diabetes), observation reports, and comprehensive clinical
(lab) reports which offer valuable information on disease prediction and are stored in a
cloud database.

Dataset

For the experiment, to detect the presence of heart disease from heart patient data, the
Cleveland and Hungarian dataset from the UCI machine learning repository are considered.
The proposed algorithm was deployed on a heart dataset that includes 14 attributes, as
depicted in Table 1.
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Table 1. Attribute description.

S. No. Attribute Description

1 age Age of patient in years
2 sex 1 = male; 0 = female
3 cp Type of chest pain (1 = angina, 2 = atypical form of angina, 3 = non-angina, 4 = no symptoms of angina)
4 trestbps Resting blood pressure
5 chol Cholesterol value
6 fbs Fasting blood sugar value > 120 mg/dL (1 = true and 0 = false)
7 restecg Value of ECG at rest (0 = normal, 1 = abnormal (ST-T wave), 2 = definite ventricular)
8 thalach Maximum heart rate recorded
9 exang Exercise induced angina (1 = yes; 0 = no)
10 oldpeak Exercise induced ST Depression
11 slope Slope of T segment peak exercise (1 = unsloping, 2 = flat, and 3 = down sloping)
12 ca Major vessels number (0–3) coloured by fluoroscopy
13 thal 3 = normal; 6 = fixed defect; 7 = reversable defect
14 target The predicted heart disease status (0 = No and 1 = Yes)

2.2. Data Pre-Processing Layer

Data pre-processing has become a requisite for ML algorithm deployment as real-
world data are prone to being inconsistent, incomplete, and noisy. Efficient heart disease
prediction from the heart disease dataset requires missing data handling, normalization,
and feature selection. Data acquired from wearable sensors are impacted due to signal
aberrations, such as missing values and noise, causing havoc in the case of heart disease
prediction, compromising the prediction accuracy, or yielding an erroneous result. We
utilize a well-known technique to filter the data known as Kalman filtering [32,34], which
effectively eliminates duplicate records, noise, and discrepancies from the data. Owing
to its simple form, it requires low computational power [35]. This unsupervised filtering
algorithm is specialized to handle vast real-time sensor data and furnish values closer to
that of the actual values from the sensor without noise [36]. In addition to this, we use two
other unsupervised filters in the data filtering stage: removing useless and replace missing
values [32]. With another 90% of maximum variance, the first filter eliminates irrelevant
attributes. The second filter substitutes the mean as well as median values of the existing
data for any values missing in the structured dataset.

Fuzzy Inference System

The term fuzzy refers to something as inexplicit or vague, and the fuzzy system is
inspired by the requisite to model inherently vague real-world events [37]. The standard
fuzzy system is characterized by four components, namely a fuzzifier, an inference engine,
a knowledge base, and a defuzzifier. The inputs to a typical fuzzy system can be crisp data
(numeric) and linguistic values (fuzzy sets). In the case of a crisp input, the fuzzifier assigns
to it the applicable fuzzy set and this process is known as fuzzification. Then, the inference
engine accomplishes mapping of the input variable values to the linguistic values of the
output variable through a suitable approximate reasoning method with expert knowledge
indicated by a set of fuzzy conditional rules in the knowledge base. The knowledge base
entails the application of domain knowledge which can be divided into a database and
a rule base. The database comprises linguistic control rules, and the rule base includes
domain expert knowledge. In addition to linguistic values, if numeric data output is
needed, then defuzzification assigns crisp data to the resulting fuzzy set.

The classification of heart disease risk based on patients’ health data is performed
using a fuzzy inference system (FIS), and the algorithm is presented as Algorithm 1.
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Algorithm 1: Classification of patients’ health data using FIS.

Step 1. The inputs and the respective member functions µ1 determines the fuzzy system
Step 2. Ascertain heart disease risk state using µ1 (ECG1), µ1 (MaxHeartRate1),
µ1 (BloodPressure1) as µ1 (normal) or µ1 (low) or µ1 (high)
Step 3. If Health risk state = µ1 (high)

3.1 Send alert to GD using SPARK as RTA
3.2 Store Health risk state of the Puid in CS

Step 4. Otherwise send Health risk state of the Puid to CS
Step 5. End the process

The inputs for maximum heart rate, ECG, and blood pressure, are created and member
function are fed, which are fuzzified into fuzzy sets using a fuzzy value range. Figure 2
presents the working of FIS for heart disease risk prediction.
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Figure 2. FIS for heart disease risk prediction.

