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Abstract: In fifth-generation (5G) wireless communications, large-scale arrays pose a challenge to
the accuracy of signal models based on the plane wavefront. In this paper, a novel method for 3D
near-field direction of arrival (DOA) estimation is proposed based on large-scale uniform rectangular
array (URA). First, the near-field signal model based on the vertical rectangular array and the delay
phase shift of the received array is presented. Afterwards, the proposed method divides the complete
parameters set into multiple-parameters subsets, and only estimates one of them in each iteration,
leaving the others in the fixed subset. As a result, we can obtain the maximum convergence rate of
the deterministic maximum likelihood (DML) algorithm. Finally, the simulation results demonstrate
that the root mean square errors (RMSEs) of the proposed algorithm are closer to the Cramer-Rao
lower bounds and converge faster than those of the DML algorithm, confirming its effectiveness
and superiority.

Keywords: near-field; uniform rectangular array; source localization; Cramer-Rao

1. Introduction

Source localization is a hot topic in numerous communication domains, such as wire-
less communications, radar, microphone arrays, and so on. In fifth-generation (5G) wireless
communication systems, massive multiple-input multiple-output (MIMO) relies on the ap-
plication of a large number of array elements at the base station, which is the key enabling
technology [1]. Massive MIMO can increase system throughput, spectrum efficiency, anti-
interference capability, and high directivity. A large number of antennas not only improve
the quality of communication but are also helpful in high-accuracy localization [1,2]. Accu-
rate DOA estimation is also crucial to establish the channel model of the massive MIMO
system [1–3]. On the basis of the plane-wave assumption, a number of high-resolution
algorithms, such as the maximum likelihood estimation (MLE) method [4–6], the multi-
ple signal classification (MUSIC) algorithm [7,8], the estimation of signal parameter via
rotational invariance technique (ESPRIT) method [9–11], and some methods based on
the optimization and extension of these algorithms [12–20], have been used for far-field
source localization.

According to certain studies [21–23], the large antenna aperture and short wavelength
allow signal sources to be within the Fresnel region (i.e., near-field) of the array aperture,
thereby violating the plane wavefront assumption. In [22], the main focus was the LOS
path azimuth angle variations for four different bands across the antenna arrays at different
Tx locations. All of the findings show that the plane wavefront assumption is not valid,
and the spherical wavefront should be considered (i.e., near-field). The capacity of a short-
range line of sight (LOS) MIMO system in 3D space was investigated in [24], and it was
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concluded that capacity statistics calculated using the spherical wave model (SWM) are
more accurate and optimistic than those calculated using the plane wave model (PWM),
with the difference becoming more obvious with the increase of the array aperture to
transceiver distance ratio. As a result, the range information should be considered into the
signal model [21,22].

For this purpose, many methods have been proposed to solve it, such as some
improved methods [25,26] originating in far-field algorithms. In addition, a reduced-
dimension MUSIC algorithm based on uniform linear array (ULA) is proposed in [27] for
near-field source localization, but this method is not suitable for a two-dimensional (2D) ar-
ray. In [28], a novel near-field DOA estimation framework based on a deep complex-valued
network is used for short-range massive MIMO, however the simulation results show that
the proposed method has a better accuracy only in angle estimation. A search-free near-field
source localization method is proposed in [29]. However, the computational complexity of
the parameter separation and polynomial rooting operations is high for multiple sources’
localization. Some near-field localization algorithms based on the fourth-order cumulant
are proposed in [30,31], but the implementation steps are found to be highly complex for a
2D array-based near-field model.

The maximum likelihood estimation (MLE) is an optimal estimator [5]. The URA
is one of the possible array configurations of massive MIMO and it can support more
precise source location information by estimating azimuth, elevation, and range. However,
lots of array elements make it hard for MLE to cope with the multi-dimensional optimum
problem of the near-field model based on URA [28]. The deterministic likelihood estimation
algorithm based on the expectation-maximization (EM) method can solve this problem but
suffers from the high computational cost. Therefore, a source localization method based on
the near-field model is proposed in this paper, which utilizes second-order Taylor expansion
to approximate the spherical wavefront [27,30]. The parameter set of the DML algorithm is
divided into multiple parameter subsets, and the maximum likelihood estimation (MLE)
of the parameters is continuously iterated for each subset [32,33], which greatly reduces
the computational complexity and has a faster parameter convergence rate. Numerical
simulation results show that the proposed method can perform better than the DML
algorithm in adverse cases, such as low signal-to-noise ratio (SNR) or correlated signals.

