
Citation: Xiang, S.; Jiang, S.; Liu, X.;

Zhang, T.; Yu, L. Spiking VGG7:

Deep Convolutional Spiking Neural

Network with Direct Training for

Object Recognition. Electronics 2022,

11, 2097. https://doi.org/10.3390/

electronics11132097

Academic Editor: Young Min Song

Received: 11 May 2022

Accepted: 1 July 2022

Published: 4 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Spiking VGG7: Deep Convolutional Spiking Neural Network
with Direct Training for Object Recognition
Shuiying Xiang 1,* , Shuqing Jiang 1, Xiaosong Liu 1, Tao Zhang 1 and Licun Yu 2,3

1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China;
sqjiang@stu.xidian.edu.cn (S.J.); xsl2011@aliyun.com (X.L.); taozhang116@163.com (T.Z.)

2 School of Highway, Chang’an University, Xi’an 710064, China; yulicun1026@163.com
3 CCCC First Highway Consultants Co., Ltd., Xi’an 710075, China
* Correspondence: syxiang@xidian.edu.cn

Abstract: We propose a deep convolutional spiking neural network (DCSNN) with direct training to
classify concrete bridge damage in a real engineering environment. The leaky-integrate-and-fire (LIF)
neuron model is employed in our DCSNN that is similar to VGG. Poisson encoding and convolution
encoding strategies are considered. The gradient surrogate method is introduced to realize the
supervised training for the DCSNN. In addition, we have examined the effect of observation time
step on the network performance. The testing performance for two different spike encoding strategies
are compared. The results show that the DCSNN using gradient surrogate method can achieve a
performance of 97.83%, which is comparable to traditional CNN. We also present a comparison with
STDP-based unsupervised learning and a converted algorithm, and the proposed DCSNN is proved
to have the best performance. To demonstrate the generalization performance of the model, we
also use a public dataset for comparison. This work paves the way for the practical engineering
applications of the deep SNNs.

Keywords: deep convolutional spiking neural networks; surrogate gradient; bridge damage detection

1. Introduction

Neural networks (NN) and deep learning (DL) techniques have attracted lots of at-
tention in various application fields including image recognition, detection, and speech
recognition. Brain-inspired spiking neural network (SNN), which is called the third genera-
tion of NN, is more biologically plausible than the first and second generation of NN [1].
The SNN has the advantages of low-latency and of being energy-efficient by the event-based
computation; however, training an SNN is a difficult task due to the non-differentiable
nature of these spike events [2,3].

In recent years, tremendous efforts have been devoted to the training algorithms of
SNN. Spike-timing-dependent plasticity (STDP) is a popular rule mainly for unsupervised
learning [4–9]. The STDP rule has been theoretically and experimentally demonstrated
in optical elements [7,8]. A remarkable work of STDP-based unsupervised spiking deep
convolutional neural network for object recognition is proposed in [9]. There are also
various well-known supervised training algorithms such as SpikeProp [10], Tempotron
learning rule [11], ReSuMe [12], SWAT [13], Chronotron [14], and SPAN [15]. What is more,
the neural engineering framework (NEF) was also used to train CNN for object detection
with great success from the perspective of hardware implementation [16,17]. With these
impressive training algorithms, the SNN has been successfully applied to perform simple
tasks with small datasets. However, most of these algorithms are limited to shallow SNNs.
The training algorithms for fully-connected SNN, convolutional multi-layer SNNs, or deep
SNNs that are capable of implementing object recognition and object detection have also
been developed extensively [18–24].

Electronics 2022, 11, 2097. https://doi.org/10.3390/electronics11132097 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11132097
https://doi.org/10.3390/electronics11132097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1698-2083
https://doi.org/10.3390/electronics11132097
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11132097?type=check_update&version=2

Electronics 2022, 11, 2097 2 of 13

Recently, a gradient surrogate method was proposed to train deeper SNNs with
multiple hidden layers [25–31]. With this algorithm, the spiking nonlinearity derivation
was replaced by the derivation of a continuously differentiable function. However, the
applications of SNN have been limited to some simple benchmark datasets. It is highly
desirable to perform some engineering tasks to pave the practical applications of SNN.

Bridge damage detection, which is an important engineering task relating to the secu-
rity of human beings, has attracted lots of attention in the fields of DL [32–37]. For example,
crack damage detections have been successfully demonstrated with high accuracy based on
convolutional neural network (CNN) [32,33], fully convolutional neural network [34], and
faster region-based convolutional neural network [35,36]. However, the bridge damage
detection based on a SNN, which is a promising solution to enable low power consumption,
has not yet been reported.

In this paper, we propose a deep convolutional spiking neural network (DCSNN) to re-
alize the bridge damage detection. Similar to the construction method of VGG network [38],
we proposed a spiking VGG7 with leaky-integrate-and-fire (LIF) neurons. The dataset
is manually collected from the actual concrete bridge. The rest of the paper is organized
as follows. In Section 2, the network architecture of the DCSNN is described. The LIF
model is also presented. Section 3 presents the surrogate gradient training algorithm. In
Section 4, the training results are presented, and the inference process is performed. At last,
concluding remarks are provided in Section 5.

2. Methodology
2.1. Network Structure of DCSNN

Inspired by the well-known VGG net, we developed a DCSNN named SpikingVGG7
as presented in Figure 1. SpikingVGG7 can be viewed as consisting of a spiking encoder,
a spiking feature extractor, and a spiking classifier. The spiking encoder consists of the
first convolution layer and the following spiking neuron layer, which are responsible for
encoding the input image into a spiking sequence. The spiking feature extractor consists
of four convolution layers, pooling layers, and spiking neuron layers together, and is
responsible for feature extraction of spiking sequences output by spiking encoder. The
spiking classifier consists of two fully connected layers and two spiking neuron layers,
which are responsible for mapping the spiking feature sequence to the target space, and
then obtain the final classification result through firing rate and softmax.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 13

layer SNNs, or deep SNNs that are capable of implementing object recognition and object

detection have also been developed extensively [18–24].

Recently, a gradient surrogate method was proposed to train deeper SNNs with mul-

tiple hidden layers [25–31]. With this algorithm, the spiking nonlinearity derivation was

replaced by the derivation of a continuously differentiable function. However, the appli-

cations of SNN have been limited to some simple benchmark datasets. It is highly desira-

ble to perform some engineering tasks to pave the practical applications of SNN.

Bridge damage detection, which is an important engineering task relating to the se-

curity of human beings, has attracted lots of attention in the fields of DL [32–37]. For ex-

ample, crack damage detections have been successfully demonstrated with high accuracy

based on convolutional neural network (CNN) [32,33], fully convolutional neural network

[34], and faster region-based convolutional neural network [35,36]. However, the bridge

damage detection based on a SNN, which is a promising solution to enable low power

consumption, has not yet been reported.

