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Abstract: With the vigorous development of the Internet, the network traffic of data centers has
exploded, and at the same time, the network energy consumption of data centers has also increased
rapidly. Existing routing algorithms only realize routing optimization through Quality of Service
(QoS) and Quality of Experience (QoE), which ignores the energy consumption of data center
networks. Aiming at this problem, this paper proposes an Ee-Routing algorithm, which is an energy-
saving routing algorithm based on deep reinforcement learning. First, our method takes the energy
consumption and network performance of the data plane in the software-defined network as the
joint optimization goal and establishes an energy-efficient traffic scheduling scheme for the elephant
flows and the mice flows. Then, we use Deep Deterministic Policy Gradient (DDPG), which is a
deep learning framework, to achieve continuous and energy-efficient traffic scheduling for joint
optimization goals. The training process of our method is based on a Convolutional Neural Network
(CNN), which can effectively improve the convergence efficiency of the algorithm. After the algorithm
training converges, the energy-efficient path weights of the elephant flows and the mice flows are
output, and the balanced scheduling of routing energy-saving and network performance is completed.
Finally, the results show that our algorithm has good convergence and stability. Compared with the
DQN-EER routing algorithm, Ee-Routing improves the energy saving percentage by 13.93%, and
compared with the EARS routing algorithm, Ee-Routing reduces the delay by 13.73%, increases the
throughput by 10.91%, and reduces the packet loss rate by 13.51%.

Keywords: software-defined network (SDN); energy-efficient routing; deep deterministic policy
gradient (DDPG); convolutional neural network (CNN)

1. Introduction

With the rapid development of the Internet, global data center traffic has exploded. The
data center networks carry thousands of services, and the service traffic demand is unevenly
distributed and dynamic changes are large. As a result, the data center networks are facing
a huge energy consumption problem [1]. Existing research shows that in recent years, data
center networks’ energy consumption accounts for 8% of global electricity consumption,
of which network infrastructure energy consumption accounts for 20% of data center
energy consumption [2]. Facing the ever-complex and ever-changing network application
services and the sharp increase in the energy consumption of network infrastructure, the
traditional routing algorithms only focus on network Quality of Service (QoS) [3] and user
Quality of Experience (QoE) [4], and they have been unable to better meet application
requirements. Network energy-saving technology is also a goal that needs to be guaranteed
and optimized [5]. Therefore, under the premise of ensuring network service requirements,
it is of great significance to study energy-saving optimization technologies for data center
networks to reduce network energy consumption.
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With the rise of artificial intelligence, researchers have carried out in-depth research on
network performance optimization and proposed a series of intelligent routing algorithms
for network performance optimization [6]. In reference [7], an intelligent flow control
method based on deep learning is proposed. This method selects a near-optimal routing
strategy according to the degree of link congestion by inputting a specific state into a
convolutional neural network. Compared with the traditional routing algorithm, it achieves
a low packet loss rate and average delay, but this method usually needs to obtain a
large number of correctly labeled data sets in the network, and the data labeling process
still requires manual participation. Therefore, the intelligent routing algorithm based
on supervised learning is applied, subject to certain restrictions. In reference [8], an
intelligent routing algorithm based on deep reinforcement learning is proposed, and
with the help of SDN, it dynamically collects network traffic distribution information,
schedules routing strategies in time, and realizes end-to-end delay optimization under
different throughputs. In reference [9], an intelligent routing method based on deep
reinforcement learning in data center networks is proposed. This method realizes adaptive
routing optimization under different network states through multiple network resource
reorganization methods. Compared with OSPF and TIDE, it reduces the delay and improves
the load balancing. In reference [10], a constrained intelligent routing method based on
deep reinforcement learning is proposed, which solves the constraint problem through
the Lagrangian multiplier method so that the routing service can meet the differentiated
needs of users for network performance. In reference [11], a multi-path routing algorithm
based on link real-time status and traffic characteristics is proposed. This method routes the
elephant flows and the mice flows through the proportion of link weights and optimizes
the network performance indicators such as average link utilization and throughput. In
reference [12], an intelligent-driven network architecture based on SDN is proposed. This
method takes the network delay and throughput in the data plane as the optimization goal
and effectively improves the network load balancing compared with the traditional routing
algorithms OSPF and ECMP.

