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Abstract: Due to the relative insufficiencies of conventional time-domain waveform and spectrum
analysis in fault diagnosis research, a diesel engine fault diagnosis method based on the Stacked
Sparse Autoencoder and the Support Vector Machine is proposed in this study. The method consists
of two main steps. The first step is to utilize the Stacked Sparse Autoencoder (SSAE) to reduce the
feature dimension of the multi-sensor vibration information; when compared with other dimension
reduction methods, this approach can better capture nonlinear features, so as to better cope with
dimension reduction. The second step consists of diagnosing faults, implementing the grid search,
and K-fold cross-validation to optimize the hyperparameters of the SVM method, which effectively
improves the fault classification effect. By conducting a preset failure experiment for the diesel engine,
the proposed method achieves an accuracy rate of more than 98%, better engineering application,
and promising outcomes.

Keywords: diesel engine; fault diagnosis; stacked sparse autoencoder; support vector machine

1. Introduction

Diesel engines have been widely utilized in machinery construction, heavy trucks,
electric power generation, petrochemical industries, and military equipment. In practice,
once the malfunction status of the diesel engine has been obtained, production and mainte-
nance can be better arranged. Not only can the loss of unplanned shutdowns be effectively
reduced, but also more effective maintenance can be implemented, based on the status
information, further reducing maintenance costs. The fault diagnosis of a diesel engine
involves a series of steps, including signal detection, fault-type judgment, fault location,
and fault recovery. Fault-type judgment has long been the focus of several types of research.
Due to the complexity of the fault signal characteristics of a diesel engine, both the accuracy
and the timeliness of fault-type judgments have not been resolved well. The maturity of
the technology has not reached the level that industrial applications expect, which limits
the application of technologies such as fault prediction and health management (PHM),
when the management of diesel engine equipment is under consideration.

In recent years, researchers have conducted much research on the fault diagnosis of
diesel engines, and have achieved better outcomes [1–5]. The process of acquiring vibration
signals is both simple and convenient, and the fault diagnosis speed is fast, as disassembly
is not required for analysis. At the same time, due to the rapid development of sensor
technology, feature extraction technology, and failure pattern recognition methods, the
accuracy of fault diagnosis has been effectively improved [6]. Therefore, fault diagnosis
based on vibration signals has become an effective data-driven analysis method [7,8].

The state signal of the diesel engine, collected by vibration sensors, usually has non-
stationarity, nonlinearity, and complexity properties. The data needs to be preprocessed,
and fault features need to be extracted. The implementation of dimension reduction
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methodology provides an effective method for better fault diagnosis. This technology
includes methods such as linear discriminant analysis [9], principal component analysis
(PCA) [10], and popular learning methods [11]. Javad, et al. [12], used principal component
analysis to reduce the size of the data set, and to eliminate the possible singularity of the
data set. Jianbo, et al. [13], proposed a novel manifold learning algorithm, combining
both global and local/non-local discriminant analysis methods. Both dimension reduction
and comparative analysis of the fault features verified the superiority of the method,
for mechanical fault diagnosis. Yuncheng, et al. [14], proposed a fault detection and
diagnosis method based on principal component analysis, utilizing the empirical pattern
decomposition. The PCA model was employed to reduce the dimension of the historical
data, and both the accuracy and effectiveness of the method were verified by experiments.
Hongmei, et al. [15], considered that the gearbox fault feature extraction method was based
on empirical mode decomposition and multifractal detrend cross-correlation analysis. The
PCA model was utilized to decrease the dimension of the extracted multifractal fault feature
vectors. The experimental results showed that the method could effectively distinguish
different fault modes. When linear methods performing feature extraction on nonlinear data
were under consideration, the distribution rules between the data could not be effectively
found, yielding poor features results. Therefore, for nonlinear data, this paper proposes
the Stacked Sparse Autoencoder (SSAE) feature fusion method, to realize the conversion
of nonlinear correlation into linear correlation, so that the feature dimension reduction is
achieved better.