In this paper, we propose a deep convolutional spiking neural network (DCSNN) to

realize the bridge damage detection. Similar to the construction method of VGG network

[38], we proposed a spiking VGG7 with leaky-integrate-and-fire (LIF) neurons. The da-

taset is manually collected from the actual concrete bridge. The rest of the paper is orga-

nized as follows. In Section 2, the network architecture of the DCSNN is described. The

LIF model is also presented. Section 3 presents the surrogate gradient training algorithm.

In Section 4, the training results are presented, and the inference process is performed. At

last, concluding remarks are provided in Section 5.

2. Methodology

2.1. Network Structure of DCSNN

Inspired by the well-known VGG net, we developed a DCSNN named SpikingVGG7

as presented in Figure 1. SpikingVGG7 can be viewed as consisting of a spiking encoder,

a spiking feature extractor, and a spiking classifier. The spiking encoder consists of the

first convolution layer and the following spiking neuron layer, which are responsible for

encoding the input image into a spiking sequence. The spiking feature extractor consists

of four convolution layers, pooling layers, and spiking neuron layers together, and is re-

sponsible for feature extraction of spiking sequences output by spiking encoder. The spik-

ing classifier consists of two fully connected layers and two spiking neuron layers, which

are responsible for mapping the spiking feature sequence to the target space, and then

obtain the final classification result through firing rate and softmax.

Figure 1. The architecture of the DCSNN for bridge damage detection.

In detail, in the SpikingVGG7 network, the size of the kernel of the convolution layer

is 3 × 3. The padding method is used for convolution operation, and the feature map is fed

into the spiking neuron, which will repeatedly calculate the output of convolution within

Figure 1. The architecture of the DCSNN for bridge damage detection.

In detail, in the SpikingVGG7 network, the size of the kernel of the convolution layer
is 3 × 3. The padding method is used for convolution operation, and the feature map is
fed into the spiking neuron, which will repeatedly calculate the output of convolution
within the observation time T. The specific calculation method will be introduced later. The

Electronics 2022, 11, 2097 3 of 13

spiking output from the spiking neuron will accumulate in the dimension of time and be
fed into the maximum pooling layer, which is responsible for down-sampling the feature
map on the plane. The size of the pooling layer is 2. After down-sampling, the length
and width of the feature map will be reduced to 1/2 of the original input. After 5 times
of ‘convolution–spiking activation–pooling’ processes, the obtained feature map will be
flattened and stretched into one dimension, and then the obtained distributed feature map
will be mapped to the sample space using the fully-connected layer, which is followed by
spiking neurons. The output of a spiking neuron is binary, and the classified results of a
single run may be easily disturbed. Therefore, it is generally considered that the output
of the SNN is represented by the spike firing rate of the output layer within a period of
time (observation time T). Therefore, the network needs to run for a period of time, that is,
the average spike firing rate after T time is used as the classification basis. The network
parameters are shown in Table 1.

Table 1. The network parameters for the DCSNN.

Layer (Type) Output Shape Parameter Number

Conv2d [batch, 64, 224, 224] 1728
LIF Node [T, batch, 64, 224, 224] 0

MaxPool2d [batch, 128, 112, 112] 0
Conv2d [batch, 128, 112, 112] 73,728

LIF Node [T, batch, 128, 112, 112] 0
MaxPool2d [batch, 128, 56, 56] 0

Conv2d [batch, 128, 56, 56] 147,456
LIF Node [T, batch, 128, 56, 56] 0

MaxPool2d [batch, 128, 28, 28] 0
Conv2d [batch, 256, 28, 28] 147,456

LIF Node [T, batch, 256, 28, 28] 0
MaxPool2d [batch, 256, 14, 14] 0

Conv2d [batch, 256, 14, 14] 294,912
LIF Node [T, batch, 256, 14, 14] 0

MaxPool2d [batch, 256, 7, 7] 0
Flatten [batch, 12544] 0
Linear [batch, 1024] 12,845,056

LIF Node [T, batch, 1024] 0
Linear [batch, 2] 2048

LIF Node [T, batch, 2] 0

2.2. LIF Model

Biological spiking neurons use spikes for transmission, communication, and calcula-
tion. There are various spiking neuron models such as the Hodgkin–Huxley (HH) neuron
model, the integrate-and-fire (IF) neuron model, and the LIF neuron model. Here, classical
LIF neurons are selected in the process of neuron modeling.

Mathematically, the LIF neuron can be modeled as follows,

τm
dU(t)

dt
= −(U(t)−Ureset) + X(t) (1)

where τm = 10 is time constant, U(t) is membrane voltage, Ureset is the reset voltage, X(t) is
the external stimulus.

A discrete difference equation is used to approximate the continuous differential
equation as following,

τm(U[t]−U[t− 1]) = −(U[t− 1]−Ureset) + X[t] (2)

Therefore, the instantaneous membrane voltage U[t] at time t can be obtained:

U[t] = f (U[t− 1], X[t]) = U[t− 1] +
1

τm
(−(U[t− 1]−Ureset) + X[t]) (3)

Electronics 2022, 11, 2097 4 of 13

In the following, H[t] is used to represent the membrane voltage after the neuron is
charged and before the spike is released, V[t] is used to represent the membrane voltage
after the neuron fires the spike, and S[t] is used to represent the spike released by the
neuron. Then, the discrete equations of charge and discharge stages are as follows:

[t] = f (V[t− 1], X[t]) (4)

S[t] = g(H[t]−Vthreshold) (5)

where g(x) is a step function:

g(x) =
{

1, x ≥ 0
0, x < 0

(6)

The hard reset is considered in experiments as:

V[t] = H[t] · (1− S[t]) + S[t] ·Vreset (7)

For a constant external stimulus with X(t) = 2, the membrane voltage and the spike
emission are presented in Figure 2. The member voltage is varied periodically even for a
constant input. When the membrane voltage reaches the threshold, a spike is generated,
and the membrane voltage is decreased sharply to the reset value.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 13

 () () 1 1m resetU t U t U t U X t − − = − − − + (2)

Therefore, the instantaneous membrane voltage U[t] at time t can be obtained:

 () ()
1

1 , 1 (1)reset

m

U t f U t X t U t U t U X t

= − = − + − − − + (3)

In the following, H[t] is used to represent the membrane voltage after the neuron is

charged and before the spike is released, V[t] is used to represent the membrane voltage

after the neuron fires the spike, and S[t] is used to represent the spike released by the

neuron. Then, the discrete equations of charge and discharge stages are as follows:

 ()1 ,t f V t X t= − (4)

 ()thresholdS t g H t V= − (5)

where g(x) is a step function:

()
0, 0

1, 0
g

x

x
x

=

(6)

The hard reset is considered in experiments as:

 () 1 resetV t H t S t S t V= − + (7)

For a constant external stimulus with X(t) = 2, the membrane voltage and the spike

emission are presented in Figure 2. The member voltage is varied periodically even for a

constant input. When the membrane voltage reaches the threshold, a spike is generated,

and the membrane voltage is decreased sharply to the reset value.

Figure 2. (a) The membrane voltage and (b) spike output of LIF neurons for X(t) = 2.