However, the above methods do not consider the problem of network energy consump-
tion. In reference [13], a DQN-based network resource allocation algorithm is proposed,
which adopts the resource allocation strategy of the Deep Q Network, and adopts expe-
rience repetition and the target network. To overcome the instability and divergence of
results caused by previous network states, the algorithm can maximize the overall through-
put of the network while making the network more energy-efficient and stable, however,
DQN is usually used to deal with discrete action problems, which are difficult to deal with
continuously. Therefore, the energy-saving effect of this method still needs to be improved.
In reference [14], an SDN-based intelligent network energy consumption optimization
method is proposed. The method adjusts the activation and sleep of network devices
through cooperative sleep technology to reduce network energy consumption. Compared
with the traditional routing algorithm, the energy-saving effect is effectively improved.
However, it increases the load pressure on the control plane during the process of adjusting
device activation and sleep. On this basis, in reference [15], an energy-saving topology opti-
mization algorithm for control plane performance optimization is proposed. This method
adapts the control plane load and data plane energy consumption through the design of
traffic awareness and device sleep technology so that obtaining an energy-saving topology
improves the performance of the control plane to a certain extent, but it will cause a certain
delay consumption when the switch frequently changes between device activation and
sleep. To sum up, intelligent routing algorithms based on machine learning have shown
good performance advantages in data center networks. However, the above algorithms
usually only consider network performance optimization or relatively simple network
energy-saving optimization and do not establish joint optimization goals for energy-saving
and network performance. Under the circumstance that the network scale is constantly
expanding and the network traffic demand is constantly complex, it is difficult for such
intelligent routing algorithms to formulate specific energy-efficient traffic optimization
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goals for elephant flows and mice flows, which often leads to low efficiency of routing
algorithms, and performance indicators such as network energy consumption, average
end-to-end delay, throughput, and packet loss rate still need to be improved. In addi-
tion, the above-mentioned intelligent routing algorithms usually use traditional algorithm
frameworks and neural networks for training, and the processing speed of complex data
with multiple dimensions is slow, and the convergence and effectiveness of the algorithms
need to be improved.

In response to the above problems, based on the Software-Defined Network (SDN) [16]
technology, this paper takes the energy-saving and network performance of the data
plane as the joint optimization goal and establishes the energy-saving and network perfor-
mance optimization models of elephant-flow and mice-flow scheduling, and proposes an
Ee-Routing algorithm, which is an energy-saving routing algorithm based on deep rein-
forcement learning, uses an improved Deep Deterministic Policy Gradient (DDPG) [17] as
a deep reinforcement learning framework, which can achieve continuous traffic scheduling
and optimization of the joint goal. The training process is based on a Convolutional Neural
Network (CNN) [18], taking advantage of its local perception and parameter sharing, and
ensuring that the convolution kernel has a strong response to the spatial local pattern
of the input, and can input high-dimensional vectors into the network at the same time,
avoiding the complexity of data reconstruction in the process of feature extraction and
classification. In this algorithm, the state features of the data plane are input into the CNN,
and based on the joint optimization goal of energy-saving and network performance of the
data plane, high-efficiency traffic scheduling is realized. The contributions of this paper are
summarized as follows:

(1) We analyze that the existing routing algorithms are difficult to deal with the balance
between energy-saving and network performance in the data plane, and propose an
intelligent routing algorithm Ee-Routing that jointly optimizes the energy-saving and
network performance.

(2) The traffic scheduling optimization goals of elephant flows and mice flows are es-
tablished, a DDPG algorithm framework suitable for improving energy-saving and
network performance advantages is proposed, and the CNN structure is adapted for
the algorithm convergence efficiency.

(3) Using Fat Tree as the network topology, the convergence, energy-saving, and network
performance advantages of the Ee-Routing algorithm are verified under different
traffic intensities.

This paper mainly consists of six sections. In Section 2, the energy-saving routing
optimization goals are established, and in Section 3 the energy-saving network architecture
based on SDN is built. In Section 4 we implemented the Ee-Routing, an energy-saving
routing algorithm based on DDPG, and in Section 5 we verified the energy-saving and
network performance advantages of Ee-Routing through experimental comparison. Finally,
Section 6 presents our conclusion.

2. Modeling of Energy-Efficient Routing

Traditional network traffic scheduling methods in data centers usually use a unified
traffic scheduling method, which will inevitably lead to problems such as low real-time
scheduling, unbalanced resource allocation, and high energy consumption [19]. In order to
ensure the balance of traffic in user services, our method further divides traffic into elephant
flows and mice flows for dynamic scheduling. The elephant flow usually has a long survival
time and carries a large amount of data, occupying 80–90% of the total network traffic of
the data center, the data traffic in less than 1% of the traffic packets can reach more than
90%, and less than 0.1% of the data traffic can last for 200 s [20]. The mice flow usually has
a short survival time and carries a small amount of data, the total number reaches 80% of
the total flows, and the transmission time is within 10 s [21]. Therefore, according to the
characteristics of different types of traffic, our method establishes different optimization
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methods for the elephant flows and the mice flows so as to realize the energy-saving
scheduling of the elephant flows and the mice flows.

In this paper, we assume that energy-efficient traffic scheduling is performed when the
data center network topology has been determined and both links and switch activation
and sleep are well-defined. On this basis, the network energy consumption model can
be simplified to the energy consumption model of link rate level [22], and the link power
consumption function is denoted as Power(re), where re(t) is the link transmission rate,
and the calculation process is shown in Equation (1).

