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Abstract: Multi-frame X-ray images (videos) of the coronary arteries obtained using coronary an-
giography (CAG) provide detailed information about the anatomy and blood flow in the coronary
arteries and play a pivotal role in diagnosing and treating ischemic heart disease. Deep learning
has the potential to quickly and accurately quantify narrowings and blockages of the arteries from
CAG videos. A CAG consists of videos acquired separately for the left coronary artery and the
right coronary artery (LCA and RCA, respectively). The pathology for LCA and RCA is typically
only reported for the entire CAG, and not for the individual videos. However, training of stenosis
quantification models is difficult when the RCA and LCA information of the videos are unknown.
Here, we present a deep learning-based approach for classifying LCA and RCA in CAG videos. Our
approach enables linkage of videos with the reported pathological findings. We manually labeled
3545 and 520 videos (approximately seven videos per CAG) to enable training and testing of the
models, respectively. We obtained F1 scores of 0.99 on the test set for LCA and RCA classification
LCA and RCA classification on the test set. The classification performance was further investigated
with extensive experiments across different model architectures (R(2+1)D, X3D, and MVIT), model
input sizes, data augmentations, and the number of videos used for training. Our results showed that
CAG videos could be accurately curated using deep learning, which is an essential preprocessing
step for a downstream application in diagnostics of coronary artery disease.

Keywords: coronary angiography; cardiology; ischemic heart disease; deep learning; video classification

1. Introduction

Coronary angiography (CAG) is considered the gold standard for diagnosing ischemic
heart disease (IHD) [1–3]. During the CAG procedure, a catheter inserted percutaneously
via the femoral or radial arteries is used to inject an iodinated contrast agent into the
coronary arteries. The catheter is inserted separately into the left coronary artery (LCA)
and the right coronary artery (RCA). Recordings during and just after injection of contrast
provide detailed information about the anatomy and the blood flow in the coronary arteries.
The examination consists of multiple X-ray multi-frame CAG images (videos) taken from
different angles. For a routine examination, approximately seven videos are recorded.
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Typically, CAG videos are visually assessed to determine if the arterial lumen is narrowed
(stenosis) and how severe it is (percentage). However, the initial assessment is done by
“eyeballing” the degree of stenosis, which is subjective and has high observer variance [4–8].

Accurate and quantitative analysis of the CAG videos may alleviate an invasive
procedure to measure the Fractional Flow Reserve (FFR) by a pressure wire directly to
determine the severity of the stenosis [9]. Current CAG guidelines [9] suggest the FFR
is measured in case of borderline stenosis (40–90% narrowing assessed by eyeballing) to
confirm its significance. FFR is determined by measuring the reduction in blood pressure
across the stenosis. The pressure reduction is linearly correlated to flow during maximal
hyperemia. Rather than performing invasive procedures with the risk of complications, it
would be a major advantage to obtain this information about coronary artery disease from
the CAG videos to improve clinical decisions for the individual patient.

Pathological findings (a.k.a. stenosis, narrowings, or lesions) are routinely reported
after a CAG, and millions of these lesions have been identified in previous examinations.
Training and validation of a deep learning model for stenosis assessment based on visual
assessment or FFR measurement from large-scale datasets from previously performed
examinations would potentially yield a more robust and objective assessment. The patho-
logical findings in these datasets, including visual assessment of stenosis, are typically
reported using the 16-segment classification system [10,11]. The 16-segment classification
system divides the coronary artery tree into 16 sites originating from both LCA and RCA.
The LCA is divided into Left Main (LM), Left Circumflex Artery (LCX), First Diagonal
(D1), Second Diagonal (D2), Left Anterior Descending Artery (LAD), and The Marginal
Branches (M1 and M2). Similarly, the RCA contains the segments; Posterior Descending
Artery (PDA), and Posterior Left Ventricular Artery (PLA). The PDA and the PLA originate
from the RCA in 80% of the population (right dominant), and for 10% the PDA and PLA
originate from the LCA (left dominant). For the last 10%, the PDA and the PLA originate
from both the LCA and the RCA (co-dominant). The type of coronary artery dominance is
also reported during CAG [12]. The databases storing these reported pathological findings
have limited relation to the Picture Archiving and Communication system (PACS), which
stores the CAG video files.

