
����������
�������

Citation: Niu, Y.; Peng, C.; Liao, B.

Batch-Wise Permutation Feature

Importance Evaluation and

Problem-Specific Bigraph for

Learn-to-Branch. Electronics 2022, 11,

2253. https://doi.org/10.3390/

electronics11142253

Academic Editor: Esteban

Tlelo-Cuautle

Received: 30 May 2022

Accepted: 18 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Batch-Wise Permutation Feature Importance Evaluation and
Problem-Specific Bigraph for Learn-to-Branch
Yajie Niu, Chen Peng * and Bolin Liao

College of Information Science and Engineering, Jishou University, Jishou 416000, China;
yajieniu@stu.jsu.edu.cn (Y.N.); bolinliao@jsu.edu.cn (B.L.)
* Correspondence: chen.peng@jsu.edu.cn; Tel.: +86-137-2406-2118

Abstract: The branch-and-bound algorithm for combinatorial optimization typically relies on a
plethora of handcraft expert heuristics, and a research direction, so-called learn-to-branch, proposes
to replace the expert heuristics in branch-and-bound with machine learning models. Current studies
in this area typically use an imitation learning (IL) approach; however, in practice, IL often suffers
from limited training samples. Thus, it has been emphasized that a small-dataset fast-training scheme
for IL in learn-to-branch is worth studying, so that other methods, e.g., reinforcement learning, may
be used for subsequent training. Thus, this paper focuses on the IL part of a mixed training approach,
where a small-dataset fast-training scheme is considered. The contributions are as follows. First,
to compute feature importance metrics so that the state-of-the-art bigraph representation can be
effectively reduced for each problem type, a batch-wise permutation feature importance evaluation
method is proposed, which permutes features within each batch in the forward pass. Second, based
on the evaluated importance of the bigraph features, a reduced bigraph representation is proposed
for each of the benchmark problems. The experimental results on four MILP benchmark problems
show that our method improves branching accuracy by 8% and reduces solution time by 18% on
average under the small-dataset fast-training scheme compared to the state-of-the-art bigraph-based
learn-to-branch method. The source code is available online at GitHub.

Keywords: machine learning; combinatorial optimization; branch-and-bound; permutation feature
importance

1. Introduction

Mixed-integer linear programming (MILP) offers a generic way to formulate and solve
practical decision-making problems, e.g., routing optimization [1], manipulator control [2],
and resource allocation [3]. Due to the wide applicability of MILP, numerous commer-
cial and free MILP solvers exist, with a few well-known examples such as CPLEX [4],
SCIP [5], and Gurobi [6]. The basic component of modern MILP solvers is the branch-and-
bound (B&B) algorithm for global optimization [7]. Typically, B&B recursively partitions
the search space by branching on the optimal solution of the linear relaxation of the MILP
problem and cleverly exhausts the search space by pruning unpromising solution space
until a solution with the certificate of optimality is found. The B&B algorithm relies heavily
on heuristic rules, which are essentially priority guidelines devised by human experts
to direct search directions toward more promising regions, such as the variable selection
policy or node selection policy. Traditionally, the heuristics are carefully constructed based
on expert domain knowledge and the common characteristics of specific types of problems.
With its rapid development in recent years, machine learning (ML) [8] offers a way to
replace some of the sophisticated hand-crafted expert heuristics in B&B [9].

To learn the variable selection policy in the B&B algorithm, Alvarez et al. adopted
ML early for solving MILPs [10]. This kind of learning-based policy is also known as
learn-to-branch, where learning is introduced to the optimization process to search for the
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optimal solution more effectively. The branching policy is learned with many different
formulated learning problems. In order to learn a partial ordering of the candidates
produced by the expert, the learned policy was treated as a ranking problem in [11,12].
In [13], Alvarez et al. treated the learned policy as a regression problem and learned directly
the strong branching (SB) scores of the candidates. Rather than relying on branching scores
or orderings, the learned policy was treated as a classification problem and learned from
expert decisions in [14]. In [15], Balcan et al. demonstrated empirically and theoretically
that a high-performing branching policy could be learned for a given application domain.
Learn-to-branch has become an active research area.