Power(re)=σ+µre
α(t), 0 ≤ re ≤ βR (1)

In Equation (1), σ represents the energy consumption when the link is idle, µ represents
the link rate correlation coefficient, α represents the link rate correlation index and α > 1,
so that (re1 + re2)

α > re1
α + re2

α, re1 and re2 are the link transmission rates of the same
link at different times or different links, Power(�) can be added, β is the link redundancy
parameter and takes the value range (0, 1), and R is the maximum transmission rate of
the link. Therefore, from Equation (1), it can be seen that the minimized link energy
consumption is achieved when the flow is transmitted uniformly in time and space. The
total network energy consumption Powertotal during flow transmission is calculated as
shown in Equation (2).

Powertotal=
∫ q′ i

p′ i
∑

e∈Ea

(σ+µre
α(t))dt, re(t) = ∑

e∈Eb

si(t) (2)

In Equation (2), p′ i and q′ i respectively represent the start time and latest end time
of the flow in the actual transmission process, Ea represents the set of active links, and Eb
represents the set of all links that have flows on the link, and si(t) is the transmission rate
of a single flow.

We define the topology of the data center networks as G = (V, E, C), where V represents
the nodes set of the network topology, E represents the links set of the network topology,
and C represents the capacity set of each link. We assume that the set of elephant flows
transmitted in the network topology are denoted as Flowelephent = { fm|m ∈ N+}, the set
of mice flows are denoted as Flowmice = { fn|n ∈ N+}, where m is the number of elephant
flows, n is the number of mice flows, fi = (si, di, pi, qi, ri), and si represent the source node
of the flow, di is the destination node of the flow, pi is the start time of the flow, and qi is the
end time of the flow, ri represents the bandwidth requirement of the flow. In the network
topology, the end-to-end delay is recorded as delay(x), the packet loss rate is recorded as
loss(x), and the throughput is recorded as throught(x). The average packet loss rate and
average throughput of the elephant flows, the average end-to-end delay and the average
packet loss rate of the mice flows are calculated as shown in Equations (3)–(6).

Losselephent =

m
∑

i=1
loss( fm)

m
m ∈ N+ (3)

Throughtelephent =

m
∑

i=1
throught( fm)

m
m ∈ N+ (4)

Delaymice =

n
∑

i=1
delay( fn)

n
n ∈ N+ (5)

Lossmice =

n
∑

i=1
loss( fn)

n
n ∈ N+ (6)
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This method takes the energy-saving and the network performance of the data plane
as the joint optimization goal for traffic scheduling, and the main optimization goals
include: (1) the weighted minimum value of the network energy consumption and the
average packet loss rate and the inverse of the throughput of the elephant flows; (2) the
weighted minimum of network energy consumption and the average packet loss rate and
average end-to-end delay of the mice flows. In order to simplify the calculation method,
it is necessary to convert the quantified expressions into scalars so as to complete the
normalization of data plane performance and energy-saving, and the calculation process is
shown in Equations (7)–(11).

Powertotal
′ =

Powertotali − min
1≤j≤m+n

{
Powertotalj

}
max

1≤j≤m+n

{
Powertotalj

}
− min

1≤j≤m+n

{
Powertotalj

} (7)

Losselephent
′ =

Losselephenti
− min

1≤j≤m

{
Losselephentj

}
max

1≤j≤m

{
Losselephentj

}
− min

1≤j≤m

{
Losselephentj

} (8)

Throughtelephent
′ =

Throughtelephenti
− min

1≤j≤m

{
Throughtelephentj

}
max

1≤j≤m

{
Throughtelephentj

}
− min

1≤j≤m

{
Throughtelephentj

} (9)

Delaymice
′ =

Delaymicei − min
1≤j≤n

{
Delaymicej

}
max

1≤j≤n

{
Delaymicej

}
− min

1≤j≤n

{
Delaymicej

} (10)

Lossmice
′ =

Lossmicei − min
1≤j≤n

{
Lossmicej

}
max

1≤j≤n

{
Lossmicej

}
− min

1≤j≤n

{
Lossmicej

} (11)

Powertotal
′ represents the normalized value of the network energy consumption of

the current flow, Losselephent
′ represents the normalized value of the packet loss rate of the

current elephant flow, Throughtelephent
′ represents the normalized value of the throughput

of the current elephant flow, Delaymice
′ represents The normalized value of the delay

of the current mice flow, Lossmice
′ represents the normalized value of the packet loss

rate of the current mice flow. After the normalization is completed, we establish the
energy-saving and network performance optimization goals min φelephent and min φmice
for elephant flows and mice flows scheduling, respectively, and the calculation process is
shown in Equations (12) and (13).