Typically, there is no way to extract the specific key videos in a CAG that were used
to identify the reported pathology. Reported pathology such as “stenosis eyeball 70% on
proximal RCA” will only be present in a video of the RCA, and vice versa for pathology
concerning the LCA. Unfortunately, the content of the specific video (e.g., information about
the presence of the LCA or RCA) is not stored in the Digital Imaging and Communications
in Medicine (DICOM) metadata. As each CAG consists of both videos from LCA and
RCA, and as the reported pathological findings only relate to the entire CAG, it is often
impossible to link the videos and the reported pathology. Hence, directly linking the videos
with pathological findings, e.g., “stenosis eyeball 70% on proximal RCA”, is not possible.
The reported pathology is thus not directly suited for training a deep learning model.
Nevertheless, no information exists describing which videos contain LCA or RCA. Due
to the lack of information, CAG image analysis workflows would often require extensive
data curation. Linking the pathology to the specific video containing the pathology would
enable training of stenosis quantification deep learning models with millions of videos
from existing examinations.

In recent years, there has been increased attention on applying deep learning to CAGs.
For instance, studies have explored the application of deep learning for vessel segmentation
and stenosis identification on single frame images in 2D. In recent publications, segmenta-
tion of the main branches in the coronary artery tree and quantifying the degree of stenosis
have been attempted [13–17]. Automatic detection of a stenosis on RCA was investigated
by Moon et al. [18] using a combined model pipeline, in which a keyframe extraction model
predicted the relevant frame followed by another model predicting stenosis. Classification
of LCA and RCA has been attempted by Avram et al. [17], reporting a F1 score of 0.93
on contrast-containing single frames. As these previous studies only utilized 2D informa-
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tion [13–18], a relevant frame extraction phase is needed for deploying the model into the
real world. For training these models, extensive frame-level annotations are needed.

To build robust and quantitative assessment of CAG videos using deep learning,
there is a need to link the videos with databases containing reported lesions. This can
be done by classifying CAG videos into meaningful categories. In this paper, we present
a framework for classifying CAG videos into LCA and RCA using deep learning (see
Figure 1). The objective is to present an end-to-end CAG video classification framework,
explore the performance of different state-of-the-art architectures for video classification,
investigate different data augmentations, and finally, examine the number of labeled CAG
videos needed for LCA and RCA classification. For simplicity, the data used in this paper
is limited to patients without significant stenoses.

3A) Pathology is reported using the 16-segment 
classification system and stored in a database:

5: LM
6: Proximal LAD
7: Mid LAD
8: Distale LAD
9: D1
10: D2
11: Proximal LCX
12: M1
13: Mid LCX
14: M2
15: Distale LCX

1) Videos are 
acquired from 
multiple angles:

6: LAD

10: D2
1: RCA

16: PLA

4: PDA

11: LCX
9: D1

2: RCA

3: RCA

…

2) The LCA and the RCA is 
examined by specialists:

…

3B-1) Videos are stored 
in a PACS database:

Unlabeled

Unlabeled

3B-2) Classification of LCA 
and RCA (deep learning):

Label: LCA

Label: RCA

5: LM

12: M1
13: LCX

14: M2

15: LCX

7: LAD

8: LAD

4) Videos are linked
with pathology:

1: Proximal RCA
2: Mid RCA
3: Distale RCA
4: PDA
16: PLA

Figure 1. Overview of the proposed framework for linking CAGs and reported pathology. (1) Videos
are recorded from various angles. (2) Videos are examined by specialists. (3A) Pathology is reported
in a database. (3B-1) Videos are stored, but there is no information about which videos contain
LCA or RCA. (3B-2) Classification of LCA and RCA is performed using deep learning (the models
presented in this paper). (4) Videos are merged with databases containing pathological findings.

