
����������
�������

Citation: Wang, X.; Zhu, H.; Shen, Q.;

Wu, S.; Wang, N.; Liu, X.; Wang, D.;

Zhong, X.; Zhu, Z.; Damaren, C.

Trigger-Based K-Band Microwave

Ranging System Thermal Control

with Model-Free Learning Process.

Electronics 2022, 11, 2173. https://

doi.org/10.3390/electronics11142173

Academic Editor: Nunzio Cennamo

Received: 28 May 2022

Accepted: 4 July 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Trigger-Based K-Band Microwave Ranging System Thermal
Control with Model-Free Learning Process
Xiaoliang Wang 1,†,‡ , Hongxu Zhu 1, Qiang Shen 1, Shufan Wu 1,*, Nan Wang 2, Xuan Liu 3, Dengfeng Wang 3,‡,
Xingwang Zhong 3, Zhu Zhu 4 and Christopher Damaren 5

1 School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China;
xlwang12321@sjtu.edu.cn (X.W.); livewith_blackcat@sjtu.edu.cn (H.Z.); qiangshen@sjtu.edu.cn (Q.S.)

2 University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University,
Shanghai 200240, China; wn19951113@sjtu.edu.cn

3 Institute of Space Radio Technology, Xi’an 710100, China; liuxuan0229@126.com (X.L.);
dfwang_aero@163.com (D.W.); zhongxw1391@163.com (X.Z.)

4 Shanghai Institute of Satellite Engineering, Shanghai 200240, China; annieapple1985@sina.com
5 Institute for Aerospace Studies, University of Toronto, Toronto, ON M1C 1A4, Canada;

damaren@utias.utoronto.ca
* Correspondence: shufan.wu@sjtu.edu.cn; Tel.: +86-186-2956-2996
† Current address: East Dongchuan Rd. No. 800, Shanghai 200241, China.
‡ These authors contributed equally to this work.

Abstract: Micron-level accuracy K-band microwave ranging in space relies on the stability of the
payload thermal control on-board; however, large quantities of thermal sensors and heating devices
around the deployed instruments consume the precious inner communication resources of the central
computer. Another problem arises, which is that the payload thermal protection environment can
deteriorate gradually through years operating. In this paper, a new trigger-based thermal system
controller design is proposed, with consideration of spaceborne communication burden reduction
and actuator saturation, which guarantees stable temperature fluctuations of microwave payloads in
space missions. The controller combines a nominal constant sampling PID inner loop and a trigger-
based outer loop structure under constraints of heating device saturation. Moreover, an iterative
model-free reinforcement learning process is adopted that can approximate the estimation of thermal
dynamic modeling uncertainty online. Via extensive experiment in a laboratory environment, the
performance of the proposed trigger thermal control is verified, with smaller temperature fluctuations
compared to the nominal control, and obvious efficiency in system communications. The online
learning algorithm is also tested with deliberate thermal conditions that deviate from the original
system—the results can quickly converge to normal when the thermal disturbance is removed. Finally,
the ranging accuracy is tested for the whole system, and a 25% (RMS) performance improvement
can be realized by using a trigger-based control strategy—about 2.2 µm, compared to the nominal
control method.

Keywords: K-band ranging system; event trigger; saturation control; reinforcement learning;
actor/critic policy

1. Introduction

K-band microwave ranging (MWR) technology can provide micron-level precise
ranging measurements between spacecraft in space, which has potential applications in the
fields of Earth elevation surveying, gravity field detection, and other space missions [1,2].
The accuracy ranging performance (time delay) of the MWR system is mainly affected by
the payload thermal condition in space. The state-of-the-art payload thermal controller
should be well designed with tiny temperature fluctuations during orbiting; however, the
spacecraft thermal control system is a large-scale system that involves hundreds, even
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thousands of temperature sensors and patch heaters around instruments, which increases
the pressure on communication with the on-board central computer when engaged in
diversified space missions in the future [3–5]. At the same time, the thermal control system
itself can be deteriorated to the original dynamic model during multiple year-long space
missions, and the adaptive approaches should be adopted to dealing with this situation.
To deal with such problems, in this paper, a new thermal control strategy is proposed that
is based on triggered sampling and the model-free learning process.

The event-triggered control (ETC), in contrast to the traditional time trigger control
with fixed sampling period, adopts the updating strategy of sampling in a variable pe-
riod [6–8]. Designers can impose certain thresholds with performance indexes for the
system according to actual needs. The control signals are transmitted and updated inside
the system only when the states exceed the threshold conditions [9,10]. Zhang [11] em-
bedded ETC into a linear system model to address predictive control problems, updating
the predictive sampling step-time through a fixed-threshold event-triggering mechanism.
In [12], the design of the multi-variable linear industrial process ETC with time delay and
quantization error is studied, the controller parameters are calculated by linear matrix
inequality (LMI), and the closed-loop system asymptotic stability proof using Lyapunov
theory is provided. Azimi [13] proposed an ETC design that considered the system trans-
mission delay and packet loss during the signal transmission in the chemical process,
which can track the set values of the system with the signal transmission constrain. For the
situation of time-varying model parameters of linear chemical control process in different
working environments, Li [14] described the uncertain system by using Markov random
theory, and an event-triggered sliding mode controller with finite-time convergence is
designed by combining homogeneous theory with an event-triggered mechanism, which
realized the finite-time convergence. The thermal control system we considered in this
paper includes a saturated actuator process, which is a type of nonlinear system—scholars
have also focused on the application of ETC to nonlinear systems. Reference [15,16] ana-
lyzed the nonlinear strict feedback system and uncertain strict feedback nonlinear system
according to adaptive control theory. The results show that a control system with an
event-triggering mechanism can improve the transmission efficiency of the signal—it can
also reduce the energy consumption and cost. Abhinav [17] designed an adaptive event
triggered sliding mode controller by combining the sliding mode control with ETC, and the
results show that the designed controller has good regulating performance in the presence
of external disturbances and model uncertain. Moreover, the unknown nonlinear character-
istics inside the dynamics model can also be approximated by advanced control methods,
such as fuzzy control [18], neural network [19–21], and adaptive dynamic programming
(ADP) [22]. References [23,24] considered the ADP triggering problem with a saturated
actuator. Seuret [25] adopted the linear quadratic optimal control method. Reference [26]
provided a stability analysis of the system with disturbance. Reference [27] introduced
inequality to analyze the trigger system.