min φelephent = ηPowertotal
′ + τLosselephent

′ + ρ
1

Throughtelephent
′ (12)

min φmice = ηPowertotal
′ + τLossmice

′ + ρDelaymice
′ (13)

In Equations (12) and (13), η, τ, and ρ represent the weight parameters for energy-
saving and network performance in the data plane, and η, τ, and ρ are all between
0 and 1. In order to ensure that the above traffic scheduling process is not affected
by the environment, this method defines traffic transmission constraints as shown in
Equations (14) and (15). ∫ q′ i

p′ i
si(t)dt=ci (14)
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∑v∈Γ(u) ( fi
uv − fi

vu) =


ci, i f u = si
−ci, i f u = di

0, else

 (15)

In Equation (14), ci is the flow size of the flow in the transmission interval from p′ i
to q′ i. In Equation (15), u is the sending node of the flow, v is the receiving node of the flow,
Γ(u) is the set of neighbor nodes of node u, fi

uv is the flow sent by node u, and fi
vu is the

flow received by node v.

3. Energy-Saving Routing Architecture under SDN

SDN is a new type of network architecture, it decouples control and forwarding from
each other and supports centralized and programmable network control. Based on the
advantages of SDN’s fast and flexible network control capability, customizable network
infrastructure, and low network control and management costs, our method introduces an
AI plane based on the data plane and control plane of SDN architecture for efficient network
policy generation and globalized, real-time and customized network control management,
which realizes real-time network traffic monitoring and identification elephant flows/mice
flows under energy efficient traffic scheduling. The architecture of energy-saving routing
traffic scheduling under SDN is shown in Figure 1.

Figure 1. Energy-saving routing traffic scheduling architecture under SDN.

The main functions of the data plane, control plane, and AI plane in the figure are
as follows: (1) The data plane is composed of hardware devices such as switches and
servers, and is mainly responsible for data forwarding between network devices. (2) The
control plane provides several centralized logic controllers, which are mainly responsible
for functions such as dynamic programming and control of forwarding network resources,
effectively reducing the burden of distributed network control and management. Among
them, the network detection module located in the control plane can periodically collect
the link bandwidth, delay, throughput, and network traffic information data in the network
topology through the south interface (openflow protocol) on a regular basis, and effectively
monitor the characteristics of network flows (elephant flows/mice flows). If the current
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traffic demand bandwidth exceeds 10% of the link bandwidth, the flow is determined to
be an elephant flow, otherwise, it is a mice flow. (3) The AI plane is located above the
control plane as a decision-making module, which can combine with the real-time network
status and traffic characteristics. After neural network training, energy-saving paths can
be adapted for elephant flows and mice flows, and an intelligent network policy can be
generated so that the controller can generate the flow table according to the path policy.

4. Energy-Saving Routing Scheme Based on DDPG
4.1. Ee-Routing Algorithm Framework

Our method realizes energy-saving traffic scheduling based on the environment
perception and deep learning decision-making capabilities of deep reinforcement learning.
The Ee-Routing algorithm framework uses DDPG from a novel deep reinforcement learning
method, which constructs an actor-critic framework by combining the DQN method with
the DPG method, using neural networks instead of policy functions and Q functions to form
efficient and stable discrete action control models [23]. In this paper, the DDPG algorithm
in deep reinforcement learning is introduced into the energy-saving traffic scheduling
process, and the advantages of DDPG’s online network and target network, as well as
the application of the soft update algorithm, are used to promote a more stable learning
process and ensure model convergence; DDPG needs fewer samples and there is no need
to integrate the action space, which effectively reduces the complexity of the algorithm.
This method replaces the traditional neural network in DDPG with CNN, integrates the
CNN update process with the online network and target network in DDPG, and utilizes
the advantages of CNN in high-dimensional data processing, which can effectively speed
up the algorithm convergence efficiency. The energy-saving routing framework based on
DDPG is shown in Figure 2.

Figure 2. Energy-saving routing framework based on DDPG.

Figure 2 describes the update process of the actor-critic online network and target
network, as well as the interaction between the actor-critic and the environment. The
specific actor-critic update process is as follows:
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(1) Update the online network: The online network consists of the actor online network
and the critic online network, in which the actor online network can generate the
current action at = µ(st|θµ) according to the current state st and random initialization
parameter θµ, and interact with the environment to obtain the reward rt and the next
state st+1. The combination of st and at is input to the online critic network, the current
action value function Q

(
st, at|θQ) is generated by the online critic iteration, and θQ

is a random initialization parameter. The critic online network provides gradient
information grad[Q] for the actor online network to help the actor online network
update the network, and the calculation process of the actor online network gradient
is shown in Equation (16).