After the SSAE method is implemented to fuse the fault features and reduce the di-
mension, an effective classification method is required, to accurately identify the diesel
engine faults. The Support Vector Machine has a solid mathematical foundation, stable
calculation property with a high success rate, and can achieve nonlinear separation. This
paper therefore adopted the SVM method for classification. C, et al. [16], proposed the
MVMD band energy method, utilizing a four-channel vibration signal for fault diagnosis by
extracting energy fault eigenvalues and employing a Support Vector Machine to diagnose
and identify faults. Zhao, et al. [17], developed a multi-condition fault diagnosis method
based on the optimized Mel frequency cepstrum, which combined features with modal
decomposition, and employed the nearest neighbor classifier for training and identification.
Cai, et al. [18], proposed a new method to diagnose the faults of marine diesel engines. The
diesel engine was divided into four subsystems, and the Support Vector Machine algorithm
was employed to classify the faults of each subsystem. Kun, et al. [19], proposed a diesel
engine method for valve train fault diagnosis, with a variational stacking autoencoder
and a harmony search optimizer, and the classification method could effectively identify
faults. Zhang, et al. [20], proposed a complete ensemble intrinsic time scale decompo-
sition method, combined with the least squares Support Vector Machine classification
method, that was optimized by particle swarm optimization to diagnose and identify faults.
Meghdad, et al. [21], proposed a data mining technique and a novel data fusion method
utilizing an artificial neural network for fault identification. Zhong K, et al. [22], proposed
a local Fisher discriminant analysis based on the sparse kernel, which effectively improved
the accuracy of fault diagnosis.

Although fault diagnosis technology has made great progress, it also has some short-
comings, as follows:

1. The artificial neural network not only needs to rely on a large number of training
samples but also has an issue called overfitting or local optimal solution;

2. Although the Support Vector Machine resolves the problem of small samples, it still
has similar shortcomings to those of the artificial neural network.

The related literature has done exploratory research on SVM fault diagnosis, which
proves the feasibility of utilizing the SVM method to diagnose faults. However, the
influence on the results of the fault diagnosis, of changing the number of sensors installed,
their installation positions, and the extraction of vibration features, was previously found
to be insufficient. This paper proposes a fault diagnosis method for a diesel engine based
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on the SSAE-SVM, to fill this gap. By utilizing the SSAE feature fusion method to reduce
the data dimension, the grid search and K-fold cross-validation methods were employed
to optimize the hyperparameters of the SVM method, which effectively improved the
fault classification effect. Finally, the feasibility and effectiveness of the method are shown
through preset fault experiments.

The main contributions of this paper are summarized as follows:

1. The sensor combination analysis provides a reference for the optimal layout of sensors.
In the case of utilizing fewer sensors, higher diagnostic accuracy is obtained, while
diagnostic costs are reduced;

2. By using the characteristic parameter analysis when fewer sensors are adapted, the
representative characteristic parameters of diesel engine fault diagnosis can be effec-
tively extracted, and a better diagnosis effect is obtained.

The second part of this paper describes the basic principles of the feature dimension
reduction and fault diagnosis; the third part introduces the process of the fault diagnosis
method for a diesel engine based on the SSAE-SVM; the fourth part verifies the effectiveness
of the proposed method through the preset fault experiment; the fifth part summarizes
this research.

2. The Basic Principles of the Feature Dimension Reduction and Fault Diagnosis
2.1. The Fundamentals of the SSAE

The Autoencoder (AE) is a neural network with a hidden layer of unsupervised feature
learning. Its core structure is to utilize one or more layers of neural networks to map the
input data to obtain the output vector, as shown in Figure 1. Moreover, the Autoencoder can
be utilized to decrease the dimension of data features, which can characterize both linear
and nonlinear transformations. The unlabeled input vector is subjected to weighted map-
ping to obtain the value of the output vector of the hidden layer through the Autoencoder.
Its functional representation is expressed by:

yi = fθ(xj) = S(
N

∑
j=1

Wijxj + bi) (1)
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Figure 1. Autoencoder: the schematic diagram of both the encoding and the decoding process.