2. Materials and Methods
2.1. Data Collection and Data Curation

CAG multi-frame videos were selected, anonymized, and extracted. The videos are
acquired at Rigshospitalet, Copenhagen, Denmark. To simplify the labelling process, we
included patients without any significant stenoses, i.e., patients clinically categorized with
“no vessel abnormalities” or “atheromatous coronary arteries without significant stenoses”.
In addition, we excluded patients with any inserted cardiac devices. Based on these criteria,
we randomly selected and manually annotated 3545 CAG videos with the categorical value
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“Left Coronary Artery” and “Right Coronary Artery” originating from 530 patients. These
videos were split into 80% for training and 20% for validation grouped by the patients’
anonymized unique identification ID. We also collected a test set of 520 CAG videos
originating from 78 patients, which was not used for model development, and only served
as a tool for reporting unbiased performance measures. In both the training and the test
data sets, the ratios of manually annotated LCA and RCA were 67% and 33%, respectively,
and the average number of videos pr CAG was 6.7 pr patient. The videos originated from
Philips and Siemens scanners, and 52% of the videos were obtained from males.

2.2. Methods

CAG videos consist of sequential sets of images giving 3D volumes, so we exper-
imented with 3D deep learning models. We explored supervised video classification
frameworks based on convolutional neural networks (CNNs) and visual transformers,
which take a video as input and use the LCA and RCA annotations as targets. We have cho-
sen three model architectures for our experiments; R(2+1)D [19], X3D [20], and MVIT [21],
which previously have shown state-of-the-art results on natural video classification tasks
such as the Kinetics [22] and Ava [23]. The R(2+1)D and the X3D utilizes 3D CNNs, and the
MVIT is a transformer-based architecture (see Table 1).

Table 1. Comparison of the deep learning architectures.

Model Type CNN Transformer Parameters Inference Throughput
(Videos/Second)

R(2+1)D-18 X 33.3 million 31.79
X3D-S X 3.76 million 19.78

MVIT32-3 X 36.6 million 21.06

2.2.1. Baseline

The X-ray acquisition device is usually set in a specific configuration to record LCA and
RCA. We wanted to test if using scanner parameters were sufficient to classify the recordings
into LCA and RCA. The scanner parameters stored in the metadata in the DICOM files
include the Positioner Primary Angle, the Positioner Secondary Angle, Distance From
Source to Detector, and Distance From Detector to Patient. Based on this information, we
implemented a logistic regression model, a support vector machine model (SVM), and two
multi-layer perceptron (MLP) models, each with one hidden layer. For the SVM we use
radial basis function as kernel. The size of the hidden layers in the two MLP models was 50
and 500, respectively, and we used the ReLU activation function.

2.2.2. R(2+1)D

R(2+1)D [19] is a video-classification model based on 3D CNNs. Tran et al. [19]
investigated the performance difference between 2D and 3D CNNs on video classification
using ResNet [24] architectures. Based on extensive experiments, Tran et al. showed a
significant performance increase using 3D CNNs. Another contribution from Tran et al. was
the invention of the “R(2+1)D” block, in which the standard 3D convolutional block with
convolutions of size (3 × 3 × 3) is replaced with a block containing spatial convolutions of
size (3 × 3 × 1), ReLU, Batch Normalization [25] and a temporal convolutional (1 × 1 × 3).
Using this approach, spatial features and temporal features are decoupled. Based on the
”R(2+1)D” block, Tran et al. built a novel model architecture, and they showed that this
model could easily outperform standard 3D CNNs with ResNet architectures and achieve
state-of-the-art performance. For our experiments, we utilized the R(2+1)D-18 model
architecture with 18 layers and with 33.3 million parameters.
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2.2.3. X3D

X3D [20] is a family of convolutional neural networks used for video classifica-
tion. In X3D all convolutional building blocks consist of channel-wise separable con-
volutions inspired by MobileNets [26] for reduced computational complexity. In relation
to R(2+1)D [19], the number of parameters and computations can be reduced by a factor
of 10 while maintaining the same performance. Using these settings, Feichtenhofer [20]
empirically estimated optimal model architectures for video classification concerning spa-
tial and temporal input sizes, model width, and model depth. One of the most interesting
findings is that relative light models with small width and few parameters can perform
well with somewhat high spatial and temporal input sizes. We utilized the X3D-s model
variant with 3.76 million parameters for our experiments.

2.2.4. MVIT

MVIT [21] is a transformer-based model used for video classifcation. The MVIT is
a multiscale version of the Vision Transformer [27]. The model splits and unrolls the
input into a sequence of patches. This sequence is combined with positional embedding,
giving information about the spatial location in the input sequence. The information in
the sequence is passed to a transformer encoder, which consists of multiheaded attention
blocks. The MVIT uses attention pooling to learn feature representations at different scales.
The MVIT learns features from high resolution with few feature channels to low input
resolutions with a high number of feature channels. We experimented with the MVIT-32-3
and MVIT-16-4 model variants for inputs with 32 frames and 16 frames, respectively. Both
models have 36.6 million parameters.