∇θµ J=grad[Q] ∗ grad[µ] ≈ 1
N ∑t∇aQ(s, a|θQ)|s=st ,a=µ(st)∇θµ µ(s|θµ)|st (16)

Among them, grad[Q] is provided by the critic online network to ensure that the actor
online network action direction obtains a higher reward, and grad[µ] is provided by the
actor online network to ensure that the action of actor online network obtains a higher
reward. In addition, the critic online network can update the network parameters through
the error equation to minimize the calculation error, and the calculation process is shown
in Equation (17).

L =
1
N ∑t (yt −Q(st, at|θQ))

2
(17)

where yt is the target reward sought by the critic target network.

(2) Update the target network: In order to ensure the effectiveness and convergence of
network training, the DDPG framework provides the actor target network and the
critic target network with the same structure as the online network. The actor target
network selects the next state st+1 from the experience replay pool, and obtains the
next optimal action at+1 = µ′(st+1) after iterative training. The network parameter
θµ′ is obtained by periodically copying the actor online network parameter θµ, the
action at+1 and the state st+1 are combined input to the critic target network, the
the critic target network is iteratively trained to obtain the target value function
Q′
(

st+1, µ′
(

st+1|θµ′
)
|θQ′

)
, and the parameter θQ′ is obtained by periodically copying

the actor online network parameter θQ. The calculation process of the critic target
network providing the target return value yt for the critic online network is shown in
Equation (18).

yt = rt + γQ′(st+1, µ′(st+1|θµ′)|θQ′) (18)

(3) Experience replay pool D: The idea of experience replay is used to store informa-
tion such as state, action, and reward during the interaction between the agent and
the environment, and the valid information is transferred and stored in the tuple
(st, at, rt, st+1) as a sample, and priority is assigned to each sample. In order to avoid
correlation between the training data, the sample data can be sampled for error value
calculation based on the priority when updating the policy.

4.2. Ee-Routing Neural Network Interaction with Environment

In the Ee-Routing algorithm framework, a CNN is used for the neural network training
process of DDPG. A CNN is a deep network architecture with strong discriminative ability,
its structure mainly includes multi-layer convolution and nonlinear activation functions,
and widely used in the field of image recognition, and has a good training effect on the
input of high-dimensional complex data. According to the local receptive field, shared
weight, and pooling ability in the CNN training process, Ee-Routing inputs the network
state features per unit time into the CNN convolution kernel and performs the convolution
operation on the input network state to obtain the features map. The features map of
the previous layer is compressed to achieve dimensionality reduction processing, which
helps the training process to converge faster. After multi-layer convolution and pooling
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operations, the final full connection layer outputs a set of path weights. The agent based
on the CNN network architecture interacts with the network environment repeatedly,
continuously uses the network state and accumulated rewards to update the action, and
finally achieves energy-saving traffic scheduling. The SAR settings of the interaction
process between the agent and the environment are as follows.

(1) State space

This method takes data plane energy-saving and network performance as the joint
optimization goal, which is mainly related to the state’s information on link transmission
rate, link utilization rate, and link energy consumption at the current moment and historical
moment, assuming that there are m links. In this method, the three state features are
jointly used as the state set statet = {sLTRt , sLURt , sLECt} to input the neural network for
training, and the state elements in the state set are respectively mapped to a state feature
of the CNN. The state feature map is shown in Figure 3. Among them, the transmission
rate of these links in the network is recorded as sLTRt = {ltr1(t), ltr2(t), · · · ltrm(t)}, and
input channel1 as the state features. The utilization rate of these links is recorded as
sLURt = {lur1(t), lur2(t), · · · lurm(t)}, and input channel2 as the state features. The energy
consumption of these links is recorded as sLECt = {lec1(t), lec2(t), · · · lecm(t)}, and input
channel 3 as the state features.

Figure 3. State feature mapping.

(2) Action space

According to the network state and reward feedback information, our method set the
action as the comprehensive weight of the performance and energy consumption of each
path, which makes the flows transmit uniformly in time and space. The specific action set
is shown in Equation (19).

action = {aw1, aw2, · · · awi, · · · , awn} wi ∈W (19)

Among them, W is the set of paths that network traffic can transmit, wi represents the
wi− th path in the optional transmission path set, and awi represents an action value in
the action set, which refers to the path weight value of the wi− th path. Since this method
divides the flows into elephant flows and mice flows for traffic scheduling, if the controller
detects that the network flow is an elephant flow, it adopts a multi-path mode for traffic
transmission and allocates traffic according to the proportion of different path weights to
the total path weights. For example, if there are n optional paths between a source node si
and a target node di, the traffic distribution proportion of each path sent from source node
si to target node di can be calculated by Equation Proportioni =

awi
n
∑

i=1
awi

. If the controller

detects that the network flow is a mice flow, then a single-path mode is adopted for traffic
transmission, and the path with the larger path weight is selected as the flow transmission
path, and the maximum path weight can be selected as the mice-flow transmission path
through the set {aw1, aw2, · · · awi, · · · , awn} .
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(3) Reward function