The paper is structured as follows. In Section 2, the near-field model based on the
vertical rectangular array and the delay phase shift of the received array is presented.
Section 3 introduces the DML algorithm principle. In Section 4, the proposed method is
provided in detail. Numerical simulation results show the superiority of the proposed
method in Section 5. Finally, the summary is concluded in Section 6.

2. Near-Field Signal Model

Consider a near-field scenario at the receiver, where K narrowband source signals are
impinging on the uniform rectangular array located in the XOZ plane with (2M + 1)(2N +
1) array elements and with inter-element spacing, d, along each axis, as depicted in Figure 1.
In this case, its central array element can be considered as the phase offset reference point
and the coordinate origin. The received signals at the (m,n)-th (m = −M, · · · , 0, · · · , M,
n = −N, · · · , 0, · · · , N) array element can be expressed as [28,34,35]

ym,n(t) =
K
∑

k=1
am,n(θk, ϕk, rk)sk(t) + zm,n(t) (1)
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Figure 1. Spherical wavefront propagation model in the near-field condition.

Additionally,

am,n(ϕk, θk, rk) =
rk

rm,n,k
exp
(

j2πλ−1(rm,n,k − rk)
)

(2)

where sk(t) is the k-th (k = 1, 2, · · · , K) signal received at the reference point, θk, ϕk, and rk
are the azimuth, the elevation, and the range, respectively, for the k-th signal, λ presents
the wavelength of the signals, rk

rm,n,k
denotes the k-th source’s amplitude ratio between the

(m,n)-th sensor and the reference point, rm,n,k is the distance between the (m,n)-th sensor
and the k-th source, rk is the distance between the reference element and the k-th source,
and zm,n(t) is the additive white Gaussian noise (AWGN) at the (m,n)-th sensor element.

In the near-field model, when the k-th signal impinges on the array, rm,n,k can be
calculated as:

rm,n,k = rk

√
1 + (m2+n2)d2

r2
k

− 2 ∆s
rk

(3)

Where ∆s is the wave path difference between the (m,n)-th sensor and the reference point
in the far-field. According to the geometry, ∆s = md cos ϕk sin θk + nd cos θk.

The wavefront’s curvature is no more planar when sources are located close to the
array, i.e., in the near-field or Fresnel region (rF < 2D2/λ) [29], where D is the array
aperture (the long diagonal length of the URA). If we retain terms up to the second power
of d

rk
, then its multiplier after using the binomial expansion theorem can be written as:

rm,n,k ≈ rk +
m2d2 + n2d2

2rk
− (md cos ϕk sin θk)− (nd cos θk) − 1

2rk
(md cos ϕk sin θk + nd cos θk)

2 (4)

After replacing (rm,n,k − rk) with (4) in am,n(ϕk, θk, rk), we can obtain:

am,n = rk
rm,n,k

exp
{

j(χm,k + φn,k − ψm,n,k −ωm,n,k)
}

(5)

Here,

χm,k =
πm2d2

λrk

(
1− cos2 ϕk sin2 θk

)
(6)

φn,k =
πn2d2

λrk

(
1− cos2 θk

)
(7)

ψm,n,k =
2πd

λ
(m cos ϕk sin θk + n cos θk) (8)

ωm,n,k =
2πmnd2

λrk
cos ϕk sin θk cos θk (9)
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Note that the error caused by the Fresnel approximation (4) is significant if
rF ≤ 0.62

(
D3/λ

)1/2. In matrix form, (1) can be expressed as:

Y(t) = A ∗ S(t) + Z(t) (10)

where,
Y(t) = [y−M,−N(t), · · · , y0,0(t), · · · , yM,N(t)]

T ∈ C(2M+1)(2N+1)×1 is the array output vector,
Z(t) = [z−M,−N(t), · · · , z0,0(t), · · · , zM,N(t)]

T ∈ C(2M+1)(2N+1)×1 is the noise vector,
S(t) = [s1(t), · · · , sk(t), · · · , sK(t)]

T ∈ CK×1 is the signal vector,
A ∈ C(2M+1)(2N+1)×K is the array manifold matrix, and can be written as:

A = [a1(θ1, ϕ1, r1), a2(θ2, ϕ2, r2), · · · , aK(θK, ϕK, rK)] (11)

with
ak(θk, ϕk, rk) = [a1,1(ϕk, θk, rk), · · · , a0,0(ϕk, θk, rk), · · · aM,N(ϕk, θk, rk)]

T , and [·]T de-
notes the transpose.

In this paper, the following assumptions must be held: (a) Z(t) is the zero-mean,
temporally, and spatially additive white Gaussian noise with covariance matrix σ2 I, which
is independent of the incident signals, where I is the identity matrix. (b) The source signals
are unknown but deterministic signals.

When the number of snapshots is L, the estimated problem of this paper is to determine
the DOAs {θ1, · · · , θK}, {ϕ1, · · · , ϕK}, ranges

{
rK1+1, · · · , rK

}
, and S from these snapshots,

§, where:

§ =
[
YT(1), YT(2), · · · , YT(L)

]T
(12)

S =
[
sT(1), sT(1), · · · , sT(L)

]T
(13)

Additionally, define θ = {θ1, · · · , θK}, ϕ = {ϕ1, · · · , ϕK}, and r =
{

rK1+1, · · · , rK
}

.

3. Deterministic Maximum Likelihood Estimation

According to the MLE method, the unknown parameter set {θ, ϕ, r} and S can be
solved by the following optimization expression [25]:

[
θ̂, ϕ̂, r̂, Ŝ

]
= arg min

θ,ϕ,r,S

L

∑
t=1
‖Y(t)− A(θ, ϕ, r) ∗ S(t)‖2 (14)

The deterministic maximum likelihood estimation can go a step further to solve (14),
as follows [25]:

First Step: For the given {θ, ϕ, r}, the estimated values of Ŝ(t) that minimize (14) can
be calculated as:

Ŝ(t) = A†(θ, ϕ, r)Y(t) (15)

Second Step: Replace Ŝ(t) with S(t) in (14) and obtain the estimation of {θ, ϕ, r}:{
θ̂, ϕ̂, r̂

}
= arg max

{θ,ϕ,r}
tr
[

A(θ, ϕ, r)A†(θ, ϕ, r)K̂Y

]
(16)

where A†(θ, ϕ, r) is the pseudo-inverse of A(θ, ϕ, r), K̂Y = 1
L

L
∑

t=1
Y(t)YH(t) denotes the

sample covariance matrix of Y(t), tr[·] denotes trace, and [·]H is Hermitian transpose.
Since minimization of S(t) is a simple problem in the first step, we can acquire a closed-

form solution [25]. However, in the second step, the maximization of (16) with respect to
{θ, ϕ, r} is a complex multi-parameter optimization problem. Therefore, the EM method
can be used to solve such problem [6]. For the EM solution to our problem, both complete
data and incomplete data are utilized. In the proposed model, the received superimposed
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signals are disturbed by additive white Gaussian noise, so the mixed signals which are
composed of signal and noise can be observed at the receiver as the incomplete data [25].