In Equation (1), yi is the activation value of the hidden layer, Wij is the weight coeffi-
cient, bi is the offset vector of the hidden layer, and S(x) represents the activation function.
The sigmoid function is employed herein. The minimized reconstruction error is defined by:

L(xi, yi) =
1
2
‖xi − yi‖2 (2)
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Weight parameters from the input layer to the hidden layer are denoted by θ = {W, b},
and Weight parameters from the hidden layer to the output layer are denoted by θ′ = {W ′, b′}.

The Sparse Autoencoder (SAE) is an improvement based on the Autoencoder. When
there are few neurons in the hidden layer, they are taken as features to achieve data dimen-
sion reduction. When there are many neurons in the hidden layer, a sparsity restriction is
added, to train the network and extract valuable features. The sparsity limitation is that the
processing of the hidden layer neurons is inhibited most of the time. The sparsity restriction
introduces a cost function [21], denoted by:

Js = J + β
s2

∑
j=1

KL(ρ‖ρj)c (3)

In Equation (3): ρ is the sparsity parameter; S2 represents the number of neurons in
the hidden layer; β represents the penalty factor for controlling sparsity; and KL(ρ‖ρj)
represents the method to measure the difference between ρ and ρ̂j.

Usually, a simple Sparse Autoencoder is not ideal for training, Therefore, this paper
adopted a stacking method of training each hidden layer separately with the unsupervised
learning of multiple Sparse Autoencoders, and connecting these layers to form a stacked
network. The fusion process based on the fault characteristics of the SSAE is depicted in
Figure 2. Each sensor extracted 31 parameter characteristics from the collected vibration sig-
nals, and represented them as 31 × N input feature vector into the SSAE. After conducting
the SSAE feature fusion, 31 new feature vectors were obtained.
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2.2. The Fundamentals of the SVM

The basic principle of the Support Vector Machine is to find an optimal classification
hyperplane that can separate the two types of sample data, and maximize the distance
between the classified ones. Figure 3 shows these two types of data samples, and W
represents the hyperplane separating them. The separated hyperplanes are then moved
horizontally to both sides. The critically separated hyperplanes W1 and W2 can effectively
divide the samples into two types. The distance between them is called the classification
interval. The optimal classification hyperplane can effectively separate these two types of
samples, so that the classification interval becomes the largest.
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A separating hyperplane equation in the sample is determined in the mathematical
form of w · x+ b = 0. According to the requirement of the maximum separation hyperplane,
the problem, in the form of an optimization setting, is expressed by [23]:{

min 1
2‖w‖

2

s.t. yi(w · x + b) ≥ 1, i = 1, 2, · · · , n
(4)

The optimal hyperplane to be found in Equation (4) is represented by w · x + b = 0: b is
the offset vector; w represents the normal vector of the optimal hyperplane. To resolve the
optimization problem, the Lagrange multiplier method is employed to find its dual form.
Afterward, this problem is transformed into a convex quadratic programming problem
with inequality constraints. The specific solution method is referred to in the literature [23].

2.3. The Fundamentals of the Grid Search and K-Fold Cross-Validation Optimization

Penalty factor C and kernel parameter g play a very critical role in the classification
effect of the SVM. When the parameters that are not optimal are selected, the classification
outcome may be unsatisfactory. The value of the kernel parameter g can directly affect the
accurate segmentation of the dataset to be classified. The smaller the value of the kernel
parameter g, the rougher the classification of the data set will be, which may cause the
data not to be effectively distinguished. Thus, under-fitting could easily occur. The main
function of the penalty factor C is to balance the structural risk and the empirical risk. When
the value of the penalty factor C is low, the structural risk is low too, so the corresponding
empirical risk is higher, and under-fitting is more likely to occur. Otherwise, over-fitting is
prone to occur. Therefore, the combination of grid search and K-fold cross-validation is
employed to optimize the penalty factor C and the kernel parameter g concurrently.

Grid search is a method of traversing specific combinations to optimize model perfor-
mance and K-fold cross-validation (that is, all training samples are divided into K parts,
then one part is selected in turn for testing; the remaining K−1 parts are used for training,
and the verification is repeated K times in total, usually set K = 10). To effectively prevent
the model from over-fitting, the optimal hyperparameters C and g are resolved, shown
in Figure 4.
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3. The Process Flow of the Fault Diagnosis Method of a Diesel Engine Based on
the SSAE-SVM

By combining both SSAE and SVM methods, this research proposes a diesel engine
fault diagnosis approach based on the SSAE-SVM. The steps of the method are presented
in Figure 5.
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Step 1: Data collection. By using the vibration sensor, the raw vibration signal of the
diesel engine was collected.