A key element in ML-based branch-and-bound (or ML-B&B) is state embedding,
which includes the embedding of the MILP problem and its B&B solution status. In [14],
a variable-constraint bipartite graph (or bigraph) representation was leveraged for B&B
state embedding, and a graph convolutional neural network (GCNN) model was proposed
for learning the branching policy. The bigraph representation is natural for MILPs and has
shown promising performance [16,17]. However, the bigraph representation was designed
for general MILP problems, i.e., aiming to apply one ML model to many different types
of MILP problems. As a result, the bigraph representation contains a large number of
features, which often leads to complicated ML models, as well as the extended training and
inference times. Therefore, the problem-specific bigraph representation is used for each of
the benchmark problems to reduce the features.

This paper aims to simplify the bigraph representation (and thus also the ML model)
by problem-specific fast feature analysis and masking out non-contributing features. In
ML interpretability research, a powerful tool for the feature analysis of black-box models is
the permutation feature importance (PFI) measure [18]. Traditionally, the PFI is typically
evaluated by permuting features over the test dataset. However, in learn-to-branch appli-
cations, the branching samples are generally collected fragmentally, large (each around
200 KB), stored as separate binary files, and are loaded and batched before being fed to the
ML model. Thus, a fast feature analysis method that does not require permuting features
over the whole test dataset is necessary.

Compared to the state-of-the-art methods [12–14], the contributions of this paper are
summarized as follows.

1. In order to measure the feature importance, a batch-wise PFI (BPFI) evaluation method
is proposed for learn-to-branch, which permutes features within only one batch in
the forward pass. The GCNN model is augmented as BPFI-GCNN by adding one
shuffling switch in the GCNN model, therefore allowing the fragmented processing
of the branching samples.

2. Based on the results of the BPFI evaluation, a reduced bigraph representation is
proposed for each specific benchmark problem to reduce the model complexity. The
proposed representation is shown to outperform the original in most cases on both
branching accuracy and solution efficiency.

The remainder of this paper is organized as follows. In Section 2, the background
and related studies of ML-B&B are discussed. In Section 3, the MILPs of four NP-hard
benchmark problems are introduced. In Section 4, BPFI is evaluated for the bigraph repre-
sentation, according to the results of which an improvement to the bigraph representation
is proposed. In Section 5, comparative experiments are carried out to verify the effective-
ness of the proposed method. Finally, Section 6 concludes the paper. The source code is
available online at GitHub (https://github.com/NiuYajie0/BPFI-learn2branch, accessed
on 28 May 2022).

2. Background
2.1. Machine Learning Based Branch-and-Bound

Typically, B&B recursively partitions the search space by branching on the optimal
solution of the linear relaxation of the MILP and cleverly exhausts the search space by
pruning unpromising solution space until a solution with a certificate of optimality is found.

https://github.com/NiuYajie0/BPFI-learn2branch
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When branching, a candidate variable is selected as the branching variable according to
the variable selection policy (or, branching policy), and two child branches are created.
The branching variable is rounded down on the left child branch and rounded up on the
right child branch. One of the most famous branching strategies is SB [19]. In SB, each
candidate variable is tentatively branched, and the one that has the greatest product of the
lower bound increase of the left branch and the lower bound increase of the right branch is
selected. However, a common drawback of these expert-crafted heuristics is that they are
usually time-consuming.

With the rapid development in recent years, ML offers a possibility to automatically
construct effective heuristics from data by exploiting the shared structure among MILP
instances [15]. In addition, using specialized deep learning and parallel computing hard-
ware for ML models, ML-B&B can be much faster than traditional B&B implementations.
Generally speaking, the training of ML models for B&B follows one of two methodologies:
imitation learning (IL) and reinforcement learning (RL) [20]. In IL, the ML model is trained
through the demonstration of an expert solver, such as the default MILP solver of SCIP [5].
For example, the state-of-the-art “learn to branch” method [14] frames variable selection as
a classification problem and trains a GCNN using SB expert decisions as the ground truth
labels. However, by the nature of IL, the IL-trained model is limited by the performance of
the expert policy [21].

On the other hand, the sequential decision-making during B&B can be regarded as
a Markov decision process [22], which lays the foundation for RL. By training the policy
through exploration experience, RL offers a good alternative to automate the search for
heuristics [23]. Therefore, it is good practice to use IL in conjunction with RL, i.e., using
IL at the start of the training process, then switching to RL to continue refining the ML
model. A well-known example of this practice is the AlphaGo project [24], where the
experts are human players. The IL part of an IL–RL mixed training typically suffers from
limited training samples; however, a good IL at the early stage can greatly improve the
convergence rate of RL. Therefore, our work is focused on the performance of ML-B&B
under a small-dataset fast-training scheme, which is typically the case in the early stage of
an IL–RL mixed training.