2.2.5. Preprocessing and Data Augmentations

The videos were initially resized to a fixed spatial resolution, e.g., 224 × 224 pixels.
Since the videos have varying numbers of frames, the input volumes were generated by
randomly sampling a fixed temporal length of 32. This gives an effective fixed 3D input
volume of size 224 × 224 × 32. If the number of frames for a given input was smaller
than the fixed temporal size, the input was zero-padded. We tested the effect of random
rotations, random translation, and random spatial and temporal scaling. We also tested
the effect of combining all these augmentations. In the random rotation experiments, we
randomly rotated the input from 0 to 15 degrees in the spatial plane (the coronal plane).
To mitigate collimator effects, which limit the maximum field of view size, we experimented
with a random translation of the inputs with 50 pixels in the spatial domain with zero-
padding. Scaling is randomly applied in the spatial domain with the factors 0.5–1.5 and with
linear interpolation. To simulate different temporal resolutions, we randomly resampled
temporally by factors of 0.5–1.5 using nearest-neighbor interpolation. Each 3D input
volume was normalized similarly to the previous procedures in [19–21].

2.2.6. Implementation Details

We trained all models on 8X A100 GPUs in a distributed setting with a batch size
of 8 videos per GPU. We used the linear scaling rule [28], giving an effective learning
rate of 0.01. We defined an epoch as an iteration of 128 samples, and we trained the
model for 400 epochs. After each epoch, we replaced 1% of the 128 samples with samples
from the global training data pool. By limiting the number of samples in each epoch to
128, all deterministic transforms were caught on the GPU, overcoming any IO and CPU
bottlenecks, and utilizing all GPU resources. The learning rate was reduced by a factor of
10 after 200 epochs. The total training time for the entire dataset was approximately 1 h
for all models. The inference was carried out by randomly sampling 10 inputs using the
previously described preprocessing in Section 2.2.5 with resizing and random cropping in
the temporal domain. The final prediction was calculated as an ensemble of the probabilities
for the 10 samples.
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3. Results
3.1. Performance Using Meta Data

We evaluated the predictive performance of the scanner parameters stored in the
meta data on the LCA and RCA classification. On the test set, we obtained a F1 score for
the logistic regression classifier and F1 scores of the two MLPs at the test set of 0.75, 0.88,
and 0.89, respectively (see Table 2). As seen in Table 2, the performance differences between
the MLPs and the logistic regression is large.

Table 2. Classification performance on the test set using the meta-data.

Model Type Data Type Parameters F1 Score

Logistic regression Meta data 5 0.75
Support Vector Machine Meta data 2543 0.84
MLP (50 hidden units) Meta data 352 0.88

MLP (500 hidden units) Meta data 3502 0.89
X3D-S (CNN) Videos 3.76 millions 0.99

3.2. Model and Input Size Comparison

Table 3 shows the classification performance reported using the F1 score for different
model architectures, different model input sizes, and different data augmentation tech-
niques. As the MVIT-32-3 and MVIT-16-4 model variants require specific input sizes, it was
not possible to get results for spatial input sizes with 130 × 130 pixels. All models were
trained with pretrained weights from Kinetics. Notably, all results presented in Table 3
have high F1 scores (F1 0.99), indicating that the LCA and RCA classification performance
did not depend on the input size, data augmentations or model architecture choice.

Table 3. Comparison of classification performance across different input sizes, model architectures
and different data augmentation techniques.

Spatial Size:
130 × 130

Spatial Size:
224 × 224

Models Augmentation
Types

Temporal Size:
16

Temporal Size:
32

Temporal Size:
64

Temporal Size:
16

Temporal Size:
32

R(2+1)D-18 w/o augs 0.993 0.982 0.994 0.988 0.982
w/translation 0.988 0.98 0.988 0.996 0.994

w/rotation 0.988 0.994 0.997 0.997 0.987
w/scaling
temporal 0.99 0.997 0.996 0.994 0.993

w/scaling
spatial 0.994 0.988 0.988 0.987 0.988

w/ all augs 0.99 0.993 0.988 0.99 0.99

X3D-s w/o augs 0.994 0.994 0.994 0.996 0.994
w/translation 0.986 0.994 0.988 0.988 0.994

w/rotation 0.99 0.99 0.99 0.991 0.988
w/scaling
temporal 0.988 0.988 0.988 0.996 0.994

w/scaling
spatial 0.985 0.996 0.988 0.986 0.984

w/ all augs 0.99 0.99 0.996 0.994 0.993
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Table 3. Cont.

