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Abstract: Brain tumors are one of the deadliest cancers in the world. Researchers have conducted a lot
of research work on brain tumor segmentation with good performance due to the rapid development
of deep learning for assisting doctors in diagnosis and treatment. However, most of these methods
cannot fully combine multiple feature information and their performances need to be improved. This
study developed a novel network fusing local features representing detailed information, global
features representing global information, and multi-scale features enhancing the model’s robustness
to fully extract the features of brain tumors and proposed a novel axial-deformable attention module
for modeling global information to improve the performance of brain tumor segmentation to assist
clinicians in the automatic segmentation of brain tumors. Moreover, positional embeddings were
used to make the network training faster and improve the method’s performance. Six metrics were
used to evaluate the proposed method on the BraTS2018 dataset. Outstanding performance was
obtained with Dice score, mean Intersection over Union, precision, recall, params, and inference time
of 0.8735, 0.7756, 0.9477, 0.8769, 69.02 M, and 15.66 millisecond, respectively, for the whole tumor.
Extensive experiments demonstrated that the proposed network obtained excellent performance and
was helpful in providing supplementary advice to the clinicians.

Keywords: axial-deformable attention module; brain tumor segmentation; deep learning; global
features; local features; multi-scale features

1. Introduction

The incidence of brain tumors is increasing in recent years [1]. As well, the median
survival time of glioblastoma with the highest malignancy is only 14.6 months [2]. Brain
tumor segmentation (BTS) technology is an essential basic step with many applications such
as quantitative analysis and operational planning. However, the manual segmentation of
brain tumors is difficult and time-consuming [3]. Accurate and automatic BTS technology
is urgently needed to minimize human errors.

Automatic BTS methods can roundly fall into three categories [4], namely, atlas
registration-based methods [5,6], machine learning-based methods with hand-crafted
features [7–9], and deep learning-based methods with automatic end-to-end learned fea-
tures [10–12]. Compared with the former two categories of methods which need prior
knowledge or complex hand-crafted features, the third category of methods can directly
learn knowledge from the given data and usually obtains better segmentation performance.
Thus, the methods based on deep learning have become the research hotspot in the field
of BTS.

In recent years, deep learning-based methods have greatly promoted the development
of various fields of image analysis. Researchers are actively innovating network structures
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and data application methods to improve the performance of BTS methods by using deep
learning. Some methods directly use the structure of UNet [11] for tasks such as feature
extraction or classification [13,14]. Other methods [15–17] inspired by UNet optimize and
improve the structure of UNet, such as changing the number of skip concatenations and the
way of concatenation. The basic structure of the aforementioned models is a convolution
kernel, which has a fixed size and is used to extract local features, thus helping the models
learn detailed knowledge such as the contour and texture of the target, which is important
for segmentation tasks, including BTS. In addition, their global features are often different
due to different sizes, locations, and nature of brain tumors, even if the local features of
brain images are similar. Therefore, global features are highly significant for the BTS task.
Although repeating local operations can extract global features, the operation has several
limitations, such as causing optimization difficulties and making multi-hop dependency
modeling difficult. Adopting attention mechanisms is another popular way to extract
global features, which has given significant boosts to various fields of vision. Thus, we
applied an attention mechanism to extract global features in this study.

Wang et al. [18] introduced a nonlocal operation, computing the response at a position
as a weighted sum of the features at all positions, which was similar to the method [19]
called Transformer based on self-attention. An increasing number of studies [20,21] adopted
Transformer architecture in convolutional neural networks (CNNs) to extract global fea-
tures and fuse local features and global features to improve the performance of BTS. The
self-attention was restricted to a small local area due to the high computation and large
memory consumption of the Transformer, which limited the learning ability of the models
using the Transformer in many cases. Recently, many efforts have been made to address
this problem. Ho et al. [22] proposed the axial attention module (AAM) composing 2D
self-attention into two 1D self-attentions to reduce the computation from O

(
H2W2) to

O
(

HW
√

HW
)