A thermal system using an ETC design relies on the temperature sensors as state-
sampling hardware, which can diverge from the tracking trajectory once measurement
malfunctions. Some scholars have proposed the idea of self-triggered control (STC) in recent
years [28–32]. The principle of STC is to actively predict when the next triggering time will
occur according to the previously received data and system dynamics. Compared with
ETC, STC reduces the transmission times of the feedback signals, effectively reduces the on-
board data transmission burden, and improves the control efficiency. Wang [33] provided
the self-triggering conditions of general linear systems based on the Lyapunov method.
Almeida [34] studied the self-triggering of linear systems with bounded disturbance state
feedback to ensure the system asymptotic stability. The application of STC to a network
control system is proposed in [35].

The triggered control strategy design may improve the on-board communication
efficiency most of time, relying on the system model functioning well; however, as the
observation platform for long-term space missions is critical, the spacecraft payload thermo-
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dynamic will gradually deteriorate over time, which will clearly deviate from the originally
designed model. As a typical intelligent agent in space with sensing and action func-
tions, the spacecraft platform malfunction should be detected and calibrate itself on-orbit,
and methods such as optimal control and dynamic programming should be adopted for
this model’s uncertain situation.

Recently, efficient approximation techniques have been proposed to solve the above de-
scribed problem, known as approximate dynamic programming (ApDP) or reinforcement
learning (RL), including value-based RL (Q-learning methods) [36,37], policy-based RL (pol-
icy gradient methods) [38–40], and value-policy combined RL (actor-critic methods) [41].
For systems with disturbed dynamics, LQR has been widely used for learning-based con-
troller design [42–44]. Lee [45] has developed a Q-learning framework for LQR control
based on an alternative optimization formulation of the problem. The proposed framework
is then used to design a model-free Q-learning algorithm based on primal dual updates.
Policy gradient methods continuously calculate the gradient of the cumulative income of
the agent and the strategy parameters under the current strategy in an end-to-end approach,
and finally the gradient converges to the optimal strategy [38]. The actor-critic methods
include two parts: actor and critic, in which the actor is responsible for interacting with
the environment and selecting actions based on strategy function; the critic is based on the
value function, which is responsible for evaluating the actor and guiding its next action.
In the actor-critic algorithm, it is necessary to approximate the strategy function and the
value function independently [46]. Basically, the critic calculates the state optimal value,
and the actor uses it to iteratively update the parameters of the strategy function, selecting
action, so as to obtain the immediate reward and move to the next state. The critic uses the
reward and the new state to update the parameters of the value function.

The application of RL to spacecraft thermodynamic systems is rarely reported in
recent years, according to the authors’ literature review. Lee [47] introduced a RL-based
model-free predictive control structure for chiller plants. Qiu [48] provided an optimal
operation solution of chillers by combining RL technique and expertise knowledge, aiming
for a balance of power and indoor comfort. Inspired by the literature, this paper focuses
on a trigger-based MWR payload thermal control system design with an online learning
iteration, aiming to the micron-level precise ranging performance in space missions [49,50].
The proposed approach benefits from the following noteworthy features:

1. Feasible triggered thermal system control design with obvious communication
burden reduction;

2. No original thermodynamic information required when faced with disturbed system
model uncertainty;

3. Suitable for real autonomous management of space platforms with long-term mission life;
4. Thermal control strategies can be selected from nominal control, triggered control,

and model-free learning process, according different orbiting period.

The rest of the paper is organized as follows: Section 2 provides the thermal system
modeling for the micron-level K-band ranging system with efficient saturation trigger feed-
back controller design. The model-free learning method is shown in Section 3 for the case of
thermal system uncertainty. Finally, the experimental results in a laboratory environment
are provided, which demonstrate the effectiveness of the proposed method.

2. Thermal System Design for Precise Ranging System
2.1. Thermal Structure of Deployed Satellite

The main sources of heat during a satellite orbiting in space including sunlight, thruster
ignition, and power consumption of on-board electric devices. The fluctuation of satellite
temperature has the following characteristics: temperature, both daily and seasonal, pe-
riodically changes as the Earth rotates and revolves around the sun; On the other hand,
on-board electric devices will also cause temperature changes due to work status changes,
failures, or other uncertain factors, as the on-board thermally insulated layer performance
decreases with satellite aging. In order to obtain a proper heat transfer and conversion,
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avoiding the temperature exceeding the normal working range, thermal control technology
should be adopted that includes specially designed active and passive approaches.

The structure of the whole satellite is shown in Figure 1 below, in which “b” indicates
the installed position of the MWR system, which includes four parts: K-band transceiving
antenna, waveguide switch network, signal process unit, and ultra-stable crystal oscillator
(USO), which constitutes the micron-level microwave ranging system as a whole.

Figure 1. Structure of the satellite: (a) K-band antenna phase center; (b) K-band microwave ranging
system payload; (c) centroid adjustment; (d) accelerometer for gravity field detection; (e) star sensor;
(f) power supply; (g) fuel tank; (h) thruster.

It can be seen from Figure 1 that the whole ranging system is installed on the +X and
+Z panels of the satellite. A three-level thermal protection structure is designed in order
to prevent the payload from being affected by space radiation during operation. First,
the platform outer shield, with bare carbon fiber reinforced plastic (CFRP) with 10-layer
multi-layer insulation (MLI) pack, is used that can block any heat from leaking in from
the outer solar panel. Second, the payload cabin, with CFRP with single layer Kapton
foil, is used, which can minimize radiative heat from the inner platform environment to
the MWR payload enclosure. Moreover, there is thermal insulation between the satellite
platform and the payload, which is made of low conductive material to reduce the effect of
temperature variations at the structure interface. The internal thermal conduction balance
treatment is carried out within deployed cabins for the differential temperature caused
by on-orbit illumination directions on the surface of the satellite. Third, active thermal
control, with dedicated heaters and condensation heat pipes, is used for critical payloads
that have more stringent temperature limits than the rest of the spacecraft—mainly the
four parts of the MWR system. The temperatures of the MWR equipment are monitored
using sensors and maintained within the desired limits by several patch heaters and phase-
changed heat pipes that are controlled by the spacecraft central computer during the stages
of science operations.