2.2. The Bigraph Representation for State Embedding

A key element in ML-B&B is state embedding, which includes embedding the MILP
problem and its B&B solution status. In previous research [12], the variable selection policy
was trained offline on the collected SB scores of candidate variables. However, correlations
between constraints and variables are represented by the hand-crafted features, which rely
on extensive feature engineering. To address the above issue, a bigraph representation
of MILP was proposed in [14], where corresponding nodes are connected if a constraint
is associated with a variable, and a GCNN was used to extract useful information from
the bigraph representation. This representation is natural for MILPs and has shown
promising performance. In [16], Peng et al. proposed that prioritizing the sampling
of certain branching decisions over others and thus providing a better branching data
distribution could further improve the performance of the trained model. In [17], the
authors pointed out that the GCNN-based approach relies too heavily on high-end GPU,
which may not be be accessible to many practitioners. Thus, a new hybrid architecture
was proposed for efficient branching on CPU machines, which combined the expressive
power of GNNs with computationally inexpensive multi-layer perceptrons for branching
and achieved a better balance between solution time and branching accuracy.

The original bigraph representation and its later improvements [14,17] are designed
for general MILP problems, i.e., aiming to apply one ML model to as many MILP problems
as possible. As a result, the bigraph representation contains a large number of features,
which often leads to complicated ML models, as well as extended training and inference
times. For example, in the bigraph representation [14], 13 features are used to repre-
sent a variable, 5 for a constraint, and 1 for an edge, and there can be approximately
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100–1000 variables and 700–5000 constraints for a MILP instance. Therefore, this paper
aims to reduce the bigraph representation by using problem-specific fast feature analysis to
address the existing problem.

2.3. Refined Problem-Specific Branch-and-Bound

Currently, the bigraph representation in learn-to-branch is designed for general MILPs,
i.e., aiming to apply one ML model to many different types of MILPs. As a result, the
bigraph representation often contains a large number of features and leads to complicated
ML models. Therefore, refining the bigraph representation for specific problems is an
important step to further improve the ML-B&B algorithm.

In recent years, the B&B algorithm has been refined for various problems, and dif-
ferent methods have been proposed to utilize problem-specific knowledge. For example,
in [25], a data-mining based approach was proposed to generate problem-specific knowl-
edge for combinatorial optimization. In [26], Khachay et al. specifically designed a B&B
algorithm for the precedence-constrained generalized traveling salesman problem and
demonstrated that the performance of such an algorithm is competitive against the state-
of-the-art MLP-solver Gurobi. Similarly, Kudriavtsev et al. proposed and refined a B&B
algorithm specifically for the shortest simple path problem and demonstrated its good
performance by numerical evaluations [27].

Therefore, previous studies show that the B&B algorithm has a considerable space
for improvement when refined for specific problems. In this paper, the ML-B&B model is
specifically refined for each of the benchmark problems using the proposed BPFI method.

3. Preliminaries
3.1. Benchmark Problems

An MILP is an optimization problem, which can be formulated as follows:

arg min
x

{
c>x | Ax ≤ b, l ≤ x ≤ u, x ∈ Zp ×Rn−p

}
, (1)

where c ∈ Rn denotes the objective coefficient vector, A ∈ Rm×n the matrix of constraint
coefficients, and b ∈ Rm the vector of the right-hand-sides of constraints, respectively. In
addition, l, u ∈ Rn are the vectors of lower and upper bounds of variables, and p ≤ n is the
number of integer variables. As popular benchmarks, four classes of MILPs are evaluated
in this paper, namely set covering (SC), combinatorial auction (CA), maximum independent
set (MIS), and capacitated facility location (CFL). Specifically,

1. The SC problem can be formulated as follows:

min
n

∑
j=1

cjxj,

s.t.
n

∑
j=1

aijxj ≥ e, i = 1, . . . , m,

xj ∈ {0, 1}, j = 1, . . . , n,

(2)

where A = {aij} is an m × n binary matrix, and if column j covers row i, aij = 1;
otherwise, aij = 0. Define e = (1, . . . , 1), which has m components, and cj is the cost
of column j. If column j is in the solution, xj = 1; otherwise, xj = 0.
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2. The CA problem can be formulated as follows:

max
n

∑
i=1

m

∑
j=1

yijwij,

s.t
n

∑
i=1

wijyij ≤W, j = 1, . . . , m,

m

∑
j=1

yij = 1, i = 1, . . . , n,

yij ∈ {0, 1}, i = 1, . . . , n and j = 1, . . . , m,

(3)

where n, m are the numbers of distinct items and bidders, respectively, and yij rep-
resents a binary decision variable indicating whether item i is sold to bidders. The
highest price that bidder j with the purchasing power W can offer for item i is wij.