, where H and W represent the height and width of the input, respectively.
Inspired by deformable convolution, Zhu et al. [23] introduced the deformable attention
module (DAM), only focusing on a small set of key sampling points around a reference, and
reduced the computation to O(HW). Liu et al. [24] proposed the Swin Transformer, which
calculated self-attention in non-overlapping local windows to reduce the memory con-
sumption and improve computational efficiency. The UTNet model built by Gao et al. [25]
projected key and value into low-dimensional features, which reduced the computation
of traditional Transformer. Applying the modules improved based on Transformer, sim-
ilar to the aforementioned modules to improve the performance of BTS and reduce the
computation complexity, is useful and popular. Cao et al. [26] proposed Swin-Unet, which
was a UNet-like pure Transformer for medical image segmentation. Valanarasu et al. [27]
introduced a gated AAM adding a control mechanism in the self-attention module to
segment medical images including brain images. Inspired by AAM and DAM, we assumed
that selecting a small set of key sampling points on a certain axis of the feature map than
selecting all points of the certain axis to compute the response at a position might be
beneficial to use effective information and discard useless information. Meanwhile, finding
relevant positions on a certain axis was easier to obtain the optimal solution than looking
for relevant locations on the entire feature map. Thus, we proposed the axial-deformable
attention (ADA) module, which sampled a small set of key points in a certain column or a
certain row to extract global features, instead of using all points in a column or row like
AAM or using points in all regions like DAM. Compared with other self-attention modules,
the ADA module had lower computational complexity and more accurate performance.

However, many researchers employed convolution operations and self-attention mech-
anisms to fuse local and global features while ignoring multi-scale features that could
effectively improve the robustness of the model [28,29], which were also essential for BTS.
Therefore, we proposed a new network that fused local feature information extracted by
convolution operations, global feature information extracted by ADA module, and multi-
scale feature information obtained by multi-scale input (MSI) and multi-scale output (MSO)
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structures to enhance the robustness of the network, effectively improving the performance
of BTS task.

This study introduced a novel U-shaped network fusing local features, global features,
and multi-scale features (LGMSU-Net) to segment brain tumors. The main contributions of
this study were as follows:

(1) A new encoder-decoder network was proposed, which reasonably and effectively
fused local features representing detailed information, global features representing
global information, and multi-scale features enhancing the robustness of the network
to significantly improve the performance of BTS with low computational complexity.

(2) A novel self-attention module was designed to extract global features, named the
ADA module. It sampled a small set of key points in a certain column or a cer-
tain row, which could achieve a more accurate performance of BTS with acceptable
computation complexity.

(3) Positional embeddings were proved in self-attention mechanism could accelerate
convergence during training and slightly improve the BTS performance.

(4) Extensive experiments had proved that the proposed network achieved excellent
performance in the task of BTS, which meant that it would help clinicians to reduce
the time spent in BTS tasks and improve the segmentation accuracy. Moreover, it also
could be used as an auxiliary tool to provide suggestions on BTS tasks to help junior
doctors improve their skills as soon as possible.

We introduce the LGMSU-Net architecture in Section 2. The experimental results of
ablation experiments and contrast experiments are presented and discussed in Section 3.
Finally, we conclude the work in Section 4.

2. Materials and Methods

In this section, we first introduced the LGMSU-Net architecture (as shown in Figure 1)
and then detailed the proposed ADA module, which could extract global features reason-
ably and efficiently generate better predictions.
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2.1. Network Architecture

As shown in Figure 1, the proposed LGMSU-Net added MSI structure on the left.
Also, some convolution operations in the middle were replaced by ADA module, which
was detailed in Section 2.2, and MSO structure was added on the right compared with
UNet [11]. The network architecture was introduced from left to right as follows. The
multi-scale features provided by the MSI structure were fused with the local features from
convolution operations, as shown on the left side of Figure 1. In the middle of the model,
the global feature extracted by ADA module integrated with the local feature extracted by
convolution operation. Finally, the MSO structure applied local features from convolution
operations to output the final result. The core idea of the model we proposed was to
reasonably and effectively fuse local, global, and multi-scale features so as to improve the
performance of BTS with acceptable computational complexity.