According to the massive data from previous tests, the ranging error of the MWR
equipment is mainly due to the microwave measurement signal chain, which includes:
(1) the temperature fluctuation of USO that reduces the clock frequency stability; (2) the
thermal deformation of the horn antenna may lead to changes in the antenna phase cen-
ter; (3) temperature changes of phase-locked frequency doubling equipment, microwave
network, quadrature mixer, intermediate frequency amplifier, and low-pass filter may
induce errors in the ranging measurement result. As a result, it is necessary to improve the
accuracy and stability of temperature control for these devices, which could be improved
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using less than ±0.15 K/orbit. In addition, the digital signal processing unit of MWR also
needs high-precision temperature control within ±0.1 K/orbit, since it contains the A/D
converter of the low-pass filtered signal, FPGA, and DSP components on the same circuit
board, which are highly sensitive to temperature fluctuations.

2.2. Payload Thermal Dynamic Modeling and Nominal PID Control

The temperature of deployed payloads is directly related to its surrounding environ-
ment of satellite platform in space and internal thermal exchange between themselves.
With a proper structure design featuring three levels of thermal protection, the payloads
can be perform well within finite temperature fluctuations inside a cabin room. In this
paper, we consider the thermal coupling relationship between those payload components;
the thermal analysis adopts the node network method to establish the thermal balance
equation of any node on satellite as follows [51]:

cimi
dTi
dt

+ εiai(Ti − TTi) = qi (1)

where the subscript i denotes the thermal nodes, ci denotes the specific heat capacity of
the payload metal alloy block, mi denotes the block mass, Ti denotes the transient thermal
temperature, TTi is target temperature, εi denotes the average heat transfer coefficient of
each node, ai is the area of each heat patch/pipe surface, and qi is the heating/cooling
power of each node around payload. The thermal control is realized by several heating
and condensation patch nodes with an adiabatic section around each payload components,
providing the heating and cooling actions from control command. Typical electric heating
is used when the temperature is below the target, and the state-of-the-art micro-electro-
mechanical system (MEMS)-based pulse width modulation (PWM) high-speed on-off valve
is used to cool the liquid flow inside the phase change pipe during high temperature stages.

For the purpose of fast and stable internal temperature control of payloads during
space missions, especially during precise ranging stages, two cycles of a closed-loop active
thermal controller are designed: one is a high-power electric heating/cooling controller
with temperature sensors patched around payloads using PID control; the other one is a
precise low-power heating controller using optimal control with triggering saturation con-
straints.

A typical PID control algorithm is used as a nominal scheme given as [52–54]:

u(t) = Kp

[
e(t) +

1
KI

t

∑
τ=0

e(τ) · Ts + KD
e(t)− e(t− 1)

Ts

]
(2)

where Kp, KI , KD are the coefficients of proportional, integral, and differential, respectively;
Ts is sampling time, e(t) is the difference of measured temperature and target temperature,
and u(t) is the heating/cooling power consumption for active thermal control.

2.3. Trigger-Based Precise Optimal Thermal Control with Saturation Constraint

The thermal dynamic model and PID algorithm design above aim to provide the
nominal thermal active control during the space orbiting period. For the purpose of the high-
precision microwave ranging system that is functional during the science observing phase
in space, each payload component is patched around several heating/cooling nodes and
measurement sensors in order to fully realize thermal control and temperature monitoring.

Here, we want the thermal control system to be tracking the desired temperatures dur-
ing the space mission with minimal control burdens. First, considering the nominal states
as x =

[
Ta Tw Tm Tu

]T , where the subscript a, w, m, u mean the four MWR compo-
nents of the K-band antenna, waveguide switch network, microwave signal process unit,
and USO. Define the new states as the difference of current states x(t) and x(t f ), namely,

x(t) ∆
= x(t) − x(t f ) with x =

[
δTa δTw δTm δTu

]T . Similarly, we can define the
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heating/cooling control variable u(t) ∆
= u(t)− u(t f ) with u =

[
δqa δqw δqm δqu

]T

according to the deviation between the actual and the nominal thermal control input.
On the premise of a given nominal temperature state sequence, the time series of the
nominal control input can be obtained directly through the PID algorithm; so, after the
control input u =

[
qa qw qm qu

]T of the deviation dynamics is solved, the actual
temperature tracking control can be obtained through the summation of u and u.

The precise thermal control is realized through several accuracy calibrated patch heater
and cooler, with limited power consumption constraints. Here, we consider the deviation
thermal system as a saturated linear dynamic equation of the form:

ẋ(t) = Ax(t) + Bσ(u(t)), x(t0) = x0, t ≥ 0
u(t) = Kx(tk), t ∈ [tk, tk+1)

(3)

where A ∈ Rn×n is the state matrix, and B ∈ Rn×m is the control matrix. K = −R−1BTP ∈
Rm×n denotes the feedback gain matrix through optimal control. Here, we assume that
all states are observable and that the system is controllable. Because of the unmodeled
dynamics and external thermal disturbances during on-orbit mission flight, A and B are
both disturbed matrices.

Note here we define the saturation control of σ(ui)
∆
= sign(ui) ·min{ūi, |ui|}, where

ui is the i-th control input signal and ūi is the maximum amplitude of i-th control actuator,
i.e., the heating/cooling power. The time-tag tk shows up through the event trigger,
meaning the control signal triggers off at time tk, and holds still during time period t ∈
[tk, tk+1); this can greatly save signal transmitting bandwidth, reducing the communication
burden for the whole on-board system.