It is almost impossible for us to estimate these parameters based on the incomplete
data, Y(t), but the log-likelihood function of the complete data is simple to maximize (16)
and the complete data log-likelihood function can be estimated from the incomplete data
without any difficulty. Therefore, we can explain {θk, ϕk, rk}K

k=1 by constructing natural
complete data that are affected by partial noise. The design process can be summarized as:

yk(t) = a(θk, ϕk, rk)sk(t) + zk(t) (17)

where
K
∑

k=1
zk(t) = Z(t), σ2

k = βkσ2,
K
∑

k=1
βk = 1, and {zk(t)}K

k=1 is independent white

Gaussian noises with the zero-mean whose variance is
{

σ2
k
}K

k=1. The relationship between
the incomplete data, Y(t), and the complete data, yk(t), is expressed as:

Y(t) =
K

∑
k=1

yk(t) (18)

Define:

y(t) =

y1(t)
...

yK(t)

 =

 a(θ1, r1)
...

a(θK, rK)

+

z1(t)
...

zK(t)

 (19)

†k = [yk(1), yk(2), · · · , yk(L)] (20)

† = [y(1), y(2), · · · , y(L)] (21)

As a result, the log-likelihood function of the complete data, †, is calculated as [6]:

L(†; θ, ϕ, r,S) = −
L

∑
t=1

K

∑
k=1
|yk(t)− a(θk, ϕk, rk)sk(t)|2 (22)

The EM method consists of the two-step iterative procedure, i.e., E-step (expectation)
and M-step (maximization), and it utilizes (22) to complete the estimation of unknown
source parameters. When we are at the (p + 1)-th iteration, the two-step process is as
follows [6,25,32,33]:

1. E-step: Calculate the conditional expectation of the complete data log-likelihood
according to the previous estimated results of {θp, ϕp, rp} and Sp:

Lp+1(†k; θk, ϕk, rk,Sk) = E[L(†k; θk, ϕk, rk,Sk)|θp, ϕp, rp,S p, †] (23)

2. M-step: Maximize E[L(†k; θk, ϕk, rk,Sk)|θp, ϕp, rp,S p, †] with respect to {θk, ϕk, rk}
to acquire

{
θ

p+1
k , ϕ

p+1
k , rp+1

k

}
.

By the simplifications of (23), the conditional mean can be obtained as [25]:

yp+1
k (t) = a

(
θ

p
k , ϕ

p
k , rp

k

)
sp

k (t) + βk[Y(t)− A(θp, ϕp, rp)Sp(t)] (24)

To the right of (24), the first term a
(

θP
k , ϕ

p
k , rP

k

)
sp

k (t) is the known signal estimated at the
p− th iteration, while the second term of (24) is equivalent to βk times of the overall noise
vector. According to the EM method, βk = 1/K. Note that Z(t) = Y(t)− A(θp, ϕp, rp)Sp

k (t)
is orthogonal to the signal subspace which depends on A(θp, ϕp, rp) [25].
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In the M-step, after inserting yp+1
k (t) into (22), the maximization of the complete data

log-likelihood regarding {θk, ϕk, rk} and sk(t) can be given as:

(
θ

p+1
k , ϕ

p+1
k , rp+1

k

)
= arg max

{θk ,ϕk ,rk}

aH(θk, ϕk, rk)K̂
p+1
yk a(θk, ϕk, rk)

|a(θk, ϕk, rk)|2
(25)

sp+1
k (t) =

aH
(

θ
p+1
k , ϕ

p+1
k , rp+1

k

)
yp+1

k (t)∣∣∣a(θ
p+1
k , ϕ

p+1
k , rp+1

k

)∣∣∣2 (26)

where K̂p
yk =

1
L

L
∑

t=1
yp

k (t)y
p
k (t)

H is the covariance of †k.

In addition, ref. [32] shows that the convergence rate of the EM method is inversely
proportional to the Fisher information of the constructed complete data. If all unknown
parameters are asked to update at the same time in one iteration, only each component
of the complete data contains the same noise power, i.e., β1 = β2 = · · · = βK = 1

K . The
complete data can obtain the fastest convergence rate because they contain the least Fisher
information. Notably, the EM method does not specify all unknown parameters to be
updated at the same time in one iteration.

4. Parameter Sequential Updating Strategy Based on SAGE

As a result, the Space-Alternating Generalized Expectation-Maximization (SAGE)
method can be used to improve the parameter sequential updating of the EM method, i.e.,
when we estimate the unknown parameters of the k-th signal, assuming that all parameters
of other signals are known and fixed [32,33], we only construct the complete data for
the parameters of the k-th signal, which reduces the Fisher information quantity of the
complete data.