Inspired by a previous study [30], in the MSI structure, we applied average pooling to
generate MSI, then used a 3 × 3 convolution to increase the number of input channels to
the same number as the number of channels of the local features, and then combined them.
Finally, the multi-scale features and local features were concatenated along the channel axis.
We also used MSOs to accelerate convergence of training and fuse local features and multi-
scale features on the decoding path. Specifically, we first applied upsampling technique to
get a feature map with the same size as the original images and a 1 × 1 convolution kernel
to reduce the dimension to one dimension, as represented in Figure 1. Then we connected
the lower feature to the upper one, and adopted a 1 × 1 convolution kernel and sigmoid
activation to get MSOs of the same size as the original images, namely four probability
maps. Finally, we directly took the average of the four images, took 1 if it is greater than
0.5, and considered it as the tumor part, and took 0 as the other part, considered it as the
non-tumor part, and got the segmentation result.

2.2. ADA Module for Extracting Global Features

ADA module contained two parts similar to AAM [22], namely, Vertical-DAM (VDAM)
and Horizontal-DAM (HDAM). The VDAM mixed the information of some positions in a
certain column to compute the response at a position in the same column while ignoring
other columns, as shown in Figure 2a. Similarly, the HDAM mixed the information of some
positions in a certain row to compute the response at a position in the same row while
ignoring other rows. The response value of a certain position in the output feature maps
of VDAM or HDAM could be obtained using the Formula (1). Figure 2c was the overall
structure of the ADA module. Firstly, the input feature map was weighted by VDAM.
Then, the original feature map and the VDAM-weighted feature map were added as the
input of HDAM for horizontal attention weighting, and the final weighted feature map
was obtained.

y(x, P) = Wo
M
C

m=1

K

∑
k=1

Amk·{[ fmh(Wvx)](P + ∆Pmk)} (1)

where, m is the attention head, and M is the total head number which was set to 8 in this
study. In a certain column or a certain row, k is the sampled key and K is the total sampled
key number, which was 4 in this study. ∆P′mk ∈ RM×K×W×H×1 and Amk ∈ RM×K×W×H

were both built via linear projection over the query feature maps obtained via linear
projection over the input feature maps. A tensor T ∈ RM×K×W×H×1 with all elements
of 0 was designed, which was concatenated with ∆P′mk in the last dimension through
two different ways to build the tensor ∆Pmk ∈ RM×K×W×H×2 to the sample only in the
vertical or horizontal direction, rather than in all regions similar to DAM. ∆Pmk and Amk
denote the sampling offset and attention weight of the sampling point in the attention head,
respectively. Amk is operated by softmax function with range [0, 1]. As in DAM [23], the
bilinear interpolation was used to solve the problem that P + ∆Pmk was fractional. Wvx
obtains value feature maps fv ∈ RC×W×H and fmh(·) represents dividing fv into M parts

along the channel axis.
M
C

m=1
represents concatenating the outputs of all attention heads.
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The ADA module we proposed saved O(HW) computation over the standard self-
attention. The segmentation performances and analysis of the ADA module and other
self-attention modules were presented in Section 3.2.

3. Experiments and Discussion
3.1. Dataset and Implementation Details
3.1.1. BraTS2018 Dataset

The dataset [31–35] used in this study is from the BraTS2018 challenge, and includes
285 3D brain magnetic resonance imaging (MRI) cases. Each case contains four MRI modali-
ties (T1, T1c, T2, and FLAIR), which have been adjusted to the same size of 240 × 240 × 155.
Thus, we extracted 44,175 axial slices of 240× 240 pixels of every modality to train, validate
and test the LGMSU-Net. As well, the split ratio of the training set, validation set, and test
set is 7:1:2. In this work, we segmented the whole tumor region.

3.1.2. Preprocessing and Augmentation

The intensities in different modalities and patients are various, which will adversely
affect the performance of BTS technology. We achieved intensity normalization by applying
z-score transformation, i.e., by subtracting the mean and dividing by the standard deviation
within brain regions on each slice. Moreover, during training, we randomly employed
one of three data augmentation methods to process the slices, namely random rotations
(Rotated 90 degrees clockwise or counterclockwise at random, or rotated along any of the
three axes at random.), elastic deformation (The standard deviation of Gaussian kernel was
3, and the scale factor controlling the deformation strength was 15.), and gamma transform
(The gamma factor was set to 2).