Next, we give a brief introduction of the optimal control used in this paper. The track-
ing performance of the energy cost is written as:

J
(

x, u, t0, t f

)
=

1
2

xT
(

t f

)
P
(

t f

)
x
(

t f

)
+

1
2

∫ t f

t0

(
xT(τ)Mx(τ) + uT(τ)Ru(τ)

)
dτ (4)

where P
(

t f

)
∈ Rn×n is the solution of the Riccati equation in time t f , M ∈ Rn×n �= 0,

R ∈ Rm×m � 0. Suppose we have the matrix pairs (A, B) controllable and
(√

M, A
)

measurable, clearly, we will obtain the best performance with minimal value of J, and the
final object of control system is finding the optimal value V∗ with dynamic modeling
disturbances:

V∗
(

x, t0, t f

)
= min

u

[
J
(

x, u, t0, t f

)]
(5)

The finite horizon optimal control problem can be solved as follows: define the
Hamiltonian function

H =
1
2

(
xT(t)Mx(t) + uT(t)Ru(t)

)
+

∂V∗T

∂x
(Ax(t) + Bu(t)) (6)

With proper derivation, the following HJB equation can be obtained [55]:

− ∂V∗

∂t
=

1
2

(
xT(t)Mx(t) + u∗T(t)Ru∗(t)

)
+

∂V∗T

∂x
(Ax(t) + Bu∗(t)) (7)

Then, we have the optimal control of

u∗(x, t) = −R−1BTP(t)x(t) = Kx(t) (8)

where P(t) can be found in the Riccati equation of

M + P(t)A + AT P(t)− P(t)BR−1BTP(t) = 0 (9)
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Theorem 1. suppose we have P(t) from Equation (9), with the condition of P(t f ), then we
can obtain the optimal control of Equation (8), satisfying the minimal function of Equation (5).
Moreover, the origin point is the globally uniformly asymptotically stable equilibrium point for the
closed-loop system.

Proof of Theorem 1. The proof can be found in ref [55], which is not shown here.

2.4. Trigger Condition Analysis

We define e(t) = x(tk)− x(t), meaning the state differences of the previous triggered
time and current time. The sampling signal of the system that is sent to the controller
through feedback needs to meet the selected trigger condition. Here, we design the trigger
mechanism as:

tk+1 = tk + min{τk|Z1 ∧ Z1, τ > 0} (10)

where Z1 = eT(tk + τ)Se(tk + τ) ≥ γxT(tk)Dx(tk) + δ, Z2 = ‖σ(u(t))‖2 < ū2, and γ, δ are
given positive constants, S, D are a positive defined matrix, tk denotes the triggered time of
event k , and τk the signal transmitting period since tk. Equation (10) can be explained as
follows: suppose the first trigger happened in time t0 in a real system operation, and after
that, no trigger happened even if condition Z1 is satisfied, with the control signal under
saturation, i.e., condition Z2. By achieving this, it will greatly improve the communication
resource utilization of the system.

Let δ = 0, and S = D = P; we have the event-trigger condition of{
eT(t)Pe(t) ≥ γxT(tk)Px(tk)

}
∧
{
‖σ(u(t))‖2 < ū2

}
, t > tk (11)

The event-trigger transmission condition is realized by hardware samplings and
trigger condition judgment. Similarly, the self-trigger is implemented through previous
signal and state predictions. Here, we explain the self-trigger conditions as follows: consider
time t ∈ [tk, tk+1), by using the system model of Equation (3), we have

ė(t) = −ẋ(t) = Ae(t)− [Ax(tk) + Bσ(Kx(tk))]
∆
= Ae(t)− X

x(tk) = 0, t > tk
(12)

The analytical solution of Equation (12) is given as

e(t) = −
∫ t

tk

eA(t−τ)dτ · X = −
∫ t−tk

0
eAsds · X (13)

With proper derivation, we have

eT(t)Pe(t) =

{∫ t−tk

0
eAsds · X

}T
P
{∫ t−tk

0
eAsds · X

}
≤

{∫ t−tk

0
eλmax(A)sds

}2
· XTPX (14)

Let ξ(x(tk)) = XTPX, and θ(x(tk)) = λmin(P)‖x(tk)‖2. According to Equation (11),
we can obtain the self-trigger time-tag of tk+1 through{[∫ tk+1−tk

0
eλmax(A)sds

]2
ξ(x(tk)) = γθ(x(tk))

}
∧
{
‖σ(u(t))‖2 < ū2

}
(15)

Clearly, Equation (15) is obtained based on the event-trigger condition of Equation (11),
with less trigger period. Finally, we can obtain the self-trigger condition of

tk+1 = tk + h(γ, x(tk)) (16)
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The self-trigger time-tag of tk+1 meaning the sampling point, according to satura-
tion function, and the feedback of system states in tk+1 depending on ‖σ(u(t))‖2 < ū2.
Moreover, the trigger period of h(γ, x(tk)) relies on matrix A, namely:

(1) if λmax(A) = 0, then we have
∫ tk+1−tk

0 eλmax(A)sds =
∫ tk+1−tk

0 ds, and

h(γ, x(tk)) =

[
γθ(x(tk))

ξ(x(tk))

]1/2
(17)

(2) if λmax(A) 6= 0, then we have∫ tk+1−tk

0
eλmax(A)sds =

1
λmax(A)

∫ tk+1−tk

0
eλmax(A)sdλmax(A)s

=
1

λmax(A)

[
eλmax(A)(tk+1−tk) − 1

]
(18)

and

h(γ, x(tk)) =
1

λmax(A)
ln

{
1 + λmax(A)

[
γθ(x(tk))

ξ(x(tk))

]1/2
}

(19)

Finally, here we provide the schematic diagram of the proposed trigger-based thermal
control system as in Figure 2.

Figure 2. Structure of the trigger-based thermal control system.