Afterwards, we divide {yk(t)}K
k=1 into I groups, and each group is composed of Ki

signals (i = 1, · · · , I). The signals’ parameters in the other groups are assumed as known
when the parameters of the i-th group are estimated. The selected i-th group is “complete
data”, and the dimensions of the complete data are reduced to Ki when the noise power of
each component of the i-th group is equal to 1

Ki
times to the noise power of the observation

data, †, and it has the lowest Fisher information.
The Fisher information of the complete data after grouping is lower than the Fisher

information of the complete data before grouping due to Ki < K. As a result of the higher
step size of parameter updating, it can reach a stable point faster. When I = 1, the SAGE
method is equivalent to the EM method, and if I = K, the iteration process can achieve the
fastest convergence rate. Considering all of that, {βk(t)}K

k=1 can be defined as follows [32]:

[β1, · · · , βk, · · · , βK]
T =

0, · · · , 0︸ ︷︷ ︸
k−1

, 1, 0, · · · , 0︸ ︷︷ ︸
K−k


T

i.e., βk = 1 (27)

We further divide {θ, ϕ, r} into K subsets, where each subset is:

{θ, ϕ, r} = {{θ1, ϕ1, r1}, · · · , {θk, ϕk, rk}, · · · , {θK, ϕK, rK}} (28)

To reduce the computing complexity, we replace the 3D optimization approach for
calculating the MLE of one source signal’s parameters with three one-dimensional (1D)
methods, where every parameter is estimated separately [32]. It is attained by splitting
each subset {θk, ϕk, rk} into three subsets, i.e., {θk}, {ϕk}, and {rk}. For each of these
subsets, (17) is still applicable. For re-estimating the parameter in the three subsets, the
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following updating approach can be utilized to estimate the series connection of the three
SAGE rounds:

θ
p+1
k (t) = argmax

θ

aH
(

θ, ϕ
p
k , rp

k

)
K̂p+1

yk a
(

θ, ϕ
p
k , rp

k

)
∣∣∣a(θ, ϕ

p
k , rp

k

)∣∣∣2 (29)

ϕ
p+1
k (t) = argmax

ϕ

aH
(

θ
p+1
k , ϕ, rp

k

)
K̂p+1

yk a
(

θ
p+1
k , ϕ, rp

k

)
∣∣∣a(θ

p+1
k , ϕ, rp

k

)∣∣∣2 (30)

rp+1
k (t) = argmax

r

aH
(

θ
p+1
k , ϕ

p+1
k , r

)
K̂p+1

yk a
(

θ
p+1
k , ϕ

p+1
k , r

)
∣∣∣a(θ

p+1
k , ϕ

p+1
k , r

)∣∣∣2 (31)

The initialization is very important to the global convergence of the proposed algo-
rithm. Hence, we present an effective initialization method after we define Θk = {θk, ϕk, rk},
and the parameter vector of the SAGE approach is:

Θ = [Θ1, · · · , ΘK]
T (32)

Firstly, we can regard Y(t) as a single source before starting the initialization steps.
We therefore obtain:

Θ0
1 = argmax

Θ1

aH(Θ1)K̂0
y0

1
a(Θ1)

|a(Θ1)|2
(33)

Next, we can obtain s0
1 by (15), then:

y0
2(t) = Y(t)− a

(
Θ0

1

)
s0

1(t) (34)

Θ0
2 = argmax

Θ2

aH(Θ2)K̂0
y0

2
a(Θ2)

|a(Θ2)|2
(35)

We repeat these steps until we obtain the initial values of all signals. Finally,
S0 =

[
AH(Θ0)A

(
Θ0)]−1Y(t).