Step 2: Feature extraction. In the analysis of diesel engine vibration signals, the main
parameters are commonly used to reflect fault characteristics, including time-domain,
frequency-domain characteristics, wavelet packet energy, and the other 31 characteristic
parameters, as shown in Table 1 [24–26]. Thus, the main basis for the analysis of diesel
engine fault diagnosis is provided in Section 4.

Table 1. The parameters of the fault characteristics.

Feature Classification Parameter Characteristics

Time-domain features

1 maximum value; 2 minimum; 3 peak-to-peak; 4 mean;
5 mean square; 6 roots mean square; 7 average amplitude;
8 root amplitude; 9 variances; 10 standard deviations;
11 peak; 12 kurtoses; 13 skewness; 14 energy;
15 peak indicators; 16 impulse indicators; 17 waveform indicator; 18 margin indicators;
19 clearance factor

Frequency domain features 20 frequency mean; 21 frequency center;
22 RMS frequency; 23 frequency standard deviation

Wavelet packet energy Wavelet packet energy features (1–8)
Common features peak-to-peak; mean; mean square; variance; peak; kurtosis (6)

All features
Time domain feature parameters (19)
Frequency domain feature parameters (4)
Wavelet packet energy feature parameters (8)

Step 3: SSAE-based feature fusion. The 31 × N feature matrix composed of multiple
sensors was utilized to eliminate the influence caused by the difference in magnitude
between features. Therefore, it was necessary to perform data normalization processing on
the feature matrix, to contain the data between [0, 1], so as to ensure faster convergence
when the program was running. The normalized results were processed by the SSAE
feature fusion. The SSAE parameter settings mainly included the number of input layer
nodes, the hidden layer parameters, the weight adjustment coefficient, the sparse penalty
weight, and the sparsity ratio. Extracting valuable fault feature matrices was effectively
conducted to achieve the purpose of dimension reduction in the data.

Step 4: Fault Diagnosis Based on the SVM. First, the training samples were input
into the SVM classifier. Then, the hyperparameter optimization of the SVM was carried
out by utilizing a combination of grid search and K-fold cross-validation. Afterward, the
optimal SVM training model was obtained. The test samples were input into the trained
SVM model to verify it. Finally, the results of the fault classification were attained.

4. The Verification of the Experiment
4.1. Presetting Experimental Failure Modes

The diesel engine generates a variety of vibration signals during a cycle of reciprocating
motion. The vibration signal collected by the sensor is mainly generated by the shock
caused by the suction, compression, working, and exhaust strokes. In the collection of
the actual vibration signals, the position of the installed sensor, noise interference, and
other factors will cause problems such as data distortion or signal flooding. Therefore,
a total of six vibration sensors were installed in this experiment, to facilitate data fusion
analysis. The vibration frequency of diesel engines is usually in the range of 600–3000 Hz.
Therefore, a new type of piezoelectric unidirectional vibration acceleration sensor was used
in this study. The main parameters are provided as follows: Model BW14100; range ±50 g;
sensitivity 100 mV/g; frequency range 1~8 kHz; resolution 0.0001 g. Assuming that the
lower sampling frequency of the sensor was set to 1 kHz, although the vibration signal of
the lower frequency could be collected normally, the research object was a diesel engine
with complex structural design. In diesel engine preset fault experiments, the vibration
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signal produced is non-stationary and nonlinear, which means that it usually contains
a large number of strong interference signals, high frequency signals, and fault signals.
However, in diesel engine preset fault experiments (for example: insufficient fuel supply
of the fuel injection pump), the diesel engine will produce severe vibration and abnormal
noise (these signals are all high-frequency vibration signals). During the data collection
process, if a lower sampling frequency (1 kHz) is selected for data collection, it will not be
possible to collect vibration signals with higher frequencies. However, the fault signals are
usually contained in complex high-frequency signals, which cannot meet the conditions of
subsequent feature extraction and fault diagnosis analysis. The data sampling frequency
was set to 20 kHz (according to Nyquist’s sampling law, the sampling frequency was
set at more than twice the maximum frequency of 8 kHz in the measured signal), which
could effectively collect the vibration signals of the diesel engine. A vibration sensor 1~6#
was installed on the cylinder head of cylinders 1~6 along the axial direction, as shown in
Figure 6. The data acquisition system consisted of an acquisition chassis, a data acquisition
card (model PXI-9108, PXI-3342), and acquisition software written by Labview.
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Diesel engines have a complex working environment and long-term overload opera-
tions, resulting in high failure rates. To improve stability and reliability, and to reduce the
failure rates of diesel engines, this paper mainly focused on the relevant research about the
fuel supply system of the diesel engine. A total of six failure modes were preset, and the
detailed failure mode sequence is shown in Table 2. The insufficient fuel supply of the fuel
injection pump is generally caused by wear on the internal gear of the fuel injection pump,
which causes the pressure of the fuel supply to decrease. In the experiment, a faulty fuel
injection pump was utilized to mimic the situation. Hence, one- and six-cylinder misfires
could be realized by disconnecting the injector power cord. Air filter clogging simulated
clogging failure by adding an air intake cover in the air inlet. The oil supply pipe was
broken, and dripping oil was realized by utilizing the faulty oil supply pipe.
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Table 2. The preset failure modes of the diesel engine.