3.1.3. Implementation Details

The input to all the networks that we study in this work is a four-channel input
consisting of a slice selected from each of the four MRI modalities. We utilized RMSprop
optimizer with weight decay 10−8, momentum 0.9 and learning rate 0.00001 to train all
networks. The batch size was 4, the number of epochs was 40 and the learning rate would
be reduced by a factor of 0.5 if the Dice score of the validation set had not been increased for
four epochs. All hyperparameters used in the network were optimal parameters obtained
through extensive experiments. Dice loss and binary cross-entropy loss functions were
directly summed to form the loss function we used for backpropagation. Furthermore, to
alleviate the overfitting problem, in addition to using data augmentation to increase the
amount of data, we also applied dropout operations in the network. We adopted Pytorch
and NVIDIA RTX 2080 Ti for all experiments.

3.2. Ablation Experiments

We used six metrics, namely Dice score, mean Intersection over Union (mIoU), Preci-
sion, Recall, number of parameters of a certain model (Params), and Inference time (The
time, in milliseconds, taken to segment a slice), to evaluate BTS performance of networks
we studied on the test set, with the checkpoint obtaining the highest Dice score on the
validation set. In addition, we performed Wilcoxon signed-rank tests on the Dice Score
metric following the method of [36] to confirm that our improvement was effective in a
statistical sense. If the p-value was less than 0.05, it was considered statistically significant.

We first examined the impact of the number of ADA modules on the BTS performance
of the proposed model without multi-input and multi-output. The experimental results
were shown in Table 1. The table showed that the Dice score evaluation index of the
model increased with the increase in the number of ADA modules until the number of
ADA modules reached three. Therefore, we applied three ADA modules in our proposed
model. The number of model parameters decreased and the inference time increased with
the increase in the number of ADA modules. This was because we did not add an ADA
module to the model but replaced some convolution operations with an ADA module,
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which revealed that an ADA module had fewer parameters than the replaced convolution
operations, but required more computation.

Table 1. “Number” in the table meant the number of ADA modules. All p-values in this table were
obtained by comparing with line 3. Place ADA module from the lowest layer of the model. For
example, “one” meant an ADA module was applied on the last layer, and “two” meant that an ADA
module was placed on the last and penultimate layers. The best performance was shown in bold.

Line Number Dice Score p-Value mIoU Precision Recall Params Inference Time

1 One 0.8488 0.021 0.7373 0.9410 0.8464 64.48 M 9.73
2 Two 0.8630 0.039 0.7590 0.9517 0.8569 63.48 M 12.40
3 Three 0.8681 1.000 0.7669 0.9424 0.8675 63.05 M 14.30
4 Four 0.8673 0.024 0.7657 0.9425 0.8604 60.31 M 18.35

Then, the effect of components in LGMSU-Net was explored and the experimental
results were listed in Table 2. As seen in line 2 of Table 2, replacing some convolution
operations in “BN“ with “ADA” significantly promoted BTS performance, revealing that
fusing global features and local features could effectively improve the segmentation per-
formance. Meanwhile, the number of parameters of the model in line 2 decreased but
the inference time increased, which was consistent with the analysis of Table 1 that an
ADA module had fewer parameters and more computation than the replaced convolution
operations. Moreover, the use of positional embeddings in the study [27] slightly improved
the BTS performance but greatly speeded up the training process, as shown in Figure 3.
Specifically, in the early stage of training, the model with positional embeddings performed
better and achieved the best validation result at the 22nd training epoch, while the model
without positional embeddings achieved the best validation result until the 36th training
epoch. Moreover, the separate use of MSI (line 4 of Table 2) and MSO (line 5 of Table 2)
both improved the network performance, revealing that the multi-scale features were
important for the BTS task. Further, the simultaneous application of the MSI and MSO, as
shown in line 6 of Table 2, further improved the BTS performance. Finally, the number of
increased parameters and inference time of all the components we used in LGMSU-Net
were acceptable compared with the improved performance.

Table 2. Evaluation results of ablation experiments on the BraTS2018 dataset using six evaluation
metrics. “BN” was the base network, namely, UNet; “ADA” was the axial-deformable attention
module; “P” was positional embeddings; “MSI” was multi-scale input, and “MSO” was multi-
scale output. The “+” of “BN + ADA” indicated that some convolution operations in the “BN”
were replaced with “ADA,” and other plus signs indicated that the corresponding component was
directly added to the original model. The “*” of “p-Value (*)” denoted the line of the model used
for comparison, for example, “0.035(1)” in line 2 meant we performed Wilcoxon signed-rank test
between “BN” in line 1 and “BN + ADA” in line 2. The best performance was shown in bold.