2.5. Stability Analysis of Trigger Control

For the given known stable open-loop system, the global stability of the whole system
can be guaranteed by selecting appropriate event triggering conditions when the actuator
of the system is saturated. Here, we analyze the trigger conditions that can guarantee
the global input-state stability of the system. First, considering the system model as in
Equation (3), we introduce Lemma 1 and Lemma 2 as:

Lemma 1 ([26]). (Input-states stable) for a system as

ẋ(t) = f (t, x, u) (20)

where f :[0, ∞)×Rn ×Rm is continuous function of t, regional Lipschitz function of x, u. Let the
continuous differentiable function be V : [0, ∞)×Rn → R, which satisfies
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α(‖x‖) ≤ V(t, x) ≤ ᾱ(‖x‖) (21)

∂V
∂x

f (t, x) ≤ −α(‖x‖) + β(‖u‖) (22)

where α, ᾱ, α, β are K∞ function, then system (20) is input-state stable.

Lemma 2 ([26]). For any v, w ∈ Rm, if v, w belong to linear region L(v−w, ū), then we have

φT(v)T(φ(v) + w) ≤ 0 (23)

for any positive defined matrix T ∈ Rm×m, where φ(v(t)) = σ(v(t)) − v(t) is a dead zone
nonlinear function from the saturation control of Equation (3).

Then, we have the global input-state stability of the triggered system conditions as in
Theorem 2 below:

Theorem 2. Choosing trigger condition of ‖e(t)‖ ≥ λmin(M0)
4λm

‖x(t)‖ for system model as Equa-
tion (3), if we have M that satisfies PBBTP < M, then event-trigger system (3) is global input-state
stable with λm = λmax

(
PBR−1BTP

)
, M0 = M − PBR−1BTP.

Proof of Theorem 2. Constructing the Lyapunov function as V(t, x(t)) = xT(t)Px(t),
where P > 0, from the Riccati equation of Equation (9), and clearly function V(t, x(t))
satisfies the condition of Lemma 2. If inequation PBR−1BTP < M, then matrix A is a
Herwitz matrix, and we have the derivative of the Lyapunov function as

V̇(t, x(t)) = (Ax(t) + Bσ(u(t)))TPx(t) + xT(t)P(Ax(t) + Bσ(u(t)))

= xT(t)
(

ATP + PA
)

x(t)− 2xT(t)PBσ
(

R−1BTPx(tk)
)

= −xT(t)
(

M − PBR−1BTP
)

x(t)− 2xT(t)PBR−1BTPx(tk)− 2xT(t)PBφ
(

R−1BTPx(tk)
)

≤ −xT(t)
(

M − PBR−1BTP
)

x(t)− 2xT(t)PBR−1BTPe(t) + 2
∥∥∥xT(t)PB

∥∥∥(∥∥∥R−1BTPx(t)
∥∥∥)

≤ −xT(t)
(

M − PBR−1BTP
)

x(t) + 4λmax

(
PBR−1BTP

)
‖x(t)‖‖e(t)‖

≤ 4λm‖x(t)‖‖e(t)‖ − λmin(M0)‖e(t)‖2 (24)

According to the trigger condition of ‖e(t)‖ ≥ λmin(M0)
4λm

‖x(t)‖, we have V̇(t, x(t)) < 0;
referring to Lemma 1, finally we can guarantee that system (3) is global input-state stable.

3. Model-Free Reinforcement Learning Formulation
3.1. Reinforcement Learning Structure

The triggered optimal control design performed stably during the test, as described
in Section 4; however, the problem we are faced with is that the real thermodynamic
system will gradually deteriorate over time during a long-term space mission, which will
clearly deviate from the original designed model, and proper online estimation/update
process should be adopted for this situation. Vamvoudakis [37] provided a learning-
based approach that deals with an uncertain dynamic environment by using an up-to-date
adaptive mechanism process. Similarly, here we use a value-based Q-learning algorithm
to find an optimal action-selection policy from the information of thermal actuator and
temperature state sensors with dynamic disturbances. The learning algorithm is in the form
of an actor/critic structure, which uses an actor to select the control policies to improve the
value and the critic to assess the actor’s decisions.
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3.2. Reinforcement Learning Structure

Combining the optimal value function of Equation (5) and the Hamiltonian function,
we obtain the Q function as

Q(x, u, t) ∆
= V∗(x, u, t) +

1
2

xT Mx +
1
2

uT Ru + xTP(t)(Ax + Bu) (25)

where Q(x, u, t) is the action value function.

We define the generalized state U ∆
=
(

xT uT )T ∈ R(n+m)×1, and the Q function
rewritten as:

Q(x, u, t) ∆
=

1
2

UT
[

Qxx Qxu
Qux Quu

]
U ∆

=
1
2

UTQU (26)

with
Qxx = P(t)+M + P(t)A + ATP(t)
Qxu = Qux = P(t)B, Q ∈ R(n+m)×(n+m)

Quu = R
(27)

By using the stable condition of ∂Q(x, u, t)/ ∂u = 0, we can obtain the optimal control
for the model-free system as

u∗(x, t) = arg min
u

Q(x, u, t) = −Q−1
uu Qux(t)x (28)

3.3. Critic/Actor Structure

In this paper, the critic/actor structure is used to solve the problem of online learning
with a disturbed model. We use the critic approximator for the Q function and the actor
approximator for the triggered optimal control. The critic of the Q function is given as:

Q∗(x, u∗, t) =
1
2

UTQU ∆
=

1
2

vech(Q)T(U⊗U) (29)

where vech(·) denotes the half vectorization operation with vech(Q) ∈ R(1/2)(n+m)(n+m+1),
and 2Qij for off-diagonal elements. ⊗ is the Keronecker vector product operation.