The fuzzy sets thus created are given as input to the FIS for classifying patients based
on their health data. Table 2 depicts the linguistic variables and their corresponding fuzzy
set of the FIS. Table 3 shows the member function and range for the blood pressure variable.

Table 2. FIS—linguistic variable and fuzzy set.

Linguistic Variable Fuzzy Set

Max Heart Rate {Low risk, Normal, High risk}
ECG {Low risk, Normal, High risk}

Blood Pressure {Low risk, Normal, High risk}

Table 3. Blood pressure—member function and its range.

Member Function Range

Low [40/90–70/100]
Normal [70/110–80/120]

High [90/130 and above]

The input variable value is mapped into the output variable’s linguistic values through
a suitable approximate reasoning method given as fuzzy conditional rules in the knowledge
base. The results are classified in function of these fuzzy rules in the rule base along with
corresponding member functions. The notification is sent regarding high-risk patients, and
the overall patient risk status is stored in the cloud for future analysis. The data of patients
classified as high risk for heart disease are subjected to further analysis in the ensuing
prediction layer.

2.3. Data Prediction Layer

Sequence prediction challenges have existed for a long time and are often regarded as
one of the most challenging problems in the data science sector to tackle.
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2.3.1. RNN

Deep learning algorithms were extensively researched and widely deployed in recent
years for extracting information from several types of data. Neural networks can learn
representations and uncover previously unknown structures. Numerous deep learning
architectures, namely the conventional neural network, deep neural network, and recurrent
neural network take into account diverse aspects of input data [38]. In most cases, CNN
and DNN are inept in coping with the input’s temporal information. RNNs prevail in
domains dealing with sequential input, such as text, audio, or video.

A cyclic connection is a common component of the RNN design which allows the
updating of its current state depending on the current input and previous states [39]. The
RNNs include the hidden or recurrent layers, which consist of recurrent cells. The states
of the recurrent cells are impacted by the current input that has feedback connections and
past states. Different RNNs can be formed by organizing recurrent layers into different
architectures. Thus, the recurrent cell, as well as the network architecture, distinguish
RNNs. The capability of RNNs is influenced by varying cells and their inner connections.
In some situations, these networks, such as complete RNNs and selective RNNs, made up
of conventional recurrent units (sigma cells and tanh cells), have showcased phenomenal
success. However, the RNNs with standard recurrent cells are inadept at managing long-
term dependencies as it is daunting to identify the interconnecting information with a
considerable gap between the related input data.

2.3.2. LSTM

Long short-term memory (LSTM) has been proposed to contend with “long-term
dependency” as the outcome of exhaustive research on RNNs, aimed at sequence learning.
Long-range interdependence and nonlinear dynamics can be captured using LSTMs [40] as
it functions as the refined version of RNN, with the hidden layer unit of the memory cells
in the place of recurrent units. Figure 3 illustrates the generic LSTM model.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 20 
 

 

where f, i, o, and c are the forget gate, input gate, output gate, and cell activation vectors, 

respectively, while W(f, i, o, c) and b(f, i, o, c) correspond to their weight matrices and bias 

vectors, respectively, and h represents hidden value. The term 𝑥𝑡 refers to the input of the 

memory cell at time t while 𝑐𝑡 and 𝑐𝑡̃ denote the current and previous memory cell units. 

 

Figure 3. Generic LSTM model. 

2.3.3. Proposed Bi-LSTM Model 

The constraint of the LSTM cell is that it can act on prior content but not on the fu-

ture one. Bidirectional recurrent neural networks consisting of two distinct LSTM hidden 

layers with comparable output in opposing directions were put forth. Previous and fu-

ture information is used in the output layer using this approach. In Bi-LSTM, an input 

sequence 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) is computed in the forward direction as ℎ𝑖
⃗⃗  ⃗ =

(ℎ1
⃗⃗⃗⃗ , ℎ2

⃗⃗⃗⃗ , ⋯ , ℎ𝑛 ⃗⃗ ⃗⃗ ⃗⃗  ⃗) and in the backward direction as ℎ𝑡
⃐⃗ ⃗⃗  = (ℎ1

⃐⃗⃗⃗⃗, ℎ2
⃐⃗ ⃗⃗⃗, … , ℎ𝑛

⃐⃗ ⃗⃗⃗). The final output of 

this cell 𝑦𝑡  is created by both ℎ𝑖
⃗⃗  ⃗  and ℎ𝑡

⃐⃗ ⃗⃗ , and the final output sequence is 𝑦 =

(𝑦1, 𝑦2, … 𝑦𝑡 … , 𝑦𝑛). 