Line Method Dice Score p-Value (*) mIoU Precision Recall Params Inference Time

1 BN 0.8509 1.000(1) 0.7405 0.9378 0.8638 65.87 M 8.83
2 BN + ADA 0.8679 0.035(1) 0.7666 0.9430 0.8662 62.47 M 14.09
3 BN + ADA + P 0.8681 0.504(2) 0.7669 0.9424 0.8675 63.05 M 14.30
4 BN + ADA + P + MSI 0.8732 0.017(3) 0.7748 0.9447 0.8743 68.92 M 15.06
5 BN + ADA + P + MSO 0.8701 0.009(3) 0.7701 0.9463 0.8721 63.15 M 15.02
6 BN + ADA + P + MSI + MSO 0.8735 0.039(4) 0.7755 0.9477 0.8769 69.02 M 15.66

The results of the contrast experiments between the ADA module and other self-
attention modules were summarized in Table 3, which obviously showed that the ADA
module we proposed outperformed other popular self-attention modules for the BTS task,
and the assumption mentioned in Introduction was proved. The visualizations of the input
and output of different self-attention modules in the third layer of the model were plotted
in Figure 4.



Electronics 2022, 11, 1911 8 of 14

Electronics 2022, 11, x FOR PEER REVIEW 8 of 15 
 

 

Table 2. Evaluation results of ablation experiments on the BraTS2018 dataset using six evaluation 
metrics. “BN” was the base network, namely, UNet; “ADA” was the axial-deformable attention 
module; “P” was positional embeddings; “MSI” was multi-scale input, and “MSO” was multi-scale 
output. The “+” of “BN + ADA” indicated that some convolution operations in the “BN” were re-
placed with “ADA,” and other plus signs indicated that the corresponding component was directly 
added to the original model. The “∗” of “p-Value (∗)” denoted the line of the model used for com-
parison, for example, “0.035(1)” in line 2 meant we performed Wilcoxon signed-rank test between 
“BN” in line 1 and “BN + ADA” in line 2. The best performance was shown in bold. 

Line Method Dice Score p-Value (∗) mIoU Precision Recall Params Inference Time 
1 BN 0.8509 1.000(1) 0.7405 0.9378 0.8638 65.87 M 8.83 
2 BN + ADA 0.8679 0.035(1) 0.7666 0.9430 0.8662 62.47 M 14.09 
3 BN + ADA + P 0.8681 0.504(2) 0.7669 0.9424 0.8675 63.05 M 14.30 
4 BN + ADA + P + MSI 0.8732 0.017(3) 0.7748 0.9447 0.8743 68.92 M 15.06 
5 BN + ADA + P + MSO 0.8701 0.009(3) 0.7701 0.9463 0.8721 63.15 M 15.02 
6 BN + ADA + P + MSI + MSO 0.8735 0.039(4) 0.7755 0.9477 0.8769 69.02 M 15.66 

 
Figure 3. Comparison of model training performance with and without positional embeddings. The 
max evaluation during training was marked with a solid dot. 

The results of the contrast experiments between the ADA module and other self-at-
tention modules were summarized in Table 3, which obviously showed that the ADA 
module we proposed outperformed other popular self-attention modules for the BTS task, 
and the assumption mentioned in Introduction was proved. The visualizations of the in-
put and output of different self-attention modules in the third layer of the model were 
plotted in Figure 4. 

  

Figure 3. Comparison of model training performance with and without positional embeddings. The
max evaluation during training was marked with a solid dot.

Table 3. Ablation analysis on the BraTS2018 dataset for different self-attention modules using six
evaluation metrics. “Transformer” was the classical self-attention module [19], “AAM” was the
axial attention module, “DAM” was the deformable attention module, “SwinAM” was the Swin
Transformer attention module, and “ADA” was the axial-deformable attention module proposed in
this study. All p-Values in this table were obtained by comparing with the ADA (line 5). The best
performance was shown in bold.