Rewrite
Q∗(x, u∗, t) = WT

c (U⊗U) (30)

with Wc
∆
= (1/2)vech(Q), then Wc can be considered as the ideal weight of quadratic

polynomial that approximation Q∗(x, u∗, t). Actually, the ideal weight is unknown, consid-

ering the estimation of Ŵc
∆
= (1/2)vech

(
Q̂
)
∈ R(1/2)(n+m)(n+m+1), then we have the critic

approximator as
Q̂(x, u, t) = ŴT

c (U⊗U) (31)

The actor approximator is
û(x, t) = ŴT

a x (32)

with weight estimation Ŵa ∈ Rn×m.
For the purpose of determining the wanted tuning law of Ŵc and Ŵa, it is necessary to

define proper approximate errors of the critic/actor. Here, we divide the time sequence
into several tiny time periods with fixed step Ts, then we have the following by using the
integral reinforcement learning method:

Q∗(x(t), t) = Q∗(x(t− Ts), t− Ts)−
1
2

∫ t

t−Ts

(
xT Mx + uT Ru

)
dt (33)

The critic approximation error is defined as the critic weights converge to the ideal
value when the critic error converges to zero:
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ec1
∆
= Q̂(x(t), u(t), t)− Q̂(x(κ), u(κ), κ) +

1
2

∫ t

κ

(
xT Mx + ûT Rû

)
dt

= ŴT
c
(
Û(t)⊗ Û(t)− Û(κ)⊗ Û(κ)

)
+

1
2

∫ t

κ

(
xT Mx + ûT Rû

)
dt (34)

ec2
∆
=

1
2

xT
(

t f

)
P
(

t f

)
x
(

t f

)
− ŴT

c

(
Û
(

t f

)
⊗ Û

(
t f

))
(35)

where κ
∆
= t− Ts and Û(t) =

[
xT ûT]T denote the states/control signals from observer.

Similarly, we define the actor approximator error as

ea
∆
= ŴT

a x + Q̂−1
uu Q̂uxx (36)

where Q̂−1
uu , Q̂ux can be obtained from weights Ŵc.

After the definition of critic/actor approximation error, the next step is finding a
learning algorithm that makes the ec1, ec2, ea converge to zero, through weight matrix
Ŵc, Ŵa update.

3.4. Learning Process

First, define the approximation error as

Kc =
1
2
‖ec1‖2 +

1
2
‖ec2‖2, Ka =

1
2
‖ea‖2 (37)

and the gradient descent method is used here to solve the weight matrices Ŵc, Ŵa update,
making it converge to the ideal value. We have to find the approximate error of critic/actor
Kc, Ka by using the directional derivative of the weight matrices Ŵc, Ŵa. Similar to [37],
from the chain rule and normalization, we can obtain:

˙̂Wc = −αc
∂Kc
∂Ŵc

= −αc

 1
(1+σTσ)

2 σec1 +
1(

1+σT
t f

σt f

)2 σt f
ec2


˙̂Wa = −αa

∂Ka
∂Ŵa

= −αaxeT
a

(38)

where σ(t) ∆
=
(
Û(t)⊗ Û(t)− Û(κ)⊗ Û(κ)

)
, σt f

∆
=
(

Û
(

t f

)
⊗ Û

(
t f

))
, αc, αa ∈ R+ are the

constant gain that determines the convergence rate, and the gradient descent algorithm of
(38) guarantees the convergence.

Next, we define the weight estimation error of W̃c
∆
= Wc − Ŵc, W̃a

∆
= Wa − Ŵa,

and make the estimation error dynamic equation of

˙̃Wc = Ẇc − ˙̂Wc = −αc

 σσT

(1 + σTσ)
2 +

σf σT
f(

1 + σT
f σf

)2

W̃c (39)

Similarly, we obtain the actor weight estimation error dynamic

˙̃Wa = −αaxxTW̃a − αaxxTQ̃xuR−1 (40)

where Q̃xu are the matrix elements as in Equation (27). The stable analysis of the learning
process can be given in Lemma 3 as:

Lemma 3. According to the critic approximator tuning law of Equation (38) for any given control
input, the critic error dynamics converge exponentially to the equilibrium point with
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∥∥W̃c
∥∥ ≤ ∥∥W̃c(τ0)

∥∥µ1 exp(−µ2(τ − τ0)) (41)

where µ1, µ2 ∈ R+, τ > τ0 ≥ 0, and the signal ∆ should be persistently exciting (PE) within
interval [τ, τ + τPE], i.e.,

∫ τ+τPE
τ ∆∆Tdτ ≥ βI, with β ∈ R+ and

∆∆T ∆
=

σσT

(1 + σTσ)
2 +

σf σT
f(

1 + σT
f σf

)2 (42)

The stability proof of the used learning method can be found in [37], and is not provided here.

The learning process used here has to calculate the weight matrices of Equation (38)
iteratively over time, which surely increased the controller complex compared to traditional
learning [56]; however, no dynamic information is needed when the system deviates from
the nominal one—thus, this system is applicable for space use. Finally, we provide the
whole structure of the proposed event-trigger control system with a learning process, as
seen in Figure 3.

Figure 3. Structure of the triggered thermal control system with learning process.

4. Experiment Test and Simulation
4.1. Laboratory Experiment Environment

The proposed thermal control system was extensively tested in a laboratory environ-
ment on the ground, before launch. The relevant metal materials and heating parameters
of MWR thermal test are given in Table 1 as:
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Table 1. Metal materials and heating/cooling parameters of MWR thermal test.

Payload Materials 1
Heat

Capacity
(J/kg·K)

Block mass
(kg)

Thermal
conductivity

(W/m·K)

Heating
Patch

Surface Area
(mm × mm)

Nominal
Heat/Cool
Power (W)

Saturation
Heat/Cool
Power (W)

antenna magaluma
5086 9.00 × 102 1.45 127 50 × 20 8 3.5

waveguide nickel alloy
GH4169 6.15 × 102 0.50 23.6 20 × 10 4 3.5

signal
process

aluminum
alloy AZ91D 8.80 × 102 2.14 51 80 × 30 8 3.5

USO aluminum
alloy AZ91D 8.80 × 102 0.67 51 60 × 30 5 3.5

1 Manufacturing major metal materials.

Parameters for the nominal PID control in Equation (2) include Kp = 40, KI = 0.5,
KD = 5, and sampling time is Ts = 5s. According to the massive experiments, the thermal
dynamic model is:

ẋ(t) =


A11 A12 A13 A14
0 A22 A23 A24
0 0 A33 A34
0 0 0 A44

x(t) +


B11 B12 B13 B14
0 B22 B23 B24
0 0 B33 B34
0 0 0 B44

σ(u(t)) (43)

Detailed information of the submatrix can be found in Appendix A.
The overall thermal control experiment system for the MWR time-delay test was

carefully designed to provide a temperature control environment with precision, high
stability, and a wide range of output, with a vibration isolation environment that had a
vibration amplitude of less than 1 µm. The schematic diagram of the whole test system is
given in Figure 4 below.