Considering all the above, after the i-th iteration, we assume that the estimation of all

parameters set Θ is
^
Θ

i

, and the proposed method can be summarized as follows:

1: Initialization: Choose Θ0
k, k = 1 to K, according to (33)–(35)

2: Main Loop:
3: For i← i + 1
4: for k = 1, · · · , K
5: βk = 1, obtain yi+1

k from (24);
6: Utilize yi+1

k to acquire K̂i+1
yk

, obtain θ̂i+1
k , ϕ̂i+1

k , r̂i+1
k from (29)–(31);

7: Obtain sp+1
k from (26), update Θ, i.e.,

^
Θ

i+1

k =
{

θ̂i+1
k , ϕ̂i+1

k , r̂i+1
k

}
,

^
Θ

i+1

=

[
^
Θ

i+1

1 ,
^
Θ

i+1

2 , · · · ,
^
Θ

i+1

k , Θi
k+1, · · · , Θi

K

]T

.

8: end
9: Repeat until the estimating parameters converge.
10: end

This shows that the computational cost of one iteration step of the DML algorithm
is identical to that of one iteration cycle of the proposed algorithm without (29)–(31). In
addition, the SAGE-based parameter updating strategy can improve the convergence rate,
resulting in less iteration.
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5. Performance Analysis
5.1. Simulation Results

The validity of the proposed method is tested using the RMSE (root mean squared
error) of 600 Monte Carlo simulations under different cases:

RMSEr =

√√√√ 1
600

600

∑
l=1

(
r̂k,l

λ
− rk

λ

)2
(36)

where rk is the real value of the range parameter, and r̂k,l is the estimated value of rk in the
l-th test. The RMSEs of other parameters, such as θk and ϕk, have a similar form as that of
(36). Note that the estimated range is the r̂k,l-to-wavelength ratio.

In the proposed model, the CRLB is given by the following expression [36,37]:

CRLB−1 =
2L
σ2

L

∑
t=1
<
{

C�
(

ST ⊗ JP×P

)}
, (37)

with:

S =
1
L

L

∑
t=1

s(t)sH(t) (38)

D = [D1, D2, · · · , DK] (39)

Dk =

[
∂a(θk, ϕk, rk)

∂θk
,

∂a(θk, ϕk, rk)

∂ϕk
,

∂a(θk, ϕk, rk)

∂rk

]
(40)

C = DH
[

I − A
(

AH A
)−1

AH
]

D (41)

where <{·} denotes the real part of the given argument, � denotes the Schur–Hadamard
product, and

⊗
denotes the Kronecker product. JP×P is the P× P matrix of one, and P is

the number of the unknown parameters.

CASE 1
Consider a URA with M = N = 4, and the interval between two elements is set at

d = λ/2. Therefore, the near-field region is rF ∈ [8.35λ, 64λ]. Two uncorrelated sources
are located at

(
20
◦
, 100

◦
, 9λ
)

and
(
120

◦
, 70

◦
, 12λ

)
, respectively. Furthermore, the number of

snapshots is 50, and SNR varies from −20 to 30 dB. The RMSEs of the proposed method are
smaller than those of the DML algorithm at different SNRs, as shown in Figures 2–4. When
the sources are well-separated and the signals are uncorrelated, they are both extremely
close to the theoretical bound for high SNRs. Moreover, in comparison to the DML, the
RMSEs of the proposed method perform better at a low SNR.
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CASE 2
Consider a URA with M = N = 4, and the interval between two sensors is set at

d = λ/2. Therefore, the near-field region is rF ∈ [8.35λ, 64λ]. Two correlated narrowband
sources are located at

(
30
◦
, 40

◦
, 8.7λ

)
and

(
60
◦
, 50

◦
, 12.5λ

)
, respectively. The correlation

coefficient between signals is set as 0.8762. The number of snapshots is L = 50, and the
SNR is −5 Db. As shown in Figure 5, in adverse environments including low SNR and
high correlation, because of the faster convergence rate, the RMSEs of the proposed method
converge in 4–10 iterations, but those of the DML algorithm converge in 8–18 iterations.
Besides, we also conclude that the parameter estimation error of the proposed method is
smaller than that of the DML in general.
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CASE 3
Consider a URA with M = N = 4, and the interval between two elements is set

as d = λ/2. Therefore, the near-field region is rF ∈ [8.35λ, 64λ]. In the first group, two
uncorrelated sources are located at