In deep networks, the chosen activation function profoundly influences the training 

dynamics along with the task performance. The activation function proposed by the Google 

Brain Team [41], Swish, stated as f(x) = x.sigmoid(βx), was chosen for the prediction model. 

To address the cell divergence issue of the generic model, a tanh activation function 

is included in the cell propagation, and a leaky rectified linear unit (Leaky ReLU) is in-

serted after output gating. These collectively show the reduced prediction oscillation and 

eliminated negative outputs. Figure 4 shows the LSTM cell structure and Bi-LSTM of the 

proposed model. 

𝑓𝑡 = swish(𝑊𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (7) 

𝑖𝑡 = swish(𝑊𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (8) 

𝑜𝑡 = swish(𝑊𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (9) 

𝑐𝑡̃ = tanh(𝑊𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1) + 𝑏𝑐 (10) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡̃ + tanh (11) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑐𝑡 (12) 

𝑦𝑡 = 𝑜𝑡 ∗  𝑐𝑡 ∗ Leaky ReLU (13) 

Figure 3. Generic LSTM model.

The memory cells enable retaining and output information, thereby facilitating the
learning of long-term temporal correlations. This includes self-connections that retain the
network temporal state and are regulated by three gates: input gate, output gate, and the
forget gate. Gating is a process that determines the function of each memory cell in LSTMs.
When the gate is activated, the LSTM updates its cell state. The input and output gates
govern the flow of memory cell inputs and outputs into the remainder of the network.
A forget gate was also introduced to the memory cell, which passes the high-weighted
output information from one neuron to the next. The information retained in memory is
determined by the input unit’s high activation level; if it is high, the memory cell stores the
information. Furthermore, a highly activated input unit will transfer information to the
following neuron. Alternatively, high-weighted input data are stored in memory cells. The
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LSTM units’ activation is similarly determined to RNNs. LSTM network involves mapping
between input and output sequence, i.e., X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn).

ft = σ
(

W f xt + Wh f ht−1 + b f

)
(1)

it = σ(Wixt + Whiht−1 + bi) (2)

ot = σ(Woxt + Whoht−1 + bo) (3)

c̃t = tanh(Wcxt + Whcht−1) + bc (4)

ct = ft ∗ ct−1 + it ∗ c̃t (5)

ht = ot∗ tan h (ct) (6)

where f, i, o, and c are the forget gate, input gate, output gate, and cell activation vectors,
respectively, while W(f, i, o, c) and b(f, i, o, c) correspond to their weight matrices and bias
vectors, respectively, and h represents hidden value. The term xt refers to the input of the
memory cell at time t while ct and c̃t denote the current and previous memory cell units.

2.3.3. Proposed Bi-LSTM Model

The constraint of the LSTM cell is that it can act on prior content but not on the
future one. Bidirectional recurrent neural networks consisting of two distinct LSTM hidden
layers with comparable output in opposing directions were put forth. Previous and future
information is used in the output layer using this approach. In Bi-LSTM, an input sequence

X = (X1, X2, . . . , Xn) is computed in the forward direction as
→
hi = (

→
h1,
→
h2, · · · ,

→
hn ) and in

the backward direction as
↼
ht = (

↼
h1,

↼
h2, · · · ,

↼
hn ). The final output of this cell yt is created by

both
→
hi and

↼
ht and the final output sequence is y = (y1, y2, . . . yt . . . , yn).

In deep networks, the chosen activation function profoundly influences the training
dynamics along with the task performance. The activation function proposed by the Google
Brain Team [41], Swish, stated as f (x) = x.sigmoid(βx), was chosen for the prediction model.