We consider 30 LIF neurons, and the external stimulus for each LIF neuron is in-

creased linearly with the neuron index as shown in Figure 3a. The observation time step

is T = 128. The membrane voltages and the corresponding spikes for the 30 LIF neurons at

different time steps are presented in Figure 3b,c. By calculating the firing rate of each LIF

neuron, it can be seen from Figure 3d that the firing rate is generally increased with the

neuron index. The firing rate of an LIF neuron is used to replace the ReLU function.

Figure 2. (a) The membrane voltage and (b) spike output of LIF neurons for X(t) = 2.

We consider 30 LIF neurons, and the external stimulus for each LIF neuron is increased
linearly with the neuron index as shown in Figure 3a. The observation time step is T = 128.
The membrane voltages and the corresponding spikes for the 30 LIF neurons at different
time steps are presented in Figure 3b,c. By calculating the firing rate of each LIF neuron, it
can be seen from Figure 3d that the firing rate is generally increased with the neuron index.
The firing rate of an LIF neuron is used to replace the ReLU function.

Electronics 2022, 11, 2097 5 of 13
Electronics 2022, 11, x FOR PEER REVIEW 5 of 13

Figure 3. (a) External stimulus for each LIF neuron, (b) membrane voltage, and (c) spike emission

for each LIF neuron at different time steps, (d) firing rate for each LIF neuron.

3. Training Algorithm

Note that, the SNN is difficult to train because of the non-differentiable spike output.

It is not possible to train an SNN using back propagation normally, but it can be replaced

with a similar shape but differentiable gating function, known as surrogate gradient [25].

Specifically, in forward propagation, step functions are used, and the output of the LIF

neuron is discrete zeros and ones. For back propagation, the gradient is calculated using

surrogate functions, such as sigmoid function.

Here, we adopt surrogate gradient learning to address the classification task for prac-

tical bridge damage dataset. In the present work, we consider four cases of surrogate func-

tions as follows [39,40].

(i) Sigmoid function:

()
1

1 x
g x sigmoid x

e

−
= =

+
 (8)

(ii) arctan function:

()
1 1
 arctan

2 2
g x x

= +

 (9)

(iii) softsign function:

()
1
 1
2 1

x
g x

x

= + +

(10)

(iv) erf function:

()
21

x

tg x e dt

−

−
= (11)

For the four cases, we consider α = 1. The normalized surrogate gradient functions

and their corresponding gradients are presented in Figure 4.

Figure 3. (a) External stimulus for each LIF neuron, (b) membrane voltage, and (c) spike emission for
each LIF neuron at different time steps, (d) firing rate for each LIF neuron.

3. Training Algorithm

Note that, the SNN is difficult to train because of the non-differentiable spike output.
It is not possible to train an SNN using back propagation normally, but it can be replaced
with a similar shape but differentiable gating function, known as surrogate gradient [25].
Specifically, in forward propagation, step functions are used, and the output of the LIF
neuron is discrete zeros and ones. For back propagation, the gradient is calculated using
surrogate functions, such as sigmoid function.

Here, we adopt surrogate gradient learning to address the classification task for
practical bridge damage dataset. In the present work, we consider four cases of surrogate
functions as follows [39,40].

(i) Sigmoid function:

g(x) = sigmoid[αx] =
1

1 + e−αx (8)

(ii) arctan function:

g(x) =
1
π

arctan
(π

2
αx
)
+

1
2

(9)

(iii) softsign function:

g(x) =
1
2

(
αx

1 + |αx| + 1
)

(10)

(iv) erf function:

g(x) =
1√
π

∫ αx

−∞
e−t2

dt (11)

For the four cases, we consider α = 1. The normalized surrogate gradient functions
and their corresponding gradients are presented in Figure 4.

Electronics 2022, 11, 2097 6 of 13

Electronics 2022, 11, x FOR PEER REVIEW 6 of 13

Figure 4. (a) Normalized surrogate gradient functions and (b) their corresponding gradients.

4. Experiments

4.1. Datasets

Our dataset is collected from the actual concrete bridge, and the original image reso-

lution is 8868 × 4888. Since this study aims to classify damage, 9000 images with a resolu-

tion of 224 × 224 are selected and cropped from the original image. These images are di-

vided into three categories. The area-type damage includes steel corrosion and concrete

spalling. Note, in engineering, corrosion and concrete spalling usually appear together.

The second type of damage is concrete crack damage. The third type is damage-less im-

age. For the three types, each contains 3000 images. For each type, the training set contains

2700 images and the verification set contains 300 images.

It is worth mentioning that, in order to evaluate the performance of our model in

practical application, we prepared another 500 images of each damage actually collected

for the inference test. At the present stage, there is no similar public dataset, and part of

crack data from the SDNET2018 dataset is selected for an inference test to verify the gen-

eralization performance [41]. Some representative samples in the dataset are presented in

Figure 5.

Figure 5. Some representative samples in the dataset. (a,b) correspond to the crack in our dataset,

(c,d) correspond to the area-type damage in our dataset, (e,f) correspond to damage-less data, (g,h)

denotes crack from SDNET 2018 [41].

4.2. Spike Encoding Strategy

The aim of spike encoding is to transform the image into spikes. Here, two spike

encoding strategies are considered: the Poisson encoder and the convolution encoder.

Mathematically, the spike encoding for the Poisson encoder can be expressed as fol-

lows,

 ()Spike t g random x= − (12)

Figure 4. (a) Normalized surrogate gradient functions and (b) their corresponding gradients.

4. Experiments
4.1. Datasets

Our dataset is collected from the actual concrete bridge, and the original image resolu-
tion is 8868 × 4888. Since this study aims to classify damage, 9000 images with a resolution
of 224 × 224 are selected and cropped from the original image. These images are divided
into three categories. The area-type damage includes steel corrosion and concrete spalling.
Note, in engineering, corrosion and concrete spalling usually appear together. The second
type of damage is concrete crack damage. The third type is damage-less image. For the
three types, each contains 3000 images. For each type, the training set contains 2700 images
and the verification set contains 300 images.

It is worth mentioning that, in order to evaluate the performance of our model in
practical application, we prepared another 500 images of each damage actually collected
for the inference test. At the present stage, there is no similar public dataset, and part
of crack data from the SDNET2018 dataset is selected for an inference test to verify the
generalization performance [41]. Some representative samples in the dataset are presented
in Figure 5.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 13

Figure 4. (a) Normalized surrogate gradient functions and (b) their corresponding gradients.

4. Experiments

4.1. Datasets

Our dataset is collected from the actual concrete bridge, and the original image reso-

lution is 8868 × 4888. Since this study aims to classify damage, 9000 images with a resolu-

tion of 224 × 224 are selected and cropped from the original image. These images are di-

vided into three categories. The area-type damage includes steel corrosion and concrete

spalling. Note, in engineering, corrosion and concrete spalling usually appear together.

The second type of damage is concrete crack damage. The third type is damage-less im-

age. For the three types, each contains 3000 images. For each type, the training set contains

2700 images and the verification set contains 300 images.