Spatial Size:
130 × 130

Spatial Size:
224 × 224

Models Augmentation
Types

Temporal Size:
16

Temporal Size:
32

Temporal Size:
64

Temporal Size:
16

Temporal Size:
32

MVIT-B
(16 × 4, 32 × 3) w/o augs N/A N/A N/A 0.996 0.993

w/translation N/A N/A N/A 0.988 0.993
w/rotation N/A N/A N/A 0.993 0.993
w/scaling
temporal N/A N/A N/A 0.988 0.996

w/scaling
spatial N/A N/A N/A 0.994 0.996

w/ all augs N/A N/A N/A 0.985 0.993

3.3. Effect of Data Size

To show the performance achieved with different dataset sizes, we evaluated the
performance with various sample sizes. As seen in Figure 2, high F1 scores can be achieved
with few samples. For instance, approximately 1500 samples gave an F1 score of 0.99
using all three models. In general, we see a performance increase for all models using
pretrained weights. We also noticed that the performance of MVIT-B-32-3 experiments
without pretrained weights did not exceed F1 scores greater than 0.90, indicating that
pretraining was necessary to obtain a satisfactory performance. This was not the case for
R(2+1)D-18 and X3D-S (F1 > 0.95) when training with more than 1500 samples. Interestingly,
data augmentation did not improve performance much despite increasing the number of
training samples.

500 1000 1500 2000 2500 3000 3500
Samples

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

Model = MVIT-32

500 1000 1500 2000 2500 3000 3500
Samples

Model = R(2+1)D-18

500 1000 1500 2000 2500 3000 3500
Samples

Model = X3D-s

Setting
-w/o pretraining
-w/o augmentations
-w/ pretraining
-w/ rotation
-w/ pretraining
-w/ scaling temporal
-w/ pretraining
-w/ translation
-w/ pretraining
-w/ scaling spatial
-w/ pretraining
-w/o augmentations
-w/ pretraining
-w/ all augmentations

Figure 2. The F1 scores reported at the test set vs different number of samples used for training and
validation with different model architectures and data augmentation settings.

4. Discussion and Conclusions

We evaluated the LCA and RCA classification performance for different model archi-
tectures and settings, and for all the settings and models, the F1 scores were approximately
0.99. The baseline assessment using the information stored in the meta-data confirmed that
there exists no simple way to classify the CAG videos into LCA and RCA with high F1
score (F1 = 0.89), without using the videos as input. The high test F1 scores showed that
the model generalized well, and that the binary LCA and RCA classification problem was
solved for patients without lesions. Experiments showed that the classification problem
could be solved with various model architectures. Additionally, we showed that we only
needed approximately 1500 samples to obtain an F1 score of 0.99, and we showed that this
was the case for all three models (X3D-s, R(2+1)D-18 and MVI-B32x3). The only nonrobust
setting was the MVIT model without pretraining, resulting in high fluctuations and low F1
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scores. This can be explained by Vision Transformer models require more data than CNN
models. Thus, pretraining might be crucial for good performance, which has also been
reported by Dosovitskiy et al. [27].

For simplicity, we annotated videos from patients without any significant coronary
artery lesions, limiting the generalizability to other pathologies. Additionally, we excluded
cases where neither the LCA nor the RCA is present due to, e.g., proximal occlusions.
In future work, CAG videos of patients with lesions and videos with neither LCA nor RCA
present, will be considered. We were not able to investigate the performance of an external
independent test set, and future work will examine how well the system performs on data
from a independent another hospital. These findings may prove useful for preprocessing
for other downstream research questions using deep learning in CAGs. In conclusion,
the classification of LCA and RCA on CAG using deep learning presented in this paper
showed promising results with high F1-scores of 0.99 for various model architectures
and settings.
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