Fault States Failure Modes

1 Normal
2 Insufficient fuel supply from the fuel injection pump
3 One-cylinder misfire
4 Six-cylinder misfire
5 Air filter was clogged
6 The oil supply pipe was broken, with dripping oil

4.2. Presetting the Description of the Fault Test Data

The ignition sequence of each cylinder of the diesel engine was 1-5-3-6-2-4. In the
experiment, the data collection was started just after the diesel engine was warmed up, to
ensure stable data collection, and the rotational speed of the diesel engine was uniformly
set to 800 rpm. In accordance with the Nyquist sampling law, the sampling frequency of
the data acquisition was set to more than twice the maximum frequency of 8 kHz in the
measured signal—that is, 20 kHz. The duration of each collection was set to 12 s, which was
recorded as one group of data, so that 30 groups of data were collected for each failure mode.
Then, collection of a set of data every 30 s interval was set. The details are shown in Table 3.

Table 3. The pre-built six types of fault data sets.

Fault States Rotating
Speeds

Number of
Sensors

Sampling
Frequency

Sampling
Time

Number of
Samples

1 800 rpm 6 20 kHz 12 s 30
2 800 rpm 6 20 kHz 12 s 30
3 800 rpm 6 20 kHz 12 s 30
4 800 rpm 6 20 kHz 12 s 30
5 800 rpm 6 20 kHz 12 s 30
6 800 rpm 6 20 kHz 12 s 30

4.3. The Comparative Analysis of the Parameter Characteristics

The fault parameter characteristics presented in Section 3 were adopted, and the pa-
rameter characteristics were divided into five types: common features (6); time-domain
features (19); frequency domain features (4); wavelet energy features (8); and all fea-
tures (31). By utilizing the data set in Section 4.2, there existed 30 groups of samples. Each
group of samples had 240,000 sampling points. Then, 20,000 sampling points were taken
as a group, so that 12 × 30 = 360 data samples could be formed. The six fault states led to
a total of 6× 360 = 2160 samples. The six fault states referred to the feature matrix extracted
from the ignition sequence 1-5-3-6-2-4 of the diesel engine, as shown in Table 4. To verify
the effectiveness of these feature parameters, five types of feature parameters were utilized
as input variables. The Matlab2020 software development tool was utilized to verify the
SSAE-SVM method.

Table 4. The data set of the fault parameter characteristics.