3. The MIS problem can be formulated as

max ∑
v∈V

xv,

s.t. xu + xv ≤ 1, (u, v) ∈ E,

xv ∈ {0, 1}, v ∈ V,

(4)

where V, E denote the set of vertices and edges of an undirected graph, respectively,
and xv for each node v ∈ V is a binary decision variable indicating whether v is
selected in an independent set.

4. The CFL problem can be formulated as

min
n

∑
i=1

m

∑
j=1

cijdjxij +
n

∑
i=1

fiyi,

s.t.
n

∑
i=1

xij = 1, j = 1, . . . , m,

m

∑
j=1

djxij ≤ uiyi, i = 1, . . . , n,

xij ≥ 0, i = 1, . . . , n and j = 1, . . . , m,

yi ∈ {0, 1}, i = 1, . . . , n,

(5)

where cij is the transportation cost between customer j and facility i, dj is the demand
for customer j, and xij is the fraction of the demand of client j met from facility i. If
facility i is open, yi = 1; otherwise, yi = 0, and fi is the fixed cost.

3.2. Metrics

In this paper, two groups of metrics are used for testing the branching accuracy of an
ML brancher and evaluating the solution efficiency of the solver that adopts the brancher.
Specifically,

1. The branching accuracy is described by four metrics, i.e., the percentage of times
the decision has the highest strong branching score (acc@1), one of the three high-
est (acc@3), one of the five highest (acc@5), and one of the ten highest (acc@10) strong
branching scores.

2. The solution efficiency is described by two metrics, i.e., the 1-shifted geometric mean
of the solving times in seconds (Time) and final node counts of instances (Nodes).
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4. Methodology

In this paper, to reduce model complexity, the bigraph representation is refined ac-
cording to the evaluated importance of features. In ML studies, PFI is an effective approach
to gain insights into black-box models. In learn-to-branch, however, branching samples are
usually large and collected fragmentally, which makes traditional PFI evaluation infeasible.
To address this issue, the BPFI method is proposed to identify non-contributing features in
the full bigraph representation. According to the BPFI results, a bigraph representation is
designed for each of the benchmark problems.

As shown in Figure 1, BPFI evaluation is implemented by adding only one shuffling
switch in the learning model. According to the BPFI evaluation, the problem-specific
bigraph is built, and the non-contributing features are masked out to refine the model.

B&B with 
expert policy

BPFI 
evaluation

Branching 
samples

Variable 
scores

MILP 
instances

BPFI 
shuffling

HeteroConv
(V2C) 

BPFI-GCNN

HeteroConv
(C2V) 

On/Off

Figure 1. The overall BPFI framework is composed of three parts: B&B solver, BPFI evaluation, and
BPFI-GCNN.

4.1. Batch-Wise Permutation Feature Importance

In PFI, the utility of a feature is measured by the decrease in model performance
caused by permuting this feature over the dataset. The general steps for computing PFI are
as follows.

1. Train and evaluate the model for a performance score A.
2. Evaluate the model on a modified test dataset with feature i shuffled. Compute

performance score Ai,s, s = 1, . . . , N, for N different shuffling seeds.
3. The PFI Fi of feature i is computed as the drop of performance after shuffling:

Fi = A− 1
N

N

∑
s=1

Ai,s. (6)

The PFI is commonly used as an interpretation method. However, the original PFI eval-
uation cannot be used for learn-to-branch directly. The reason is that PFI evaluation requires
shuffling features over the entire test dataset (see Figure 2a); whereas, in learn-to-branch,
the branching samples are generally collected fragmentally, large (each around 200 KB),
and stored as separate binary files, which makes the original PFI evaluation infeasible.

Therefore, to compute feature importance for the bigraph representation considering
the fragmented branching samples dataset, the BPFI evaluation is proposed, which per-
mutes features within only one batch in the forward pass (see Figure 2b). Formally, let
A(M,D) denote the performance function that computes the score of modelM given
dataset D, and let Pi(D, b) denote a per-batch permutation function that permutes feature i
of dataset D for a batch size b. Then, the performance scores Ai,s after shuffling in the
traditional PFI evaluation and Ãi,s in the proposed BPFI evaluation are given by

Ai,s = A(M,Pi(D, |D|)),
Ãi,s = A(M,Pi(D, b)),

(7)

respectively, where |D| denotes the size of dataset D. Since the per-batch permutation
can be performed within one forward pass after a batch of samples has been loaded, BPFI
evaluation is more lightweight and can approximate the traditional PFI evaluation.
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Figure 2. Schematic diagram of permutation feature importance evaluation and batch-wise permuta-
tion feature importance evaluation. (a) PFI evaluation. (b) BPFI evaluation.