It is worth mentioning that, in order to evaluate the performance of our model in

practical application, we prepared another 500 images of each damage actually collected

for the inference test. At the present stage, there is no similar public dataset, and part of

crack data from the SDNET2018 dataset is selected for an inference test to verify the gen-

eralization performance [41]. Some representative samples in the dataset are presented in

Figure 5.

Figure 5. Some representative samples in the dataset. (a,b) correspond to the crack in our dataset,

(c,d) correspond to the area-type damage in our dataset, (e,f) correspond to damage-less data, (g,h)

denotes crack from SDNET 2018 [41].

4.2. Spike Encoding Strategy

The aim of spike encoding is to transform the image into spikes. Here, two spike

encoding strategies are considered: the Poisson encoder and the convolution encoder.

Mathematically, the spike encoding for the Poisson encoder can be expressed as fol-

lows,

 ()Spike t g random x= − (12)

Figure 5. Some representative samples in the dataset. (a,b) correspond to the crack in our dataset,
(c,d) correspond to the area-type damage in our dataset, (e,f) correspond to damage-less data,
(g,h) denotes crack from SDNET 2018 [41].

4.2. Spike Encoding Strategy

The aim of spike encoding is to transform the image into spikes. Here, two spike
encoding strategies are considered: the Poisson encoder and the convolution encoder.

Electronics 2022, 11, 2097 7 of 13

Mathematically, the spike encoding for the Poisson encoder can be expressed as follows,

Spike[t] = g(random− x) (12)

where a random function generates random floating numbers between 0 and 1, x is the
normalized gray value of the input image.

Correspondingly, the spike encoding method for the convolution encoder can be
expressed as spiking activation

Spike[t] = LIF(Conv2d(x)) (13)

The Conv2d represents the convolution operation between the input x and the convo-
lution kernel, and LIF means the spiking activation.

The Poisson code of the input image is accumulated in the time dimension. Figure 6b–e
shows the visual effect of the accumulated spike encoding output when the observation time
is T = 0, 7, 15, 31. It can be seen that, for a larger observation time T, the accumulated spike
encoding output is closer to the original image. Thus, it can get more information about
the original image. For the convolution encoder, the output feature size is [64, 224, 224].
Figure 6f–i correspond to four representative convolutional outputs. It is shown that, for a
trained convolutional encoder, more different image features can be extracted.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 13

where a random function generates random floating numbers between 0 and 1, x is the

normalized gray value of the input image.

Correspondingly, the spike encoding method for the convolution encoder can be ex-

pressed as spiking activation

 ()()2Spike t LIF Conv d x= (13)

The Conv2d represents the convolution operation between the input x and the convo-

lution kernel, and LIF means the spiking activation.

The Poisson code of the input image is accumulated in the time dimension. Figure

6b–e shows the visual effect of the accumulated spike encoding output when the observa-

tion time is T= 0, 7, 15, 31. It can be seen that, for a larger observation time T, the accumu-

lated spike encoding output is closer to the original image. Thus, it can get more infor-

mation about the original image. For the convolution encoder, the output feature size is

[64, 224, 224]. Figure 6f–i correspond to four representative convolutional outputs. It is

shown that, for a trained convolutional encoder, more different image features can be ex-

tracted.

Figure 6. The spike encoding for the input image. (a) the original input image. (b–e) represents the

accumulative output of the Poisson encoder at observation time T = 0, 7, 15, 31, respectively. (f–i)

represents the cumulative feature map output of the convolutional encoder at T = 3, four channels

were randomly selected from 64 channels.

4.3. Training

The experiments were performed on a computer with two Intel Xeon(R) E5-

2620v4@2.1 GHz CPUs, 64GB Random Access Memory, and NVIDIA GeForce RTX 2070

SUPER GPU. We adopt Pytorch and Spikingjelly DL framework [42], to build a VGG-like

DCSNN. The batch size is 32, the learning rate is 0.01. The Adam optimizer is used here

as the optimizing algorithm [43], and the loss function is the mean square error (MSE).

Here, the spike rate encoding is employed for the output results. The average spike

rate during time T was used as the classification basis. The target result is represented by

the neuron that fires at the highest frequency, and the rest neurons remain silent.

We adopt the surrogate gradient method to train the DCSNN in an end-to-end man-

ner and compare classification performance for different gradient surrogate functions.

Figure 7a,b, respectively, shows the verification accuracy and train loss of DCSNN and

CNN in 300 training cycles. Four different gradient surrogate functions are considered in

DCSNN. After training 300 states, each model is in a convergent state. The observation

time is T = 6. It can be seen that arctan(𝑥) leads to the best verification performance, while

error function 𝑒𝑟𝑓leads to the worst performance. Among the four gradient surrogate

functions, 𝑎𝑟𝑐𝑡𝑎𝑛，𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑒𝑟𝑓, and 𝑡𝑎𝑛ℎ, the maximum verification accuracy in the

training process is 99.0%, 98.1%, 95.8%, and 97.7%, respectively. Note, using the same net-

work structure of ANN, the maximum accuracy is 99.6%.

Next, the effect of observation time T on the validation performance is also consid-

ered. As shown in Figure 8a, with the increase of T, the classification accuracy increases

(a)

(f) (g) (h)

(b) (c) (d) (e)

(i)

Poisson encoder

Convolution encoder

Figure 6. The spike encoding for the input image. (a) the original input image. (b–e) represents the accu-
mulative output of the Poisson encoder at observation time T = 0, 7, 15, 31, respectively. (f–i) represents
the cumulative feature map output of the convolutional encoder at T = 3, four channels were randomly
selected from 64 channels.

4.3. Training

The experiments were performed on a computer with two Intel Xeon(R) E5-
2620v4@2.1 GHz CPUs, 64 GB Random Access Memory, and NVIDIA GeForce RTX 2070
SUPER GPU. We adopt Pytorch and Spikingjelly DL framework [42], to build a VGG-like
DCSNN. The batch size is 32, the learning rate is 0.01. The Adam optimizer is used here as
the optimizing algorithm [43], and the loss function is the mean square error (MSE).

Here, the spike rate encoding is employed for the output results. The average spike
rate during time T was used as the classification basis. The target result is represented by
the neuron that fires at the highest frequency, and the rest neurons remain silent.