Serial Number Feature Taxonomy
Combination

Characteristic
Parameters Feature Matrix Number of

Sensors

1 Common features 6 6 × 2160 6
2 Time domain features 19 19 × 2160 6
3 Frequency domain features 4 4 × 2160 6
4 Time domain + frequency domain features 23 23 × 2160 6
5 Wavelet packet energy 8 8 × 2160 6
6 Common features + frequency domain features 10 10 × 2160 6
7 Common features + wavelet packet energy 14 14 × 2160 6
8 All features 31 31 × 2160 6
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Both Figure 7 and Table 5 show that the penalty factor c and the kernel parameter
g utilized a combination of grid search and K-fold cross-validation. Then, both optimal
hyperparameters c and g were resolved; where the parameter c varied in [−10, 10], the
parameter g altered in [−10, 10], and the search step size was uniformly set to 0.1. Only
the accuracy rate of Combination 5 reached 77%, and the rest were found to be more
than 90%, indicating that the parameter characteristics of Combination 5 were not suitable
for fault diagnosis among the eight combinations. Furthermore, the cross-validation
accuracy and fault classification accuracy of Combinations 6 and 7 were found to be above
99%. When compared with Combination 7, Combination 6 had the advantages of shorter
optimization time and fewer parameter characteristics. However, the cross-validation
and fault classification accuracy of Combination 2 reached over 98%. When compared
with Combinations 6 and 7, the search time took longer, and there were more parameter
characteristics. Furthermore, Combination 3 had the fewest parameter characteristics and
the shortest optimization time, but the accuracy of the fault classification was not as high
as that of Combination 6. Combination 8 had 31 parameter characteristics, which took the
longest optimization time, and the fault accuracy rate was lower than that of Combination 6,
indicating that some parameter characteristics did not contribute much to the accuracy of
the fault classification.

When a comprehensive analysis was conducted, not all feature parameters were
found to be effective, and appropriate features had to be selected for fault diagnosis
to reduce the computational resources needed, and to improve classification accuracy.
When compared with other combinations, Combination 6 had the advantages of fewer
parameter characteristics, a short optimization time, and higher precision. Thus, it was fully
demonstrated that Combination 6 contained more useful signals, and was very suitable to
utilize in the fault diagnosis of a diesel engine.
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Table 5. The results of the SSAE-SVM classification when different parameter features were used.

Feature Taxonomy
Combinations

Number of
Features

After
Optimization
(C, g Values)

Cross Validation
Accuracy

Diagnostic
Accuracy Execution Time

Combination 1 6 (1.3195, 2.2974) 94.44% 94.72% 201.2542 s
Combination 2 19 (1024, 0.047366) 98.27% 99.16% 403.2165 s
Combination 3 4 (6.9644, 0.25) 98.33% 97.50% 192.6870 s
Combination 4 23 (1024, 0.43528) 97.55% 96.38% 400.4194 s
Combination 5 8 (1024, 1.3195) 77.55% 77.22% 274.2213 s
Combination 6 10 (6.9644, 2.2974) 99.11% 99.44% 205.4491 s
Combination 7 14 (337.794, 0.43528) 99.27% 99.44% 297.8969 s
Combination 8 31 (1024, 0.14359) 96.66% 96.11% 561.9832 s

4.4. The Comparative Analysis of the Dimension Reduction Methods

To prove the effectiveness of the SSAE in the extraction of the fusion features by utiliz-
ing the SSAE-SVM method, the sensors 1-5-3-6-2-4# data were selected, and Combination 6
was employed, to form a 60 × 2160 feature matrix to conduct verification according to the
ignition sequence of each cylinder of the diesel engine. After fusion by the SSAE method,
the number of SSAE input nodes was set to 60; the hidden layer parameters were set to 30
and 10, respectively; the sparsity ratio was set to 0.1; the weight adjustment coefficient was
set to 0.000002; and the sparse penalty weight was set to 0.0002. Thus, a new 10 × 2160
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feature matrix was attained, and it was divided into 1800 training samples and 360 testing
samples, respectively.