(
30
◦
, 40

◦
, 9λ
)

and
(
30
◦
, 45

◦
, 10λ

)
, respectively. In the

second group, two uncorrelated sources are located at
(
30
◦
, 40

◦
, 9λ
)

and
(
30
◦
, 100

◦
, 10λ

)
,

respectively. Moreover, the number of snapshots is L = 100, the SNR is 20 dB, and the
iteration varies from 1 to 30. Figure 6 illustrates that the convergence rate is faster if the
sources are well-separated, and the RMSEs of the well-separated sources are smaller than
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those of closely spaced sources. Figure 6b shows that the convergence rate will be affected
if the sources are located closer to each other.
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CASE 4
Consider a URA with M = N = 4, and the interval between two elements is set as

d = λ/2. Therefore, the near-field region is rF ∈ [8.35λ, 64λ], and two uncorrelated sources
are located at

(
20
◦
, 120

◦
, 9λ
)

and
(
30
◦
, 40

◦
, 10λ

)
, respectively. Moreover, the number of

snapshots is L = 100, the SNR is 10 dB, and the iteration varies from 1 to 30. In addition,
consider a URA with M = N = 4, and the interval between two elements is set as d = λ/2.
Therefore, the near-field region is rF ∈ [8.4λ, 64λ], and two coherent sources are located at(

20
◦
, 120

◦
, 9λ
)

and
(
30
◦
, 40

◦
, 10λ

)
, respectively. The number of snapshots is L = 100, the

SNR is 10 dB, and the iteration varies from 1 to 30. As shown in Figure 7, the RMSEs of
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all parameters can converge in 8–10 iterations whether they have uncorrelated signals or
coherent signals, and the proposed method is not very sensitive to source correlation.
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5.2. Computational Complexity

As described in Table 1, we only focus on the computational complexity of the
DML and the proposed method in (29)–(31). Here, ∆θ, ∆ϕ, and ∆r represent the search
steps of elevation, azimuth, and range, respectively. L is the number of snapshots, and
(2M + 1)(2N + 1) is the number of array elements. By looking at the complexity histogram
as shown in Figure 8, we can gain a better sense of the difference in computing cost between
the two algorithms.
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Table 1. Complexity comparison of the two algorithms.

Algorithm Complexity

DML
(

π
∆θ ×

π
∆ϕ ×

2D2/λ−0.62
√

D3/λ
∆r

)
(2M + 1)2(2N + 1)2L

Proposed
(

π
∆θ + π

∆ϕ + 2D2/λ−0.62
√

D3/λ
∆r

)
(2M + 1)2(2N + 1)2L
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The run-time is presented in Table 2 and the CPU is AMD 5800U. It can be seen that the
search step has a significant impact on the computational cost, and the proposed algorithm
has a smaller computational cost than the DML algorithm.

Table 2. Run-time of the two algorithms.

Search Steep
Time Consumption (s)

DML Proposed

∆θ = 1
◦
, ∆ϕ = 1

◦
, ∆r = 0.1λ 1478.2000 0.5362

∆θ = 2
◦
, ∆ϕ = 2

◦
, ∆r = 0.1λ 381.7101 0.4322

∆θ = 1
◦
, ∆ϕ = 1

◦
, ∆r = 0.2λ 1087.2000 0.3769

6. Conclusions

In this paper, we proposed a computationally efficient near-field source localiza-
tion method based on URA. The proposed method does not involve 3D optimization,
polynomial rooting operations, or high-order cumulants’ calculations. The Monte Carlo
simulations demonstrated that the performance of the proposed method compared to the
DML algorithm was closer to the CRLBs at a high SNR and performed better in adverse
cases such as low SNR or correlated signals. Moreover, we observed that the convergence
rate was affected if the sources were located closer to each other, and we also conclude that
the proposed method had a smaller computational cost than the DML algorithm. Future
work will concentrate on the moving and mixed near- to far-field sources.
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