We adopt the surrogate gradient method to train the DCSNN in an end-to-end man-
ner and compare classification performance for different gradient surrogate functions.
Figure 7a,b, respectively, shows the verification accuracy and train loss of DCSNN and
CNN in 300 training cycles. Four different gradient surrogate functions are considered in
DCSNN. After training 300 states, each model is in a convergent state. The observation time
is T = 6. It can be seen that arctan(x) leads to the best verification performance, while error
function er f leads to the worst performance. Among the four gradient surrogate functions,
arctan, sigmoid er f , and tanh, the maximum verification accuracy in the training process is

Electronics 2022, 11, 2097 8 of 13

99.0%, 98.1%, 95.8%, and 97.7%, respectively. Note, using the same network structure of
ANN, the maximum accuracy is 99.6%.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 13

firstly and saturates around 0.99 and then decreases. The convergence epoch is also pre-

sented in Figure 8b. Here, if the verification accuracy varies within 10% over 10 epochs,

the first epoch is defined as the convergence epoch. It can be seen that when T is relatively

small, the convergence epoch is relatively small, indicating that the network can converge

rapidly, but the performance is poor due to insufficient features. As T increases, the con-

vergence epoch is increased (i.e., the convergence speed is decreased) because the ex-

tracted features are more complex, but the accuracy is improved. The maximum accuracy

is achieved at T = 6. Note, when T continues to increase, the model will be expanded from

the time dimension into a very deep network, and the deep network has the risk of gradi-

ent disappearance and gradient explosion, resulting in the decline of the accuracy. As

shown in Figure 8, when T = 16, the model classification accuracy drops to 61.0%. When

T is greater than 16, the classifier loses its classification ability, and the model cannot learn.

.

Figure 7. The validation accuracy (a) and training loss (b) for different gradient surrogate functions.

Figure 8. The effects of observation time T on the (a) validation accuracy and (b) convergence epoch.

4.4. Testing

In order to quantify the inference accuracy and generalization performance of the

model, we used our own test set as well as some data from SDNET2018 dataset for testing

[41]. The SDNET2018 is a dataset of cracks in concrete buildings, including 8484 crack

images and 47,608 non-crack images. According to the shooting scenes, it can be divided

into bridge deck, road surface, and wall surface. The images taken on the bridge crack are

similar to our dataset, while the images taken in the other two scenes differ greatly. There

are only two types of damage in our damage classification dataset, crack and area-type

damage. Thus, we introduce 8,484 crack images in SDNET2018 for testing.

Table 2 shows the testing performance of the model with 300 training cycles. Here,

the observation time is T = 6. We can see that multiple models generally perform better on

our own dataset. Compared with the model using convolution encoder and the model

(a) (b)

Figure 7. The validation accuracy (a) and training loss (b) for different gradient surrogate functions.

Next, the effect of observation time T on the validation performance is also considered.
As shown in Figure 8a, with the increase of T, the classification accuracy increases firstly
and saturates around 0.99 and then decreases. The convergence epoch is also presented
in Figure 8b. Here, if the verification accuracy varies within 10% over 10 epochs, the first
epoch is defined as the convergence epoch. It can be seen that when T is relatively small, the
convergence epoch is relatively small, indicating that the network can converge rapidly, but
the performance is poor due to insufficient features. As T increases, the convergence epoch
is increased (i.e., the convergence speed is decreased) because the extracted features are
more complex, but the accuracy is improved. The maximum accuracy is achieved at T = 6.
Note, when T continues to increase, the model will be expanded from the time dimension
into a very deep network, and the deep network has the risk of gradient disappearance and
gradient explosion, resulting in the decline of the accuracy. As shown in Figure 8, when
T = 16, the model classification accuracy drops to 61.0%. When T is greater than 16, the
classifier loses its classification ability, and the model cannot learn.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 13

firstly and saturates around 0.99 and then decreases. The convergence epoch is also pre-

sented in Figure 8b. Here, if the verification accuracy varies within 10% over 10 epochs,

the first epoch is defined as the convergence epoch. It can be seen that when T is relatively

small, the convergence epoch is relatively small, indicating that the network can converge

rapidly, but the performance is poor due to insufficient features. As T increases, the con-

vergence epoch is increased (i.e., the convergence speed is decreased) because the ex-

tracted features are more complex, but the accuracy is improved. The maximum accuracy

is achieved at T = 6. Note, when T continues to increase, the model will be expanded from

the time dimension into a very deep network, and the deep network has the risk of gradi-

ent disappearance and gradient explosion, resulting in the decline of the accuracy. As

shown in Figure 8, when T = 16, the model classification accuracy drops to 61.0%. When

T is greater than 16, the classifier loses its classification ability, and the model cannot learn.

.

Figure 7. The validation accuracy (a) and training loss (b) for different gradient surrogate functions.

Figure 8. The effects of observation time T on the (a) validation accuracy and (b) convergence epoch.

4.4. Testing

In order to quantify the inference accuracy and generalization performance of the

model, we used our own test set as well as some data from SDNET2018 dataset for testing

[41]. The SDNET2018 is a dataset of cracks in concrete buildings, including 8484 crack

images and 47,608 non-crack images. According to the shooting scenes, it can be divided

into bridge deck, road surface, and wall surface. The images taken on the bridge crack are

similar to our dataset, while the images taken in the other two scenes differ greatly. There

are only two types of damage in our damage classification dataset, crack and area-type

damage. Thus, we introduce 8,484 crack images in SDNET2018 for testing.

Table 2 shows the testing performance of the model with 300 training cycles. Here,

the observation time is T = 6. We can see that multiple models generally perform better on

our own dataset. Compared with the model using convolution encoder and the model

(a) (b)

Figure 8. The effects of observation time T on the (a) validation accuracy and (b) convergence epoch.

Electronics 2022, 11, 2097 9 of 13

4.4. Testing

In order to quantify the inference accuracy and generalization performance of the
model, we used our own test set as well as some data from SDNET2018 dataset for
testing [41]. The SDNET2018 is a dataset of cracks in concrete buildings, including 8484 crack
images and 47,608 non-crack images. According to the shooting scenes, it can be divided
into bridge deck, road surface, and wall surface. The images taken on the bridge crack are
similar to our dataset, while the images taken in the other two scenes differ greatly. There
are only two types of damage in our damage classification dataset, crack and area-type
damage. Thus, we introduce 8484 crack images in SDNET2018 for testing.

Table 2 shows the testing performance of the model with 300 training cycles. Here,
the observation time is T = 6. We can see that multiple models generally perform better
on our own dataset. Compared with the model using convolution encoder and the model
using Poisson encoder, the performance of SDNET2018 is quite different, reaching 78.45%
and 70.47% classification accuracy, respectively. It can be seen that the convolution encoder
presents better generalization performance because parameters can be learned, and more
robust features are extracted in the process of coding. When the softsign is used as the
surrogate gradient function, the convolution encoder performs better, and the accuracy can
reach 97.83%. In addition, when the convolution encoder is used, the classification accuracy
is 97.11%, 96.33%, and 97.67% for the cases with sigmoid, erf, and arctan as surrogate
gradient function. In addition, we also tested on the concrete bridge damage dataset based
on STDP-based unsupervised learning named SDNN [9], where the accuracy is 73.2%
in our dataset and 55.3% in SDNET2018. Obviously, the performance of unsupervised
learning is not high due to the lack of guidance of supervised signal.

Table 2. The testing accuracy for different training methods for two datasets.