To further prove the effectiveness of the SSAE for extracting fusion features, the data
set was also selected from the sensors 1-5-3-6-2-4# data, and the feature parameters were
combined with 6 to form a 60× 2160 feature matrix to conduct verification. The SSAE, PCA,
and KPCA methods were utilized to conduct the dimension reduction of the features for
the comparative analysis. In the Matlab2020 software development tool, a combination of
both grid search and K-fold cross-validation was employed. Hyperparameter optimization
on penalty factor c and kernel parameter g was performed, where parameter c took values
in [−10, 10], and parameter g changed in [−10, 10]. Then, the three feature fusion matrices
were imported into the SVM model for training. Thereby, three optimal training models
were obtained. Finally, the test samples were plugged into the trained model for fault
identification, and the fault diagnosis accuracy results were obtained eventually, as shown
in Table 6. Figures 8–10 and Table 6 depict that the diagnostic accuracy rates of the SSAE,
the PCA, and the KPCA reached 99.44%, 84.16%, and 94.44%, respectively. The SSAE
method had the highest diagnostic accuracy and the shortest search time. However, when
compared with the other two methods, the cross-validation accuracy and the diagnostic
accuracy of the PCA method were significantly lower. Therefore, the results show that
the SSAE-SVM method can effectively extract valuable fusion feature parameters, and has
better advantages and generalizability in fault diagnosis and identification.

Table 6. The classification results of different dimension reduction methods.

Dimensionality
Reduction Method

After Optimization
(C, g Values)

Cross Validation
Accuracy Diagnostic Accuracy Execution Time

SSAE-SVM (6.9644, 2.2974) 99.11% 99.44% 205.4491 s
PCA-SVM (1024, 4) 85.66% 84.16% 232.9893 s

KPCA-SVM (4, 6.9644) 94.50% 94.44% 219.0951 s
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4.5. The Comparative Analysis of the Sensor Combination

To prove the effectiveness of the SSAE-SVM fault diagnosis method, the dataset of
the feature parameters of Combination 6 (common features + frequency domain features)
in Section 4.3 was utilized. Because there exist many combination methods of sensors,
this paper presents just a few of them, due to the limited scope of the research. Therefore,
this subsection assumes that the sensor combination was established based on the ignition
sequence 1-5-3-6-2-4 of each cylinder of the diesel engine, and six different sensor combi-
nations were set to conduct verification. After the fusion of the SSAE method, the main
parameter settings of the SSAE were the same as those of the SSAE in Section 4.4. A new
10 × 2160 feature matrix was obtained, which was divided into 1800 training samples and
360 test samples, respectively, as shown in Table 7.

Figure 11 and Table 8 depict that the cross-validation accuracy and diagnostic accu-
racy of Combination 6 were 77.55% and 76.38%, respectively. It shows that the effect of
employing sensor data for fault diagnosis was very poor, and could not meet the require-
ments of fault diagnosis. When compared with Combination 6, the diagnostic accuracy of
Combination 5 was greatly improved, and the accuracy rate reached 96.94%, indicating that
the utilization of the two sensor data contained the key information for diagnosis. The fault
diagnoses for Combinations 1 to 4 were all above 99% accurate, indicating that the more
data samples are collected, the higher the fault diagnosis accuracy will be. When compared
with the other three combinations, Combination 3 had the advantages of short optimization
time, higher diagnostic accuracy, and a small number of sensors. Although Combination 4
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had one less sensor than Combination 3, the diagnostic accuracy also reached 99.44%. By
considering the complex working conditions and nonlinear factors of the diesel engine, the
higher diagnostic accuracy of Combinations 1 and 2 was attained. However, due to the
large number of sensors and the high cost, it was not suitable for fault diagnosis. Due to the
small number of sensors in Combinations 5 and 6, the diagnostic accuracy was low, and so
it was not suitable for diesel engine fault diagnosis. Combination 3 had higher diagnostic
accuracy, fewer sensors, and lower cost, and the installation position was reasonable (de-
ployed according to the ignition sequence of each cylinder of the diesel engine). Therefore,
Combination 3 was more suitable for fault diagnosis. The results suggest that employing
the SSAE-SVM method to diagnose the data characteristics related to Combination 3 had
the advantages of short optimization time, better effect, and lower cost.

Table 7. The data sets with different sensor combinations.