4.2. Problem-Specific Bipartite Graph Representation

As shown in Figure 3, the state of the B&B process at a certain timestep can be encoded
as a bigraph with node and edge features. In the bigraph, one type of node corresponds
to constraints in the MILP, and the other corresponds to variables. The variable node
and constraint node are connected by an edge if the variable’s coefficient is non-zero in
the constraint.

...

a11  x1 + ... +  a 1n xn ≤ b1

am1  x1 + ... + a mn  xn ≤ bm

v1

c1 cm

vn
min      c 1  x1 + ... +   c n   xn  x

...
...

e1,1 em,1 em,n
e1,n

Figure 3. The variable-constraint bipartite graph representation of a MILP.

Given a MILP instance, let m be the number of constraints of which each has c features,
let n be the number of variables each of which has d features, and each edge has e features. A
constraint feature matrix C ∈ Rm×c can be used to represent the constraint nodes, a variable
feature matrix V ∈ Rn×d for the variable nodes, and an edge feature matrix E ∈ Rm×n×e for
the edges. Therefore, the original bigraph representation can be defined as G = {C, E, V} ∈ G,
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where G is the set of all bigraph representations of MILPs. In the proposed problem-specific
bigraph representation, the non-contributing features are masked out for each of the benchmark
problems. Therefore, the proposed bigraph representation can be formulated as G = {C, E, V}
where C, E, and V are the reduced features.

As a special heterogeneous graph, the bigraph has only two different types of nodes
(constraints and variables) and two types of edges (involves-in and belongs-to). With the
bipartite structure of the input graph, the graph convolution can be separated into two
consecutive passes, i.e., the v-to-c and c-to-v passes, as introduced in [14]. The BPFI-GCNN
further simplifies the original Full GCNN model for each problem type, according to the
BPFI evaluation results. See Section 5.2 for details of the BPFI-GCNN.

5. Computer Experiments

In this paper, the experimental framework partially inherits from the state-of-the-art
learn-to-branch project [14]. Specifically, the MILP instance generation and branching
sample collection algorithms in [14] are reused, meaning that our experimental dataset is
consistent with the former studies.

5.1. Experimental Framework

As shown in Figure 4, our experiments consist of the following six major steps.

1. Generate instances that include the four benchmark problems, i.e., set covering,
combinatorial auction, maximum independent set, and capacitated facility location.

2. Sample the branching decision data during the B&B solution of MILP instances with
SCIP 7.0 [5], obtaining branching samples datasets for training, validation, and testing.

3. Train the GCNN model with the full bigraph representation after the shuffling switch
is turned off.

4. Perform BPFI evaluation, reduce the bigraph representation for each of the bench-
mark problems, and train GCNN with each reduced bigraph representation after the
shuffling switch is turned on. As features are reduced, the GCNN also requires fewer
parameters, thus decreasing in size.

5. Test and compare the branching accuracy of the trained models, including the full
GCNN and the BPFI-GCNN.

6. Evaluate and compare the MILP solution efficiency of the ML-B&B models by embed-
ding the trained GCNNs into the SCIP’s B&B solution process.

1. Generate  
MILP 

instances Feature 
reduction

2. Collect 
branching 

data

3. Train 
GCNN 
model

4. Perform  
BPFI 

evaluation

5. Test 
branching 
accuracy

6. Evaluate 
ML-B&B 

model

Figure 4. Schematic diagram of the experimental framework.

For consistency with [14], the SC instances are generated using the procedure of Balas
and Ho [28] with 1000 columns for 500 (Easy), 1000 (Medium), and 2000 (Hard) rows for
evaluating. The CA instances are generated using the procedure of the arbitrary relation-
ships procedure of Leyton-Brown et al. [29] with 100 items for 500 bids (Easy), 200 items for
1000 bids (Medium), and 300 items for 1500 bids (Hard). The MIS instances are generated
using the procedure of Bergman et al. [30] with 500 (Easy), 1000 (Medium), and 1500 (Hard)
nodes. The CFL instances are generated using the procedure of Cornuejols et al. [31] with
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100 facilities for 100 (Easy), 200 (Medium), and 400 (Hard) customers. The training and
testing instances have the same size as the Easy instances.