Figure 4. Schematic diagram of the MWR thermal control system in laboratory environment.
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The whole thermal control system includes precise controllable temperature and
humidity thermal vacuum equipment, ultra-high precision composite vibration isolation
platform, MWR payload, MWR data sampling, and a process system and power supply,
as shown in Figure 4. The MWR microwave ranging system A and B were placed on the
vibration isolation platform with the thermal insulation structure, reducing the temperature
of the isolation platform, affecting the measured MWR equipment. The data acquisition
and processing system, power supply, etc., were placed on the laboratory desktop to avoid
other heat sources, vibration, etc., from affecting the tested payload.

4.2. Performance of Passive and Nominal Thermal Control

To fully simulate the on-orbit thermal condition of the internal satellite compartment,
we provide the baseline follow-on formation mission as: Chief spacecraft orbit altitude:
500 km; inclination: 89.2 deg; argument of perigee: 0 deg; RAAN: 0 deg; true anomaly: 0
deg; the deputy spacecraft followed the in-line flight relative to the chief spacecraft, with a
distance of about 180 km in-track [57].

The bold blue lines in Figure 5 show the measured temperature of the ranging payloads
inside the thermal vacuum equipment without active control, from sampled data during
the experiment. Note that there are four sensors around each payload; the results in Figure 5
demonstrate the average temperature of those four sensors for each payload. For the sake
of clarity, here we just provide the thermal states after temperature convergence from the
fifth to tenth orbit. The results represent the satellite internal ranging payload thermal
condition during the formation scene on-orbit, which mostly exhibit periodic fluctuations.

5 6 7 8 9 10

orbit period No.

29.88

29.9

29.92

29.94

29.96

K
 b

a
n

d
 a

n
te

n
n

a
 T

 (
o
C

)

5 6 7 8 9 10

orbit period No.

21.85

21.9

21.95

w
a

v
e

g
u

id
e

 s
w

it
c
h

 T
 (

o
C

) passive thermal control

nominal thermal control

target temperature

5 6 7 8 9 10

orbit period No.

28.2

28.25

28.3

28.35

28.4

s
ig

n
a

l 
p

ro
c
e

s
s
in

g
 u

n
it
 T

 (
o
C

)

5 6 7 8 9 10

orbit period No.

27.52

27.54

27.56

27.58

U
S

O
 T

 (
o
C

)

(d)

(b)

(c)

(a)

Figure 5. The thermal states of K-band MWR payloads during test. (a) K-band antenna; (b) waveguide
switch network; (c) signal process unit; (d) USO.
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Clearly, the passive thermal protection method performed stably during the on-orbit
mission time, about ±0.15 ◦C when convergence occurred, which verified our model for
practical use in a real space mission; however, for more precision ranging performance,
it is necessary to conduct active thermal control to achieve less temperature fluctuations.
The thermal experiment was conducted again with the same parameters. The green lines in
Figure 5 are the target temperatures of each payload, through online curve fitting, and the
bold dotted red lines show the results of the nominal thermal PID control as introduced
in Section 2.2. The results show the decreased temperature fluctuation of about ±0.1◦C,
compared with passive thermal control.

4.3. Performance of Trigger Control

The performance of proposed trigger control was tested, and is described in this
section. Here, we set the parameters of γ = 0.5, δ = 0.02, meaning the triggered threshold
value from the measured states. Saturation control ū complied with the data from Table 1
for each payload, and S = D = diag[0.15I4×4 0.1I4×4 0.15I4×4 0.1I4×4] in Equation (11).

Figure 6 provides the experimental results of the self-triggered control for the signal
process unit payload. We obtained less temperature fluctuation results (bold solid black
line) compared to the nominal control. The reason for this improvement is due to the
adopted optimal control that minimized the difference of nominal thermal trajectory to the
target ones. The other payloads obtained similar thermal control performance as the signal
process unit, which is not shown here for the sake of brevity.
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Figure 6. Comparison of different thermal control algorithms for signal process unit.

It is interesting to find the internal states by using triggered control; Figure 7 shows
the triggered sample periods of the signal process unit payload. Clearly, the triggered
control system design can effectively adjust the sampling period, compared to the nom-
inal PID control of the fixed sampling time, according to the error state perturbations.
Moreover, the event-trigger (red triangle) could reduce the sampling period frequency
better than the self-triggered (blue stars) approach during our experiments—about 60–120 s
for event-trigger and 20–35 s for self-trigger—during the undersaturation actuator stages.
The reason for this phenomenon is that the event-trigger uses external thermal sensors to
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obtain state updates, and the self-trigger uses model prediction state information, which
increased the sampling frequency more than the event-trigger structure. The upper data
in Figure 7 show that the trigger points in the control saturation begin/end stages and
regional minimum/maximum temperatures.
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Figure 7. Sample period vs. orbit number for self-/event-triggered control.

4.4. Performance of Learning Process

The thermal control system modeling may differ from the original design as a space
mission lasts for years. Here, we use the proposed online learning method for the thermal
system with the following parameters: positive semidefinite matrix M and positive definite
matrix R

M = diag
[

10−8 10−8 10−9 10−9 ], R = diag
[

10−5 10−5 10−5 10−5 ]
the actor/critic approximator constant gain αa = 0.1, αc = 50 in Equations (39) and (40).
Moreover, a 0.5 kg aluminum alloy block is patched closely with the signal process unit, un-
til the end of the 6th orbit period, simulating the thermal system model uncertainty in space.
For the experiments during orbit No. 0–6, an exploration noise was added in the control
input along with nominal one to ensure persistence of excitation and state exploration.