Considering the characteristics of different flows, this method sets the reward functions
of the elephant flows and the mice flows. The main optimization goals of the elephant
flows are low energy consumption, low packet loss rate, and high throughput, therefore,
the normalized values of energy consumption, packet loss rate, and throughput are used as
reward factors. In order to intuitively experience the cumulative rewards, the inverse of
the energy consumption and the inverse of the packet loss rate are selected as the reward
value factors when the reward function is set so that the optimization goal performance
and the rewards increase in direct proportion. The specific calculation process is shown in
Equation (20).

rewardelephent = η
1

Powertotal
′ + τ

1
Losselephent

′ + ρThroughtelephent
′ (20)

In Equation (20), η, τ, and ρ are all between 0 and 1, which can be based on the
proportion of the importance of energy consumption, packet loss rate and throughput in
the elephant flows. In the same way, the mice flows take low energy consumption, low
packet loss rate, and low delay as the optimization goals, and take the normalized inverse of
the three as the reward factors. The specific calculation process is shown in Equation (21).

rewardmice = η
1

Powertotal
′ + τ

1
Lossmice

′ + ρ
1

Delaymice
′ (21)

4.3. Implementation of Ee-Routing Algorithm

In order to ensure the optimization effect of energy-saving traffic scheduling, the
Ee-Routing algorithm uses different neural networks for training on elephant flows and
mice flows. The overall algorithm process of Ee-Routing is shown in Algorithm 1. Lines
1–10 of the algorithm add the judgment of the elephant flow and the mice flow to the new
flow of the network and input the elephant flow state and the mice flow state into the
CNN1 and CNN2, respectively, based on the different cumulative rewards of the elephant
flow and mice flow in Section 4.2, the path weights of elephant flow and mice flow are
output, and the SDN controller deploys the optimized paths of elephant flow and mice flow
according to the weight information. Lines 11–23 of the algorithm design the parameter
update process of the network flows during the training process. First, the agent in line
12 obtains the initialization state s1 from the environment, and then lines 14–17 perform
actions according to the current network state to obtain the reward and the action at the next
moment and save (st, at, rt, st+1) into the experience replay pool D, and finally randomly
select mini-batch training samples from D through lines 18–23 to complete the actor-critic
network training. After several rounds of iterations, the Ee-Routing algorithm is completed,
and the path weights of the elephant flow and mice flow are output, which realizes the
optimization of energy-saving routing traffic scheduling.
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Algorithm 1 Ee-Routing Algorithm Process

1: Random initialize Parameter θµ, θQ, θµ′ , θQ′ and D
2: Input: Network topology state statet = {sLTRt , sLURt , sLECt}
3: output: Path weights of welephent and wmice
4: While new flow do
5: Determine the type of flow
6: If Flowelephent then
7: Input st into CNN1 and output welephent
8: Install the flow rules according elephant-flow scheduling
9: Else

10: Input st into CNN2 and output wmice
11: Install the flow rules according mice-flow scheduling
12: End if
13: End while
14: For episode = 1, M do
15: Initalize state s1
16: For t = 1, T do
17: Select action at=µ(st|θµ) according to the current policy
18: Execute wt ← at = µ(st|θµ) made the SDN controller builds a route path
19: Obtain rt and st+1
20: Store transition (st, at, rt, st+1) in D
21: Sample a random mini batch of N∗(st, at, rt, st+1) from D
22: yt = rt + γQ′(st+1, µ′(st+1|θµ′)|θQ′)

23: L = 1
N ∑t (yt −Q(st, at|θQ))

2

24: ∇θµJ ≈ 1
N ∑t∇aQ(s, a|θQ)|s=st ,a=µ(st)∇θµ µ(s|θµ)|st

25: θQ′ ← τθQ + (1− τ)θQ′

26: θµ′ ← τθµ + (1− τ)θµ′

27: End for
28: End for

5. Experimental Evaluation
5.1. Experimental Environment and Parameter Configuration

In the experimental process, the network simulation software Mininet [24] is used
to complete the Ee-Routing intelligent routing algorithm for performance testing. The
experiment uses the Fat Tree [25] data center network topology, including 20 switches
with 4 ports, 16 servers, and 48 links. The link bandwidth is set to 100 Mbps by default.
To simulate the network traffic of the data center, 80% of the flows are set to mice flows,
and 20% of the flows are set to elephant flows. Ee-Routing is based on the SDN network
architecture and uses the DDPG algorithm framework to implement routing updates. The
control plane uses the RYU controller to implement centralized network management, and
the data plane uses the Open vSwith virtual switch to implement the networking of the data
plane. The experimental software environment is Linux operating system Ubuntu18.04,
Tensorflow1.8.0, and Python3.5.0, the experimental hardware implementation platform is
i5-10600KF-CPU, 16GB-DDR4 memory, and two GTX-1080 8 G graphics cards.