During the BPFI evaluation, 20 independent random shufflings are performed on each
feature. In the experiment, 1000 branching samples are extracted from 100 instances for
training, 200 branching samples are extracted from 20 instances for validation, and the
same amount is used for testing. The training process uses a batch size of 16, epoch size of
20, and max epochs of 300.

5.2. BPFI Evaluation and the Resulting BPFI-GCNN

The BPFI evaluation results on the four benchmark problems are shown in Figure 5,
where the importance of a feature is computed as the decrease of acc@5 accuracy after
this feature is shuffled. In this paper, the indicator variables are not considered in the
BPFI evaluation due to their similar tensor distributions. As shown in Figure 5, it can be
seen that the distribution of variable importance is different for each of the benchmark
problems. Therefore, the problem-specific bigraph representation is employed based on
the principle of feature reduction, i.e., a reduced bigraph representation is formalized for
each of the benchmark problems. In each reduced bigraph representation, most of the
non-contributing features with negative variable importance are masked out to maximize
the performance of the BPFI-GCNN model.

obj_cos_sim
bias
is_tight
dualsol_val
c_age
e_coef
type
v_coef
sol_is_at_lb
sol_is_at_ub
sol_frac
basis_status
reduced_cost
v_age
sol_val
inc_val
avg_inc_val

Bigraph features

0.0

0.1

0.2

0.3

0.4

Va
ria

bl
e 

im
po

rta
nc

e 
by

 B
PF

I e
va

lu
at

io
n

Set Covering
Combinatorial Auction
Maximum Independent Set
Capacitated Facility Location

Figure 5. Permutation feature importance by BPFI evaluation of the bigraph features on the four
MILP benchmark problems. The bigraph features are described in the supplemental file of [14] and
are also detailed in Table A1 in the Appendix A for completeness.

For example, since the BPFI evaluation shows that edge features are unimportant for
all four benchmark problems, the convolution in the BPFI-GCNN implementation ignores
all edge weights. In addition, the BPFI-GCNN is further optimized with the Deep Graph
Library (DGL) [32].
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5.3. Comparison of Branching Accuracy

In this subsection, the branching accuracy of the full GCNN model [14] and the
BPFI-GCNN model are compared. Moreover, two other ML branchers are also tested,
i.e., the learning-to-score approach of Alvarez et al. [13] (TREES) based on an ExtraTrees
model [33] and the learning-to-rank approach of Hansknecht et al. [12] (LMART) based
on a LambdaMART model [34]. In Table 1, the branching accuracy of these models are
shown under the small-dataset fast-training scheme over five seeds. It can be seen from
Table 1 that the BPFI-GCNN model has the highest branching accuracy measured by these
four indicators (acc@1, acc@3, acc@5, acc@10) in the four benchmark problems. Specifically,
compared to the state-of-the-art bigraph-based method [14], these four branching accuracy
indicators, i.e., acc@1, acc@3, acc@5 and acc@10, have increased by 8.4%, 7.5%, 7.8%, and
7.4% on average, respectively.

Table 1. Branching accuracy of trained ML-B&B models on testing datasets.

Problem Accuracy Level
Model

TREES LMART Full GCNN BPFI-GCNN

Set Covering

acc@1 46.5 ± 1.3 49.6 ± 3.0 61.7 ± 1.4 63.9 ± 1.2
acc@3 64.8 ± 1.0 66.5 ± 3.7 78.4 ± 0.9 79.3 ± 1.4
acc@5 75.8 ± 2.3 73.9 ± 5.0 87.0 ± 1.8 87.9 ± 1.4

acc@10 88.6 ± 2.5 84.3 ± 6.0 95.7 ± 0.9 95.2 ± 0.7

Combinatorial
Auction

acc@1 39.6 ± 4.7 45.8 ± 3.0 52.4 ± 1.1 55.9 ± 1.8
acc@3 61.1 ± 5.6 65.9 ± 2.2 75.8 ± 1.0 76.3 ± 1.4
acc@5 74.0 ± 5.6 85.9 ± 0.8 85.9 ± 0.8 85.6 ± 0.9