Figure 8 shows the performance of the thermal control system with the learning
process for the signal process unit payload. The results of previous and current experiments
are clearly marked as thin lines and bold lines, respectively, and compared to Figure 6. It
is interesting to find that the thermal system gradually recovered to normal states since
the beginning of orbit No.6, as the aluminum alloy block separated from the payload
and the nominal/trigger control trajectory experienced a tracking process, marked as bold
red/black lines. The results illustrate the efficacy of the proposed learning algorithm when
the system model was disturbed with unknown information, which can be adaptively
converged to stable states. Moreover, it is meaningful to find that the internal thermal
condition can be improved if a big metal alloy block is used.
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Figure 8. Comparison of different thermal control algorithms with learning processes for the signal
process unit.

4.5. Time-Delay Performance of MWR Ranging System

The time-delay (ranging error) fluctuation performance of the microwave ranging
system is closely related to the thermal stability of each payload on-orbit. The active mi-
crowave payloads used in the experiment were carefully tested separately at a precisely
controlled constant temperature and humidity cleaning platform in advance, which re-
vealed the time-delay coefficient (TDC—meaning the time delay value per degree Celsius)
of 40 µm/K, 48 µm/K for K-band antenna and waveguide switch network; 19 µm/K,
25 µm/K for the signal process unit and USO [57]. Moreover, the time delay of the whole
K-band ranging system can be realized as less than 5 µm if the payload thermal system is
well protected within about 0.1 ◦C fluctuation.

The final microwave ranging error using the proposed trigger-based thermal control
structure design is shown in Figure 9 with a black line. Clearly, the thermal control system
performed stably after convergence by using the optimal online triggered control structure.
The ranging accuracy with passive thermal control can achieve less than approximately
6 µm in orbit No.10 (max-min) and less than 3.5 µm by using nominal thermal control.
The 25% (RMS) accuracy improvement can be realized by using the trigger-based control
strategy, about 2.2 µm from the test, compared to the nominal control method.
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Figure 9. The micron level ranging error during different thermal control processes.

5. Discussion

Aiming to improve autonomous and accuracy MWR ranging performance in real
space missions, this paper proposed a trigger-based payload thermal control system design
with an online learning process. The whole structure can be selected through option switch,
according to actual needs. Basically, a nominal controller is used for coarse control under a
new thermal environment, and can be switched to a trigger-based controller during the
mission, minimizing the communication resources required from the spacecraft platform.
RL-based control is suitable for long-term missions in space, particularly in cases where
thermodynamic conditions deteriorate. The computational complexity is increased as we
introduced the nominal control, trigger-based control (in trigger condition computation),
and RL-based control (in actor/critic approximation iteration steps). The performance of
the proposed trigger thermal control system is verified in a laboratory, which demonstrated
the efficiency in communication reduction and temperature stability to practical use. The ef-
fectiveness of learning process was also validated under conditions of thermal dynamic
modeling uncertainty. Finally, the ranging accuracy was tested for the whole payload
system; we found that a 25% (RMS) performance improvement can be realized by using a
trigger-based control strategy, about 2.2 µm compared to the nominal control method.
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Abbreviations
The following abbreviations are used in this manuscript:

RMS Root mean square
MWR Microwave ranging
ETC Event-triggered control
STC Self-triggered control
LMI Linear matrix inequality
ADP Adaptive dynamic programming
ApDP Approximate dynamic programming
RL Reinforcement learning
USO Ultra-stable crystal oscillator
CFRP Carbon fiber reinforced plastic
MLI Multi-layer insulation
A/D converter Analog-to-digital converter
FPGA Field Programmable Gate Array
DSP Digital Signal Processing
MEMS Micro-Electro-Mechanical System
PWM Pulse-width modulating
PID Proportion Integration Differentiation
HJB function Hamilton–Jacobi–Bellman function
PE Persistently exciting
RAAN Right Ascension of Ascending Node
TDC Time-delay/Celsius degree

Symbols
Crucial symbols in trigger-based control include:

σ(u) saturation control
γ, δ positive constants for triggering error
tk the triggered time of event k
τk signal transmitting period since tk
θ(·) function of λmin(P)‖·‖2

h(·) trigger period of h(γ, x(tk))
α(·), ᾱ(·), α(·), β(·) K∞ function

Crucial symbols in learning-based process include:

Ŵc, W̃c estimation and error of critic approximate weight
Ŵa, W̃a estimation and error of actor approximate weight
ec1, ec2 critic approximation error
ea actor approximation error
Kc, Ka critic/actor approximation error function
σ(t) user defined function of generalized states U
αc, αa constant gain of convergence rate
µ1, µ2 constant of exponential converges function
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Appendix A

A11 =


9.7318 0.1 0.1 0.1

0 9.7318 0.1 0.1
0 0 9.7318 0.1
0 0 0 9.7318

× 10−5

A22 =


1.5350 0.1 0.1 0.1

0 1.5350 0.1 0.1
0 0 1.5350 0.1
0 0 0 1.5350

× 10−5

A33 =


6.4996 0.1 0.1 0.1

0 6.4996 0.1 0.1
0 0 6.4996 0.1
0 0 0 6.4996

× 10−5

A44 =


1.5570 0.1 0.1 0.1

0 1.5570 0.1 0.1
0 0 1.5570 0.1
0 0 0 1.5570

× 10−5

A12 = A34 = 0.01× I4×4

A13 = A14 = A23 = A24 = 04×4

B11 =


7.6628 0.1 0.1 0.1

0 7.6628 0.1 0.1
0 0 7.6628 0.1
0 0 0 7.6628

× 10−4

B22 =


3.3 0.1 0.1 0.1
0 3.3 0.1 0.1
0 0 3.3 0.1
0 0 0 3.3

× 10−3

B33 =


5.3101 0.1 0.1 0.1

0 5.3101 0.1 0.1
0 0 5.3101 0.1
0 0 0 5.3101

× 10−4

B44 =


1.7 0.1 0.1 0.1
0 1.7 0.1 0.1
0 0 1.7 0.1
0 0 0 1.7

× 10−3

B12 = B34 = 0.01× I4×4

B13 = B14 = B23 = B24 = 04×4
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