To address the cell divergence issue of the generic model, a tanh activation function
is included in the cell propagation, and a leaky rectified linear unit (Leaky ReLU) is
inserted after output gating. These collectively show the reduced prediction oscillation and
eliminated negative outputs. Figure 4 shows the LSTM cell structure and Bi-LSTM of the
proposed model.

ft = swish
(

W f xt + Wh f ht−1 + b f

)
(7)

it = swish(Wixt + Whiht−1 + bi) (8)

ot = swish(Woxt + Whoht−1 + bo) (9)

c̃t = tanh(Wcxt + Whcht−1) + bc (10)

ct = ft ∗ ct−1 + it ∗ c̃t + tan h (11)

ht = ot ∗ ct (12)

yt = ot∗ ct∗Leaky ReLU (13)

where f, i, o, and c are the forget gate, input gate, output gate, and cell activation vectors,
respectively, while W(f, i, o, c) and b(f, i, o, c) correspond to their weight matrices and bias
vectors, respectively, and h represents hidden value. The term xt refers to the input of the
memory cell at time t while ct, c̃t , and yt denote the current and previous memory cell
units as well as the final output, respectively.
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3. Experimental Setup

This research endeavoured to evaluate sequential prediction models on the heart
disease dataset with deep learning models entailing the generic LSTM model and the
FIS combined with LSTM (FLSTM) alongside the proposed model. The system harnesses
the Cleveland and Hungarian heart disease datasets, accessed from the University of
California, Irvine (UCI) online ML and data mining repository [42]. The original Cleveland
and Hungarian heart disease datasets comprise 303 and 294 records, respectively, with
14 features. These records were increased to 100,000 records using Mockaroo, the dataset
generator tool, to check the robustness of the proposed deep learning model. Thus, the
system is ascertained using 100,000 records segmented into 70% for training tasks and
30% for testing tasks. The proposed neural network model has four layers, among which
two layers are hidden, and the dense layer has seven units. The number of nodes is
automatically selected based on accuracy criteria, and the dropout value is 18% with a
random weight initialization from 0.1 to 0.2. The decay rate is at 0.96, and the learning rate
is 0.16. The value of momentum is 0.82, the number of epochs is set to be variable, and
the batch size is 128. The IoT data acquired from wireless body sensor networks (WBSNs)
are sent to a cloud server for pre-processing and classification tasks. The experiment was
perpetrated on the i2k2 Cloud platform alongside the TensorFlow ML package involving
Apache Spark and Cassandra for server and storage infrastructure, respectively.

4. Performance Assessment

This section delves into the pursuit of the proposed system, and the findings are
delineated.

After the initial data pre-processing tasks involving data cleaning and data filtering,
the ensuing data were examined with three distinct models, with one model being the
generic LSTM for disease prediction. The second model combines the fuzzy information
system (FIS) and the LSTM denoted by FLSTM, where FIS is used to initially classify the
heart disease risk status of patients, but for prediction, the LSTM model is utilized. The
third model, which the proposed work, combines the FIS with Bi-LSTM for heart disease
prediction denoted by FBiLSTM. These three models are assessed in accordance with the
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performance indices of accuracy, precision, sensitivity, specificity, and function measure
concerning the patient heart disease risk status.

Evaluation Indices

The efficiency of models dealt with is determined using the performance metrics of
accuracy, precision, specificity, recall, and F1 score. Accuracy measures the prediction
ability of the presented deep learning model by comparing the desired output and the
actual output. The classifier model’s capability to predict the presence or absence of heart
disease in a patient is gauged by a true positive (TP) and true negative (TN). The false
prediction made by the models is identified by the false positive (FP) and false negative
(FN). The precision determines the proportion of actual positive observations to all positive
instances. Recall computes the proportion of overall positive instances, while specificity
computes the proportion of overall negative instances. The function measure determines
the mean of recall and precision.

Accuracy =
(TN + TP)

(TP + FP + FN + TN)
(14)

Precision =
(TP)

(FP + TP)
(15)

Recall =
(TP)

(FN + TP)
(16)

Specificity =
(TN)

(TN + FP)
(17)

F1 Score =
(2TP)

(2TP + FP + FN)
(18)

5. Experimental Results and Discussion

The experimentation is perpetrated to evaluate the suggested system with varying
numbers of instances ranging from 10% to 100% on the models of generic LSTM, FIS
combined with LSTM (FLSTM), and the proposed method.

Tables 4 and 5 represent the performance in terms of the evaluation indices of ac-
curacy, precision, recall/sensitivity, specificity, and F1-score of the LSTM, FLSTM, and
proposed models.

Table 4. Performance measures of accuracy, precision, and recall.