acc@10 88.7 ± 3.8 86.0 ± 1.8 94.9 ± 0.7 95.1 ± 0.2

Maximum
Independent Set

acc@1 26.1 ± 3.5 34.3 ± 9.8 29.4 ± 26.9 53.3 ± 0.8
acc@3 35.9 ± 4.9 47.4 ± 8.6 40.8 ± 36.6 68.2 ± 0.9
acc@5 40.4 ± 5.2 53.0 ± 7.6 45.8 ± 38.9 74.1 ± 1.3

acc@10 45.2 ± 5.3 58.7 ± 9.8 53.3 ± 39.2 81.3 ± 1.9

Capacitated
Facility Location

acc@1 55.8 ± 2.1 62.2 ± 2.3 67.2 ± 2.2 71.1 ± 1.0
acc@3 88.7 ± 2.4 90.7 ± 0.9 91.2 ± 0.8 92.6 ± 0.2
acc@5 95.7 ± 1.9 97.7 ± 0.6 96.8 ± 0.8 98.9 ± 0.2

acc@10 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

5.4. Comparison of Problem-Solving Efficiency

In this subsection, ML-B&B models are obtained to solve problem instances by em-
bedding the trained models into the SCIP’s B&B solution process and replacing the default
SCIP brancher. Five training seeds are applied to evaluate 20 new instances for each of
the problem difficulties (Easy, Medium, Hard), giving a total of 100 solving attempts per
problem difficulty.

As in [16], the results in this paper are presented in the form of “mean r ± std%” to
avoid the dependence of results on different experimental environments, and “r” is the
mean of Node or Time as a reference value. For example, 0.7883r ± 6.68% means that the
metric is 0.7883 times the reference value, and the per-instance standard deviation is 0.0668
averaged over all instances. In the “mean r ± std%” expression, the normalized “mean”
and averaged per-instance “std” value are employed in the t-test statistical test.

The complete experimental results are shown in Table 2. The results show that the
BPFI-GCNN model achieves significantly better results (in the sense of t-test significance)
on most of the performance metrics. Specifically, compared to [14], the solution time has
been reduced by an average of 16.8% on the Easy instances, by 22.5% on the Medium
instances, and by 15% on the Hard instances. Thus, the BPFI-GCNN model achieves an
overall 18% reduction on the solution time.
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Table 2. ML-B&B solution efficiency by number of visited nodes and solution time.

Problem Type Model Node Time T-Stats
(p-Value)

Set Covering

Easy

Full GCNN 1.00r ± 9.3% 1.00r ± 5.3% NA
TREES 1.45r ± 20.1% 1.17r ± 10.9% 26.72 (0.0)

LMART 1.42r ± 17.8% 0.80r ± 8.1% −26.37 (0.0)
BPFI-GCNN 0.99r ± 6.8% 0.98r ± 4.3% −0.36 (0.7)

Medium

Full GCNN 1.00r ± 16.6% 1.00r ± 15.7% NA
TREES 1.35r ± 14.8% 1.53r ± 12.6% 22.50 (0.0)

LMART 1.71r ± 27.6% 0.99r ± 22.7% 0.52 (0.6)
BPFI-GCNN 0.89r ± 9.0% 0.95r ± 7.9% −4.98 (0.0)

Hard

Full GCNN 1.00r ± 31.6% 1.00r ± 29.4% NA
TREES 0.87r ± 13.7% 1.17r ± 9.3% 1.93 (0.1)

LMART 1.42r ± 20.3% 1.04r ± 17.7% 0.10 (0.9)
BPFI-GCNN 0.75r ± 8.2% 0.79r ± 6.7% −4.04 (0.0)

Combinatorial Auction

Easy

Full GCNN 1.00r ± 12.3% 1.00r ± 8.2% NA
TREES 1.28r ± 29.7% 1.11r ± 16.7% 7.03 (0.0)

LMART 1.33r ± 24.6% 0.71r ± 9.0% −30.69 (0.0)
BPFI-GCNN 0.99r ± 13.2% 1.02r ± 8.6% 2.19 (0.0)

Medium

Full GCNN 1.00r ± 14.2% 1.00r ± 11.5% NA
TREES 4.0r ± 117.9% 4.01r ± 111.7% 8.29 (0.0)

LMART 2.30r ± 34.6% 1.16r ± 28.7% 7.99 (0.0)
BPFI-GCNN 1.01r ± 12.0% 0.99r ± 8.9% −1.64 (0.1)

Hard

Full GCNN 1.00r ± 19.1% 1.00r ± 16.6% NA
TREES 8.20r ± 58.8% 11.01r ± 58.8% 15.22 (0.0)