Model
Accuracy on (%)

Ours SDNET2018

VGG7 98.67 84.79

Spiking VGG7T = 6 + softsign + Convolutional Encode 97.83 78.45

Spiking VGG7T = 6 + softsign + Poisson Encode 91.22 70.47

Spiking VGG7T = 6 + sigmoid + Convolutional Encode 97.11 76.07

Spiking VGG7T = 6 + erf + Convolutional Encode 96.33 74.34

Spiking VGG7T = 6 + arctan + Convolutional Encode 97.67 76.68

SDNN 73.2 55.30

At last, we tested the bridge damage dataset using the ANN-SNN method. We
converted the trained original VGG7 into an identically structured SNN network, which is
called Converted VGG7. We tested the validation accuracy at different observation times T
using the Converted VGG7 network, and the results are shown in Figure 9. Since we do
not need to directly train the Converted VGG7 network, but only use the weights of the
original VGG7 network, the observation time T can be set to a relatively large value when
testing the accuracy with the Converted VGG7.

As can be seen from Figure 9, the validation accuracy increases with the increase of
the observation time T, and finally remains basically unchanged. Especially, when t = 230,
Converted VGG7 achieves the maximum classification accuracy of 96.8% in our dataset;
when t = 256, Converted VGG7 achieved the maximum classification accuracy of 75% in
SDNET2018. Compared to VGG7, SpikingVGG7 achieved a maximum validation accuracy
of 97.83% in our dataset at T = 6, which is 1.03% higher than the maximum validation
accuracy of Converted VGG7. Besides, SpikingVGG7 achieved a maximum accuracy
of 78.45% in SDNET2018 at T = 6, which is 3.49% higher than the maximum validation
accuracy of Converted VGG7. Therefore, it can be concluded that the SpikingVGG7 has a
better classification effect than the Converted VGG7.

Electronics 2022, 11, 2097 10 of 13

Electronics 2022, 11, x FOR PEER REVIEW 10 of 13

Figure 9. The validation accuracy of Converted VGG7 at different simulating time step.

4.5. Complexity Analysis

In the following, we also analyze the complexity of the SpikingVGG7 and the original

one. The time complexity can be calculated as the number of operations performed on

floating-point numbers. Considering the feedforward propagation, in the VGG7 net, the

time complexity of the overall networks O(VGG7) = ∑  𝐷
𝑙=1 𝑀𝑙

2 ⋅ 𝐾𝑙
2 ⋅ 𝐶𝑙−1 ⋅ 𝐶𝑙 [44]. D is the

number of convolutional layers, l means the lth convolutional layer. 𝐶𝑙 means the number

of output channels of the lth convolutional layer. For the lth convolutional layer, the num-

ber of input channels is the number of output channels of the (l-1)th convolutional layer.

M is the side length of feature map. K is the edge length of the convolution kernel. The

network structure of the two networks is similar; however, SpikingVGG7 has an extra

coding layer after each convolution layer and an extra time dimension T, hence the time

complexity of SpikingVGG is O(spikingVGG7) = (∑  𝐷
𝑙=1 𝑀𝑙

2 ⋅ 𝐾𝑙
2 ⋅ 𝐶𝑙−1 ⋅ 𝐶𝑙+𝑀𝑙

2 · 𝐶𝑙) · 𝑇 .

However, except for the first convolution layer based on 32-bit floating point number op-

erations as in VGG7, in SpikingVGG, the calculation of the rest convolution layers is based

on 0 and 1, which is much simpler than floating operations. Hence, it is difficult to com-

pare time complexity of the two networks. As for space complexity, the network struc-

tures of SpikingVGG7 and VGG7 are similar; we consider that the space complexity is

basically the same.

4.6. Hardware Implmentations

As the benefit of using SNNs is primarily evident when deployed on a neuromorphic

computer, there are also works done for the hardware implementations with digital and

analog approaches [45,46]. Here, we also briefly discuss the potential hardware imple-

mentations of the DCSNN with both digital and analog implementations.

As the basic element of a SNN, the LIF neuron could be implemented via CMOS

circuits [47]; we firstly consider the hardware implementation based on analog circuits.

CMOS-based adders and multipliers could be used for MAC operations in convolution,

pooling layers and fully connected layers in the feed-forward propagation. The output of

the fully-´connected layer could pass through an COMS-based integrator to count spikes.

Then, a control module is required for the calculation of error and weight change. Voltage

or current control signal can be sent to the multipliers for weight adaption.

For digital implementation, we use FPGA hardware circuits. In forward propagation,

input data are sent into the data buffer, and the convolution operation is completed with

the convolution kernel with shift registers according to the number of output feature

graphs of each layer. In digital circuits, as the spikes are encoded with 0 or 1, only the

adder is required to calculate the weighted sum of the input and the weight. At each clock

cycle, the calculated membrane potential and a given threshold are compared through a

Figure 9. The validation accuracy of Converted VGG7 at different simulating time step.

4.5. Complexity Analysis

In the following, we also analyze the complexity of the SpikingVGG7 and the original
one. The time complexity can be calculated as the number of operations performed on
floating-point numbers. Considering the feedforward propagation, in the VGG7 net, the
time complexity of the overall networks O(VGG7) = ∑D

l=1 M2
l ·K

2
l ·Cl−1·Cl [44]. D is the

number of convolutional layers, l means the lth convolutional layer. Cl means the number
of output channels of the lth convolutional layer. For the lth convolutional layer, the number
of input channels is the number of output channels of the (l− 1)th convolutional layer. M is
the side length of feature map. K is the edge length of the convolution kernel. The network
structure of the two networks is similar; however, SpikingVGG7 has an extra coding layer
after each convolution layer and an extra time dimension T, hence the time complexity of
SpikingVGG is O(spiking VGG7) =

(
∑D

l=1 M2
l ·K

2
l ·Cl−1·Cl + M2

l ·Cl
)
·T. However, except

for the first convolution layer based on 32-bit floating point number operations as in VGG7,
in SpikingVGG, the calculation of the rest convolution layers is based on 0 and 1, which is
much simpler than floating operations. Hence, it is difficult to compare time complexity of
the two networks. As for space complexity, the network structures of SpikingVGG7 and
VGG7 are similar; we consider that the space complexity is basically the same.

4.6. Hardware Implmentations

As the benefit of using SNNs is primarily evident when deployed on a neuromorphic
computer, there are also works done for the hardware implementations with digital and
analog approaches [45,46]. Here, we also briefly discuss the potential hardware implemen-
tations of the DCSNN with both digital and analog implementations.

As the basic element of a SNN, the LIF neuron could be implemented via CMOS
circuits [47]; we firstly consider the hardware implementation based on analog circuits.
CMOS-based adders and multipliers could be used for MAC operations in convolution,
pooling layers and fully connected layers in the feed-forward propagation. The output of
the fully-´connected layer could pass through an COMS-based integrator to count spikes.
Then, a control module is required for the calculation of error and weight change. Voltage
or current control signal can be sent to the multipliers for weight adaption.