Combination
Numbers Combinations Number of

Sensors Feature Matrices Input Nodes Hidden Layer
Parameters

Combination 1 1-5-3-6-2-4# 6 60 × 2160 60 (30, 10)
Combination 2 1-5-3-6-2# 5 50 × 2160 50 (20, 10)
Combination 3 1-5-3-6# 4 40 × 2160 40 (20, 10)
Combination 4 1-5-3# 3 30 × 2160 30 (20, 10)
Combination 5 1-5# 2 20 × 2160 20 (15, 10)
Combination 6 1# 1 10 × 2160 10 (10, 10)
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Table 8. The comparative analysis of the diagnostic results under different sensor combinations.

Combination
Numbers Combinations

After
optimization
(C, g Values)

Cross Validation
Accuracy

Diagnostic
Accuracy Execution Time

Combination 1 1-5-3-6-2-4# (6.9644, 2.2974) 99.11% 99.44% 255.4491 s
Combination 2 1-5-3-6-2# (0.435275, 0.75786) 99.94% 100.0% 260.6388 s
Combination 3 1-5-3-6# (6.9644, 2.2974) 99.88% 100.0% 208.4682 s
Combination 4 1-5-3# (1.31951, 4) 99.94% 99.44% 252.1299 s
Combination 5 1-5# (1024, 0.43528) 97.61% 96.94% 248.1764 s
Combination 6 1# (12.1257, 2.2974) 77.55% 76.38% 288.8677 s

4.6. The Comparative Analysis of the Classification Methods

To further verify the effectiveness of the SSAE-SVM fault diagnosis method proposed
in the manuscript, the data set of feature parameter Combination 6 (common features +
frequency domain features) in Section 4.3 was utilized and chosen to form a 40 × 2160
feature matrix for verification, according to Combination 3, the optimal combination of
sensors in the previous section. After the fusion of the SSAE method, the main parameter
settings of the SSAE were the same as those of the SSAE parameter settings in Section 4.4.
Therefore, a new 10 × 2160 feature matrix was obtained, which was divided into 1800
training samples and 360 test samples, respectively. The SVM, Decision Tree (DT), Naive
Bayes Classifier (NBC), and Random Forest (RF) methods were employed to diagnose
faults on the training samples. and were compared and analyzed for test samples. The
results are presented in Table 9.

Table 9. The comparative analysis of the diagnostic accuracy of different classification methods.

Fault States SVM DT NBC RF

1 100.0% 93.33% 90.00% 96.67%
2 100.0% 95.00% 93.33% 98.33%
3 100.0% 100.0% 100.0% 100.0%
4 100.0% 96.67% 100.0% 100.0%
5 100.0% 88.33% 95.00% 98.33%
6 100.0% 100.0% 100.0% 100.0%

Accuracy 100.0% 95.55% 96.38% 98.88%
Execution Time 208.4682 s 223.6581 s 252.2783 s 237.1265 s
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Both Figure 12 and Table 9 show that the accuracy rates of the three classification
methods of DT, NBC, and RF were: 95.55%, 96.38%, and 98.88%, respectively. The SSAE-
SVM fault diagnosis method proposed in this study had an accuracy rate of 100%, and
the time spent was shorter than those of the other three classification methods. The DT,
NBC, and RF methods had a lower ability to identify the normal state, fault states 1 and 4,
indicating that those three methods were insufficient to diagnose when a stronger noise
environment existed. The results show that the SSAE-SVM fault diagnosis method has
higher accuracy when compared with other methods, Therefore, the validity of the SSAE-
SVM fault diagnosis method is presented, and the theoretical basis for diesel engine fault
diagnosis is provided.
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5. Conclusions

This paper proposes a fault diagnosis method based on the SSAE-SVM, which can
be applied to the fault diagnosis of diesel engines in complex environments. The SSAE
method was utilized to effectively improve the feature extraction ability of nonlinear data,
to achieve the purpose of feature dimension reduction. By utilizing both grid search and
the K-fold cross-validation method to optimize the hyperparameters of the SVM method,
the fault classification effect was effectively improved.

The experimental results show that the SSAE-SVM method proposed in this research
can effectively obtain a higher diagnostic rate when employing both fewer sensors and
eigenvalues. Thus, this method not only reduces the cost of fault diagnosis but also provides
a reference for the optimal arrangement of sensors.
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