Data (%)
Accuracy Precision Recall

LSTM FLSTM Proposed LSTM FLSTM Proposed LSTM FLSTM Proposed

10 94.04 94.56 94.86 94.00 94.60 94.81 94.08 94.51 94.90
20 94.35 95.59 96.02 94.37 95.55 96.00 94.32 95.63 96.04
30 94.52 96.21 96.76 94.52 96.21 96.74 94.52 96.21 96.78
40 94.68 96.68 97.25 94.67 96.69 97.22 94.69 96.68 97.29
50 94.75 97.01 97.65 94.72 97.04 97.69 94.79 97.00 97.61
60 94.86 97.31 97.96 94.86 97.30 97.95 94.87 97.32 97.97
70 94.89 97.51 98.24 94.85 97.50 98.21 94.92 97.53 98.27
80 94.95 97.70 98.48 94.99 97.71 98.50 94.91 97.68 98.45
90 95.00 97.92 98.67 95.00 97.95 98.63 95.00 97.89 98.72

100 95.07 98.04 98.86 95.07 98.03 98.90 95.06 98.03 98.81
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Table 5. Performance measures of specificity and F1-score.

Data (%)
Specificity F1-Score

LSTM FLSTM Proposed LSTM FLSTM Proposed

10 94.00 94.60 94.81 94.04 94.56 94.85
20 94.37 95.56 96.01 94.35 95.59 96.02
30 94.52 96.21 96.74 94.52 96.21 96.76
40 94.67 96.69 97.22 94.68 96.68 97.25
50 94.72 97.04 97.68 94.75 97.02 97.65
60 94.86 97.30 97.95 94.86 97.31 97.96
70 94.85 97.50 98.21 94.88 97.51 98.24
80 94.99 97.71 98.50 94.95 97.70 98.48
90 95.00 97.95 98.63 95.00 97.92 98.67
100 95.07 98.03 98.90 95.07 98.03 98.86

Figures 5–9 depicts the analysis of the accuracy, precision, recall, specificity, and F1-
score displayed by LSTM, FLSTM, and the proposed models. The records are increased
from 10% to 100% for the experiment of the three considered models.
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The results of analysing accuracy, precision, sensitivity, specificity, and F1-Score of the
proposed model, LSTM, and FLSTM models unveil that the suggested model outperforms
the performance of the other two models.

The overall performances of the proposed model, LSTM, and FLSTM models are
compared in Table 6.

Table 6. Comparing performance measures of the proposed system.

Performance Metrics LSTM FLSTM Proposed

Accuracy (%) 95.07 98.04 98.86
Precision (%) 95.07 98.03 98.90

Recall (%) 95.06 98.04 98.81
Specificity (%) 95.07 98.03 98.90
F1 Score (%) 95.07 98.03 98.86

Figure 10 depicts the performance results of the proposed model.
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Figure 10. Overall performance results of the proposed model.

Taking into account several performance criteria, it is reasonable to infer that the prof-
fered FIS with the Bi-LSTM model outperforms the other models with exceptional outcomes.

The recurrent neural networks are capable of handling sequential data but inefficient
at handling long-term dependency when there is a considerable gap among the related
input data. To overcome the issues of standard RNN, LSTM was put forth. LSTM retains
information from the previous input, using the hidden unit of a memory cell. Unidirectional
LSTM retains information from the past. However, in bidirectional LSTM, two distinct
LSTM hidden layers with comparable output in opposing directions enable it to act on
prior and future content. The experiments were performed with models of generic LSTM,
a fuzzy inference system (FIS) combined with LSTM and proposed BiLSTM models for
heart disease risk prediction using UCI heart disease dataset with 100,000 records. The
accuracy of the generic LSTM model is 95.07%, which the FLSTM (FIS combined with
LSTM) surpasses with 98.04% accuracy. The proposed system with FIS combined with
bi-LSTM outperforms the two previous models with 98.86% accuracy. The suggested
system also shows improved results in terms of precision, recall, specificity, and F1-score
when compared to the other two models. The generic LSTM model uses sigmoid and
tanh activation functions, and deep neural networks are found to be greatly influenced
by the chosen activation function. In the proposed system, each of the two LSTM cells is
modelled with swish, tanh, and Leaky ReLU activation functions, and hyperparameter
tuning resulted in enhanced results.
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6. Comparative Analysis

The proposed work is assessed in terms of prediction accuracy with cutting-edge
approaches that harness heart disease datasets. The comparison study analysing the
proposed model’s accuracy results with the existing literature models is listed in Table 7, in
the order of increasing accuracy. Figure 11 portrays the comparison of the performance
results of the proposed model with the existing systems.

Table 7. Detailed comparison with the state-of-the-art systems.