During the Ee-Routing training process, the neural network uses the Adam optimizer
and the Relu activation function. Its parameters involve the number of algorithm training
steps, the learning rate, the target network parameter update rate, and the size of the
experience replay pool during the DRL training process. The specific configuration is
shown in Table 1.
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Table 1. Simulation experiment parameters configuration.

Experimental Parameters Parameter Value

training steps T 80.000
learning rate of actor/critic lr 0.002/0.001

target network parameter update rate tau 0.001
size of the experience replay pool D 4500

training steps of the experience replay pool M 150
discount factor λ 0.7

greedy ε 0.01
momentum m 0

raining batch size bathsize 128
reward weight parameter α β γ 0–1

5.2. Experimental Comparison

In order to evaluate the energy-saving and network performance advantages of the
proposed routing algorithm Ee-Routing, the experiment compares Ee-Routing with the
current optimal energy-saving routing algorithm, high-performance intelligent routing
algorithm, and heuristic energy-saving routing algorithm. The comparison algorithms
include: (1) Time Efficient Energy Aware Routing (DQN-EER) [15]; (2) Deep Q-Network-
based Energy-Efficient Routing (EARS) [12]; (3) intelligence-driven experiential network
architecture for automatic routing in software-defined networking (TEAR) [26]. The main
comparison contents include algorithm convergence speed and energy-saving effect, as
well as performance indicators such as network average end-to-end delay, throughput,
and packet loss rate. Among them, the energy-saving effect evaluation index is shown in
Equation (22).

Powersave = 1-
leci

lec f ull
× 100 (22)

In Equation (22), leci represents the energy consumption of these links consumed by
the current routing algorithm, and lec f ull is the total energy consumption of these links
when the link is fully loaded.

5.2.1. Convergence of the Algorithm

In order to verify the convergence of Ee-Routing, the experiment takes network
energy consumption, delay, throughput, and packet loss rate as the optimization goal, and
maximizes the cumulative rewards as the convergence evaluation standard. The reward
functions parameter weights η, τ, and ρ are all set to 1, α is set to 2 and µ is set to 1 in
the energy consumption function. Since TEAR is a traditional routing algorithm without
convergence, this experiment only compares the convergence of the intelligent routing
algorithm Ee-Routing with EARS and DQN-EER. The experimental results are shown in
Figure 4. It can be seen from the figure that as the number of training steps increases,
the cumulative rewards of Ee-Routing gradually stabilize around 30× 103 steps, while
both EARS and DQN-EER tend to stabilize around 50× 103 steps. Therefore, the upward
trend of Ee-Routing is the most obvious. The DQN-EER training process uses DQN as the
algorithm framework, it adopts a random policy method. There is a lot of variability in the
output action so the parameter update direction is not necessarily the optimal direction of
the policy gradient. Therefore, the DQN-EER algorithm has poor convergence. The EARS
training process uses DDPG as the algorithm framework. On the basis of DQN, the online
network and target network are added to learn deterministic behavior policies. The process
of integrating actions is reduced, and the derivative of the reward function to actions is
increased. The convergence efficiency of the EARS algorithm is accelerated, but the EARS
training process only uses traditional neural networks, resulting in convergence efficiency
still needing to be improved. Ee-Routing improves the online network and target network
in DDPG based on CNN, takes advantage of the CNN’s local perception and parameter
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sharing, has the advantage of processing high-dimensional data, and can further accelerate
the algorithm convergence efficiency. Therefore, Ee-Routing is guaranteed to have good
convergence.

Figure 4. Changes in cumulative rewards.

5.2.2. Energy-Saving Comparison

In order to verify the energy-saving effect of Ee-Routing in real network scenarios,
the experiment sets up network load environments with different traffic intensities. The
experiment takes network energy consumption, delay, throughput, and packet loss rate as
optimization goals, and in order to highlight the importance of energy-saving, the reward
function parameter weight η is set to 1, τ and ρ are both set to 0.5, and α is set to 2 and µ is
set to 1 in the energy consumption function, and the traffic intensity is set to 20%, 40%, 60%,
and 80%. Ee-Routing is compared with TEAR, EARS, and DQN-EER. The experimental
results are shown in Figures 5–8. As can be seen from the figure, with the increase in traffic
intensity, Ee-Routing’s energy-saving effect is better than other routing algorithms. Among
them, TEAR is a traditional energy-saving routing algorithm, and the energy-saving effect
does not change with the increase of training steps. Therefore, the energy-saving effect
is obviously weakened under the condition of increasing traffic intensity. DQN-EER as
an intelligent routing algorithm is more suitable for complex network environments than
TEAR, therefore, with the increase in the number of training steps, the energy-saving effect
is more obvious when the traffic intensity is large, but the DQN-EER training process adopts
the DQN framework and traditional neural network, and the optimization policy direction
is random, resulting in the energy-saving convergence efficiency and energy-saving effect
still needing to be improved. Due to the lack of consideration of energy-saving indicators
in the EARS intelligent routing algorithm, with the increase in the number of training steps,
the improvement of energy saving effect is small, especially when the flow intensity is large,
and the energy saving trend is relatively gentle. On the basis of DQN-EER and EARS, Ee-
Routing considers energy saving and network performance at the same time, and based on
the improved DDPG of GNN for training and updating parameters, using the deterministic
policy of DDPG, and the advantages of CNN local perception and parameter sharing, Ee-
Routing has the most obvious energy-saving effect compared to other routing algorithms.
After the algorithm model training tends to be stable, compared with the intelligent routing
algorithm DQN-EER with better energy-saving, the energy-saving percentage is increased
by 13.93%.
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Figure 5. Energy-saving percentage under 20% traffic intensity.