For digital implementation, we use FPGA hardware circuits. In forward propagation,
input data are sent into the data buffer, and the convolution operation is completed with the
convolution kernel with shift registers according to the number of output feature graphs of
each layer. In digital circuits, as the spikes are encoded with 0 or 1, only the adder is required
to calculate the weighted sum of the input and the weight. At each clock cycle, the calculated
membrane potential and a given threshold are compared through a comparator, and the

Electronics 2022, 11, 2097 11 of 13

spike number could be calculated using a counter. Finally, the Softmax classifier completes
the final output result after probability conversion by searching the corresponding value in
ROM according to the input data. When back propagation, according to the label of ROM
and comparing the calculated save to RAM, the calculated convolution kernel weight and
bias values of updates will be updated by the controller.

5. Conclusions

We use the end-to-end training method to build and train a DCSNN that can classify
concrete bridge damage in a real engineering environment. This is the first attempt of bridge
damage detection using SNN. We verify experimentally that under the same conditions,
with 300 training cycles, the classification accuracy can be achieved 97.83% by using the
softsign function as the gradient surrogate function. Note, such accuracy is very close to the
performance of the CNN (98.67%) with the same network structure. Although SNN is not
completely comparable to ANN in performance, it makes more sense in the following two
aspects: 1. It simulates spike signals transmitted in biological neural networks and attempts
to reveal the mechanism of information processing; 2. Binary spike coding used in SNN
can effectively reduce computational complexity and enhance power efficiency. In addition,
we have examined the effect of observation time step T on the network performance. The
experimental results show that with the increase of the observation time T, both the model
precision and the convergence speed increase first and then show a downward trend. The
maximum accuracy is achieved at T = 6. In the comparison experiment of encoders, in
our test set, the two encoders lead to the best accuracy with 97.83% and 91.22%. Note,
there was a significant difference in performance when SDNET2018 was used as test data.
The DCSNN using gradient surrogate method can achieve performance with 78.45% and
70.47% for two encoders. Thus, the test results on SDNET2018 show that CNN exhibits
have better generalization performance. As a further attempt, we will continue to study
the realization of DCSNN in other more complex visual tasks.

Author Contributions: Conceptualization, S.X.; methodology, S.X. and S.J.; software, S.J. and X.L.;
validation, T.Z and L.Y.; formal analysis, T.Z. and L.Y.; data curation, S.J.; writing—original draft
preparation, S.X. and S.J.; writing—review and editing, X.L.; visualization, X.L.; supervision, S.X.;
funding acquisition, S.X. All authors have read and agreed to the published version of the manuscript.

Funding: National Key Research and Development Program of China (2021YFB2801900, 2021YFB2801901,
2021YFB2801902, 2021YFB2801904); National Natural Science Foundation of China (No. 61974177,
No. 61674119); National Outstanding Youth Science Fund Project of National Natural Science Foun-
dation of China (62022062); The Fundamental Research Funds for the Central Universities (JB210114).

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
2. Wang, X.; Lin, X.; Dang, X. Supervised learning in spiking neural networks: A review of algorithms and evaluations. Neural Netw.

2020, 125, 258–280. [CrossRef] [PubMed]
3. Taherkhani, A.; Belatreche, A.; Li, Y.; Cosma, G.; Maguire, L.; McGinnity, T. A review of learning in biologically plausible spiking

neural networks. Neural Netw. 2020, 122, 253–272. [CrossRef] [PubMed]
4. Caporale, N.; Dan, Y. Spike timing—Dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46.

[CrossRef]
5. Diehl, P.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.

2015, 9, 99. [CrossRef]
6. Xiang, S.; Zhang, Y.; Gong, J. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs

and VCSOAs. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–9. [CrossRef]
7. Xiang, S.; Ren, Z.; Song, Z. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning

and pattern classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2494–2505. [CrossRef] [PubMed]

http://doi.org/10.1016/S0893-6080(97)00011-7
http://doi.org/10.1016/j.neunet.2020.02.011
http://www.ncbi.nlm.nih.gov/pubmed/32146356
http://doi.org/10.1016/j.neunet.2019.09.036
http://www.ncbi.nlm.nih.gov/pubmed/31726331
http://doi.org/10.1146/annurev.neuro.31.060407.125639
http://doi.org/10.3389/fncom.2015.00099
http://doi.org/10.1109/JSTQE.2019.2911565
http://doi.org/10.1109/TNNLS.2020.3006263
http://www.ncbi.nlm.nih.gov/pubmed/32673197

Electronics 2022, 11, 2097 12 of 13

8. Song, Z.; Xiang, S.; Cao, X.; Zhao, S.; Hao, Y. Experimental demonstration of photonic spike-timing dependent plasticity based on
a VCSOA. Sci. China Inf. Sci. 2022, 65, 182401.

9. Kheradpisheh, S.; Ganjtabesh, M.; Thorpe, S. STDP-based spiking deep convolutional neural networks for object recognition.
Neural Netw. 2018, 99, 56–67. [CrossRef]

10. Bohte, S.; Kok, J.; La Poutre, H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 2002,
48, 17–37. [CrossRef]

11. Gütig, R.; Sompolinsky, H. The tempotron: A neuron that learns spike timing—Based decisions. Nat. Neurosci. 2006, 9, 420–428.
[CrossRef] [PubMed]

12. Ponulak, F.; Kasi’nski, A. Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and
spike shifting. Neural Comput. 2010, 22, 467–510. [CrossRef] [PubMed]

13. Wade, J.; McDaid, L.; Santos, J.; Sayers, H. SWAT: A spiking neural network training algorithm for classification problems.
IEEE Trans. Neural Netw. 2010, 21, 1817–1830. [CrossRef] [PubMed]

14. Florian, R. The chronotron: A neuron that learns to fire temporally precise spike patterns. PLoS ONE 2012, 7, e40233. [CrossRef]
15. Mohemmed, A.; Schliebs, S.; Matsuda, S.; Kasabov, N. SPAN: Spike pattern association neuron for learning spatio-temporal spike

patterns. Int. J. Neural Syst. 2012, 22, 1250012. [CrossRef] [PubMed]
16. Eliasmith, C.; Anderson, C. Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems; MIT press:

Cambridge, MA, USA, 2003.
17. Tsur, E. Neuromorphic Engineering: The Scientist’s, Algorithm Designer’s, and Computer Architect’s Perspectives on Brain-Inspired

Computing; CRC Press: Boca Raton, FL, USA, 2021.
18. Sporea, I.; Grüning, A. Supervised learning in multilayer spiking neural networks. Neural Comput. 2013, 25, 473–509. [CrossRef]
19. Cao, Y.; Chen, Y.; Khosla, D. Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput.

Vis. 2015, 113, 54–66. [CrossRef]
20. Lee, J.; Delbruck, T.; Pfeiffer, M. Training deep spiking neural networks using backpropagation. Front. Comput. Neurosci. 2016,

10, 508. [CrossRef]
21. Lin, X.; Wang, X.; Hao, Z. Supervised learning in multilayer spiking neural networks with inner products of spike trains.

Neurocomputing 2017, 237, 59–70. [CrossRef]
22. Yamazaki, K.; Vo-Ho, V.-K.; Bulsara, D.; Le, N. Spiking neural networks and their applications: A Review. Brain Sci. 2022, 12, 863.