No. Author/Year Approach/Method Accuracy

1 Latha and Jeeva [13], 2019 Ensemble classifiers 85.4
2 Long et al. [14], 2015 Type-2 fuzzy logic 86.0
3 Mohan et al. [15], 2019 Hybrid model of random forest and linear method 88.70
4 Samuel et al. [16], 2017 Fuzzy analytic hierarchy and artificial neural network 91.0
5 Ali et al. [17], 2019 χ2 statistical model and deep neural network 91.57
6 Paul et al. [18], 2017 Adaptive neuro-fuzzy 92.3
7 Ahmed et al. [19], 2019 Relief feature selection and decision tree 92.8
8 Kishore and Jayanthi [20] Adaptive neuro-fuzzy inference system 94.15
9 Dileep et al. [21], 2022 Cluster-based Bi-LSTM 94.78

10 Pam et al. [22], 2020 Fuzzy rules and deep neural network 96.5
11 Mehmood et al. [23], 2021 Convolutional neural network 97.0
12 Jabeen et al. [24], 2019 Sequential forward selection and random forest 98.0
13 Muzammal et al. [25], 2019 Kernel random forest 98.0
14 Khan et al. [26], 2020 Deep convolutional neural network 98.2
15 Ali et al. [27], 2020 Ensemble deep learning model 98.5
16 Zhang et al. [28], 2021 LinearSVC and deep neural networks 98.56
17 Proposed method Fuzzy information system and Bi-LSTM 98.86

The results of the comparison with the related state-of-the-art heart disease predictive
systems reveal that the proposed system’s performance surpasses that of the existing systems.

Major IoT-driven tasks for real-time smart systems involving healthcare warrant rapid
processing as such applications are delay and context-sensitive. The escalation in the
number of IoT devices and the upsurge in the data generated by the smart devices has
resulted in immense data traffic resulting in extensive bandwidth utilization and service
difficulties. As the Cloud–IoT model suffers from limitations such as latency, connectivity,
and bandwidth utilization, the cloud computing model seems inadequate to manage
these challenges solely due to its centralized model [43–47]. These shortcomings set the
stage for decentralized models of edge computing (EC) and fog computing (FC), wherein
computation and storage can be handled at the edge nodes closer to the data source. These
newer computing technologies complement the Cloud and serve as an extension to it while
enabling artificial intelligence tasks at the edge nodes. This hierarchical edge–fog–cloud
model considerably reduces the delay constraints by efficiently handling the humongous
data acquired by the IoT devices while mitigating latency. Thus, the proposed cloud-based
prediction system can be deployed at the fog/edge layers in the future to overcome the
Cloud’s intrinsic constraints, such as increased latency and bandwidth use, while managing
the surge in IoT data.
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it while enabling artificial intelligence tasks at the edge nodes. This hierarchical edge–

fog–cloud model considerably reduces the delay constraints by efficiently handling the 

humongous data acquired by the IoT devices while mitigating latency. Thus, the pro-

posed cloud-based prediction system can be deployed at the fog/edge layers in the future 

to overcome the Cloud’s intrinsic constraints, such as increased latency and bandwidth 

use, while managing the surge in IoT data. 
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Figure 11. Comparison with state-of-the-art systems.

7. Conclusions

In this research initiative, an IoT–Cloud-based smart healthcare system for heart dis-
ease risk prediction is proposed, and the fuzzy inference system (FIS) and the recurrent
neural network’s bidirectional LSTM are harnessed for the predictive task. The proposed
system’s accuracy, precision, sensitivity, specificity, and F1-score are 98.85%, 98.9%, 98.8%,
98.89%, and 98.85%, respectively, outperforming other state-of-the-art heart disease predic-
tion models. This is just one facet of the healthcare research being done performed with
predictive analytics, with a huge potential of deep learning models yet to uncover. The
model can be enhanced to automatically elicit a personalized diet and exercise recommenda-
tions to individuals as per their health condition and heart specialist advice. The proposed
smart heart disease prediction system utilizes IoT devices for data acquisition, and other
predominant tasks are reserved for the Cloud. In the future, this work can be extended to
include fog/edge computing, wherein time-critical analytical tasks can be accomplished at
the fog/edge layers to overcome the inherent limitations of the Cloud, such as increased
latency and bandwidth utilization while handling IoT data upsurge [48–51]. The efficacy of
the healthcare domain can be revolutionized with precise and timely disease predictions
alongside rapid responses and agile decision-making by clinicians, which will improve the
overall quality-of-service when fog/edge computing is involved.
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