Figure 6. Energy-saving percentage under 40% traffic intensity.
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Figure 7. Energy-saving percentage under 60% traffic intensity.

Figure 8. Energy-saving percentage under 80% traffic intensity.

5.2.3. Performance Comparison

In order to verify the network performance indicators of Ee-Routing in real network
scenarios, the experiment sets up network load environments with different traffic intensi-
ties. The experiment takes network energy consumption, delay, throughput, and packet
loss rate as optimization goals, the reward function parameter weight η is set to 0.5, τ and
ρ are both set to 1, α is set to 2, and µ is set to 1 in the energy consumption function, and
the traffic intensity is set to 20%, 40%, 60%, and 80%. Ee-Routing is compared with TEAR,
EARS, and DQN-EER. The experimental results are shown in Figures 9–11. As can be seen
from the figures, with the increase in traffic intensity, Ee-Routing is better than other routing
algorithms in delay, throughput, and packet loss rate. Among them, the traditional routing
algorithm TEAR is often difficult to adapt to the optimal path according to the traffic load
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with the increase of traffic intensity, which easily causes link congestion. The DQN-EER
intelligent routing algorithm takes the energy-saving of the data plane and the delay of
the control plane as evaluation indicators, compared with TEAR, which improves the load
balancing ability. EARS, as a high-performance intelligent routing algorithm, considers the
delay, throughput, and load balancing rate under different traffic intensities, and adopts
the DDPG algorithm framework, so it has better load balancing ability than DQN-EER.
Ee-Routing uses delay, throughput, and packet loss rate as network performance evaluation
indicators, adopts the method of different scheduling between elephant flows and mice
flows, and improves the DDPG algorithm framework based on CNN to ensure Ee-Routing
has better energy-saving traffic scheduling advantages in complex network environments,
which makes Ee-Routing have the best load balancing ability compared with the above
three routing algorithms, and compared with the intelligent routing algorithm EARS with
better performance, the delay is reduced by 13.73%, the throughput is increased by 10.91%,
and the packet loss rate is reduced by 13.51%.

Figure 9. Delay comparison under different traffic intensities.

Figure 10. Throughput comparison under different traffic intensities.
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Figure 11. Packet loss rates comparison under different traffic intensities.

6. Conclusions

In this paper, we propose an energy-saving routing algorithm, Ee-Routing, based on
deep reinforcement learning, which uses DDPG and CNN to dynamically perceive complex
and changeable network environments, it achieves two goals, one is the convergence
and stability of Ee-Routing, and the other is that Ee-Routing has better energy saving
and network performance advantages under different traffic intensities. In this paper,
the Ee-Routing routing algorithm is compared with the TEAR, EARS, and DQN-EER
routing algorithms. The results show that Ee-Routing has good convergence and stability.
Compared with the DQN-EER routing algorithm, the energy saving percentage of Ee-
Routing is increased by 13.93%, and compared with the EARS routing algorithm, Ee-
Routing reduces the delay by 13.73%, increases the throughput by 10.91%, and reduces the
packet loss rate by 13.51%.

Overall, the conclusion of this paper shows that the Ee-Routing routing algorithm
has good energy saving and network performance advantages, and can be applied to the
network environment optimization of various data centers. Whether it is elephant flows
or mice flows, the Ee-Routing routing algorithm can effectively reduce network energy
consumption and improve network performance, it lays the foundation for further network
energy saving and performance optimization. Nevertheless, this paper mainly considers
the energy-saving and network performance of the data plane in the SDN architecture
and does not consider the network energy consumption and network performance of the
control plane. SDN is a new network architecture with decoupling of data forwarding and
logical control, with the sharp increase of network users and network traffic, the network
energy consumption and network performance of the control plane will also be affected.
Therefore, the energy-saving and network performance of the SDN control plane also
have great research significance. In the following research work, we will further study the
network energy consumption and network performance of the control plane in SDN.
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