[CrossRef]
23. Taherkhani, A.; Belatreche, A.; Li, Y.; Maguire, L. A supervised learning algorithm for learning precise timing of multiple spikes

in multilayer spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5394–5407. [CrossRef] [PubMed]
24. Kim, S.; Park, S.; Na, B.; Yoon, S. Spiking-YOLO: Spiking neural network for energy-efficient object detection. In Proceedings of

the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020.
25. Neftci, E.; Mostafa, H.; Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 2019, 36, 51–63. [CrossRef]
26. Qiao, G.; Ning, N.; Zuo, Y.; Hu, S.; Yu, Q.; Liu, Y. Direct training of hardware-friendly weight binarized spiking neural network

with surrogate gradient learning towards spatio-temporal event-based dynamic data recognition. Neurocomputing 2021, 457,
203–213. [CrossRef]

27. Zenke, F.; Ganguli, S. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks. Neural Comput. 2018, 30,
1514–1541. [CrossRef]

28. Shrestha, S.; Orchard, G. SLAYER: Spike Layer Error Reassignment in Time. In Proceedings of the Advances in Neural Information
Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 1419–1428.

29. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Xie, Y.; Shi, L. Direct training for spiking neural networks: Faster, larger, better. In Proceedings of
the AAAI Conference on Artificial Intelligence, Hawaii, NA, USA, 27 January–1 February 2019; Volume 33, pp. 1311–1318.

30. Wu, J.; Chua, Y.; Zhang, M.; Li, G.; Li, H.; Tan, K. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep
Spiking Neural Networks. arXiv 2020, arXiv:1907.01167. [CrossRef]

31. Deng, L. Rethinking the performance comparison between SNNS and ANNS. Neural Netw. 2020, 121, 294–307. [CrossRef]
32. Cha, Y.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks.

Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]
33. Chen, F.; Jahanshahi, M. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes

data fusion. IEEE Trans. Ind. Electron. 2017, 65, 4392–4400. [CrossRef]
34. Dung, C. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52–58.

[CrossRef]
35. Deng, J.; Lu, Y.; Lee, V. Concrete crack detection with handwriting script interferences using faster region-based convolutional

neural network. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 373–388. [CrossRef]
36. Yu, L.; He, S.; Liu, X. Engineering-oriented bridge multiple-damage detection with damage integrity using modified faster

region-based convolutional neural network. Multimed. Tools Appl. 2022, 81, 18279–18304. [CrossRef]
37. Yu, L.; He, S.; Liu, X. Intelligent crack detection and quantification in the concrete bridge: A deep learning-assisted image

processing approach. Adv. Civ. Eng. 2022, 2022, 1813821. [CrossRef]

http://doi.org/10.1016/j.neunet.2017.12.005
http://doi.org/10.1016/S0925-2312(01)00658-0
http://doi.org/10.1038/nn1643
http://www.ncbi.nlm.nih.gov/pubmed/16474393
http://doi.org/10.1162/neco.2009.11-08-901
http://www.ncbi.nlm.nih.gov/pubmed/19842989
http://doi.org/10.1109/TNN.2010.2074212
http://www.ncbi.nlm.nih.gov/pubmed/20876015
http://doi.org/10.1371/journal.pone.0040233
http://doi.org/10.1142/S0129065712500128
http://www.ncbi.nlm.nih.gov/pubmed/22830962
http://doi.org/10.1162/NECO_a_00396
http://doi.org/10.1007/s11263-014-0788-3
http://doi.org/10.3389/fnins.2016.00508
http://doi.org/10.1016/j.neucom.2016.08.087
http://doi.org/10.3390/brainsci12070863
http://doi.org/10.1109/TNNLS.2018.2797801
http://www.ncbi.nlm.nih.gov/pubmed/29993611
http://doi.org/10.1109/MSP.2019.2931595
http://doi.org/10.1016/j.neucom.2021.06.070
http://doi.org/10.1162/neco_a_01086
http://doi.org/10.1109/TNNLS.2021.3095724
http://doi.org/10.1016/j.neunet.2019.09.005
http://doi.org/10.1111/mice.12263
http://doi.org/10.1109/TIE.2017.2764844
http://doi.org/10.1016/j.autcon.2018.11.028
http://doi.org/10.1111/mice.12497
http://doi.org/10.1007/s11042-022-12703-8
http://doi.org/10.1155/2022/1813821

Electronics 2022, 11, 2097 13 of 13

38. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going Deeper in Spiking Neural Networks: VGG and Residual Architectures.
Front. Neurosci. 2019, 13, 95. [CrossRef] [PubMed]

39. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-temporal backpropagation for training high-performance spiking neural networks.
Front. Neurosci. 2018, 12, 331. [CrossRef]

40. Yin, S.; Venkataramanaiah, S.; Chen, G.; Krishnamurthy, R.; Cao, Y.; Chakrabarti, C.; Seo, J. Algorithm and hardware design
of discrete-time spiking neural networks based on back propagation with binary activations. In Proceedings of the 2017 IEEE
Biomedical Circuits and Systems Conference (BioCAS), Torino, Italy, 19–21 October 2017.

41. Dorafshan, S.; Thomas, R.; Maguire, M. SDNET2018: An annotated image dataset for non-contact concrete crack detection using
deep convolutional neural networks. Data Brief 2018, 21, 1664–1668. [CrossRef]

42. Github. Available online: https://github.com/fangwei123456/spikingjelly (accessed on 17 December 2019).
43. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. Available online: https://arxiv.org/abs/1412.6980/ (accessed

on 12 December 2014).
44. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Santiago, Chile, 7–13 December 2015; pp. 5353–5360.
45. Davies, M.; Narayan, S.; Tsung-Han, L. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38,

82–99. [CrossRef]
46. Hazan, A.; Ezra, E. Neuromorphic Neural Engineering Framework-Inspired Online Continuous Learning with Analog Circuitry.

Appl. Sci. 2022, 12, 4528. [CrossRef]
47. Kornijcuk, V.; Lim, H.; Seok, J. Leaky integrate-and-fire neuron circuit based on floating-gate integrator. Front. Neuro-Sci. 2016,

10, 212. [CrossRef]

http://doi.org/10.3389/fnins.2019.00095
http://www.ncbi.nlm.nih.gov/pubmed/30899212
http://doi.org/10.3389/fnins.2018.00331
http://doi.org/10.1016/j.dib.2018.11.015
https://github.com/fangwei123456/spikingjelly
https://arxiv.org/abs/1412.6980/
http://doi.org/10.1109/MM.2018.112130359
http://doi.org/10.3390/app12094528
http://doi.org/10.3389/fnins.2016.00212

	Introduction
	Methodology
	Network Structure of DCSNN
	LIF Model

	Training Algorithm
	Experiments
	Datasets
	Spike Encoding Strategy
	Training
	Testing
	Complexity Analysis
	Hardware Implmentations

	Conclusions
	References