LMART 4.11r ± 73.2% 3.01r ± 71.9% 10.38 (0.0)
BPFI-GCNN 0.97r ± 14.3% 0.93r ± 13.2% −5.33 (0.0)

Maximum Independent Set

Easy

Full GCNN 1.00r ± 160.4% 1.00r ± 102.9% NA
TREES 0.55r ± 71.1% 0.73r ± 36.8% −7.46 (0.0)

LMART 0.45r ± 108.9% 0.41r ± 36.5% −9.51 (0.0)
BPFI-GCNN 0.20r ± 53.7% 0.36r ± 16.1% −9.62 (0.0)

Medium

Full GCNN 1.00r ± 83.2% 1.00r ± 82.1% NA
TREES 1.93r ± 17.7% 3.20r ± 11.6% 5.55 (0.0)

LMART 0.61r ± 85.7% 0.51r ± 77.2% −4.36 (0.0)
BPFI-GCNN 0.13r ± 94.9% 0.20r ± 81.4% −7.75 (0.0)

Hard

Full GCNN 1.00r ± 45.2% 1.00r ± 24.2% NA
TREES 0.76r ± 9.3% 1.29r ± 2.4% 4.26 (0.0)

LMART 1.03r ± 29.7% 1.06r ± 9.0% 1.55 (0.1)
BPFI-GCNN 0.76r ± 36.4% 0.79r ± 30.2% −2.49 (0.01)

Capacitated Facility Location

Easy

Full GCNN 1.00r ± 23.5% 1.00r ± 16.3% NA
TREES 1.15r ± 24.3% 1.50r ± 17.5% 24.42 (0.0)

LMART 1.10r ± 22.7% 0.88r ± 16.6% −4.37 (0.0)
BPFI-GCNN 0.99r ± 21.7% 0.97r ± 15.1% −1.70 (0.09)

Medium

Full GCNN 1.00r ± 15.0% 1.00r ± 13.8% NA
TREES 1.18r ± 18.4% 1.47r ± 16.6% 19.6 (0.0)

LMART 1.00r ± 17.6% 0.89r ± 14.9% −7.25 (0.0)
BPFI-GCNN 0.99r ± 14.3% 0.96r ± 12.8% −1.46 (0.15)

Hard

Full GCNN 1.00r ± 16.0% 1.00r ± 14.6% NA
TREES 1.07r ± 16.3% 1.28r ± 16.1% 12.49 (0.0)

LMART 0.87r ± 13.9% 0.86r ± 13.3% −8.64 (0.0)
BPFI-GCNN 0.90r ± 11.7% 0.89r ± 12.0% −6.85 (0.0)
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6. Conclusions

In this paper, the BPFI evaluation method has been proposed, which allows the
fragmented processing of branching samples. Based on the results of the BPFI evaluation,
a refined bigraph representation for each of the benchmark problems has been proposed
for the BPFI-GCNN model. The experimental results have shown that the proposed BPFI-
GCNN model improves the accuracy of the B&B solution, shortening the solution time on
four MILP benchmark problems.

Our work is limited to ML-B&B under a small-dataset fast-training scheme, which
corresponds to the IL part of IL–RL mixed training. However, the effectiveness of the
full IL–RL mixed training using this approach for IL remains to be studied. Furthermore,
the explainability of GCNN for learn-to-branch is an interesting research direction that is
worth exploring.
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Appendix A

The features of the full bigraph representation are given in Table A1.

Table A1. Feature matrix C for the constraints, feature matrix E for the edges and feature matrix V
for the variables in the bigraph representation G = {C, E, V} [14].

Tensor Feature Description

C

obj_cos_sim Cosine similarity with objective.

bias Bias value, normalized with constraint coefficients.

is_tight Tightness indicator in LP solution.

dualsol_val Dual solution value, normalized.

c_age LP age, normalized with total number of LPs.

E e_coef Constraint coefficient, normalized per constraint.

V

type Type (binary, integer, impl.integer, continuous) as one-hot encoding.

v_coef Objective coefficient, normalized.

has_lb Lower bound indicator.

has_ub Upper bound indicator.

sol_is_at_lb Solution value equals lower bound.

sol_is_at_ub Solution value equals upper bound.

sol_frac Solution value fractionality.

basis_status Simplex basis status (lower, basic, upper, zero) as one-hot encoding.

reduced_cost Reduced cost, normalized.

v_age LP age, normalized.

sol_val Solution value.

inc_val Value in incumbent.

avg_inc_val Average value in incumbents.
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