Line Method Dice Score p-Value mIoU Precision Recall Params Inference Time

1 Transformer [19] 0.8705 0.029 0.7706 0.9407 0.8746 63.59 M 14.27
2 AAM [22] 0.8683 0.006 0.7672 0.9443 0.8634 68.00 M 11.19
3 DAM [23] 0.8660 0.015 0.7636 0.9430 0.8684 61.53 M 10.53
4 SwinAM [24] 0.8680 0.003 0.7667 0.9391 0.8749 72.36 M 11.64
5 ADA 0.8735 1.000 0.7754 0.9477 0.8769 69.02 M 15.66

As shown in Figure 4, the heatmap of the output results of our proposed ADA module
showed the strongest contrast between the brain tumor and the background region, and
the contour position of the brain tumor was the clearest, which proved that the proposed
ADA module was effective on the BTS task. To be specific, the outline, location, and size of
brain tumors were not clear in the output heatmaps of Transformer and AAM modules
and the output heatmap of SwinAM was composed of many windows after calculating
the global attention in a sliding window. Although, the DAM module’s output heatmap
was similar to that of ADA, the tumor region in the ADA module’s output heatmap was
cleaner and more strongly contrasted with the background, which explained visually why
our proposed ADA module worked better.
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3.3. Contrast Experiments

To further evaluate the performance of the proposed model, we conducted contrast
experiments between the proposed LGMSU-Net and seven other state-of-the-art methods,
namely UNet [11], DeepLab v3+ [12], AttentionUnet [37], UNet3+ [16], TransBTS [20],
Swin-Unet [26], and Unetr [38] to verify the feasibility and efficiency of LGMSU-Net
and showed the experimental results in Table 4. As shown in the table, the UNet model
achieved ideal segmentation performance for the BTS task. Although there were only
slightly more parameters and inference time, the AttentionUnet significantly improved the
BTS performance compared with UNet, which indicated that the attention mechanism was
beneficial to the BTS task. UNet3+ and DeepLab v3+ both greatly increased the parameters
and used multi-scale features. However, their segmentation results were worse than
those of UNet, which proved that fusing multi-scale features and local features without
careful design might damage the performance of models for the BTS task. TransBTS added
four Transformer layers at the bottom compared with UNet, which greatly increased the
parameters but only improved the performance a little. This showed the effectiveness
of global features and also indicated that TransBTS did not use global features correctly.
As shown in line 7 of Table 4, the Unetr whose encoding path without no convolution
operations had the maximum number of parameters but the second to last result, which
revealed that local features used to obtain detailed information played an essential role
in the BTS task. Meanwhile, the worst segmentation performance for the BTS task was
obtained using Swin-Unet, a pure Transformer with no convolution operations, which
again implied that only extracting global features and ignoring local features were not
feasible for the BTS task. Finally, the proposed LGMSU-Net, whose inference time was fast
enough, was the highest in Dice score, mIoU, and Recall evaluation metrics and had the
third-smallest number of parameters among all eight advanced models. The comparison of
the experimental data in columns 6 and 7 in Table 4 showed that the recall indexes of all
models were generally low. This may be due to the high false-negative rate caused by the
large background area in the data.
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Table 4. Comparison of the proposed LGMSU-Net with seven state-of-the-art methods. All p-Values
in this table were obtained by comparing with LGMSU-Net (line 8). The best performance was shown
in bold.

Line Method Dice Score p-Value mIoU Precision Recall Params Inference Time

1 UNet [11] 0.8509 0.007 0.7404 0.9078 0.8538 65.87 M 8.83
2 AttentionUnet [37] 0.8648 0.031 0.7618 0.9265 0.8557 68.54 M 10.53
3 UNet3+ [16] 0.8446 0.004 0.7310 0.9495 0.7425 102.96 M 19.54
4 DeepLab v3+ [12] 0.8482 0.006 0.7364 0.9546 0.7596 153.92 M 6.75
5 TransBTS [20] 0.8560 0.009 0.7482 0.9266 0.8493 118.00 M 10.04
6 Swin-Unet [26] 0.8212 0.001 0.6966 0.8903 0.8251 138.22 M 19.11
7 Unetr [38] 0.8385 0.003 0.7219 0.8845 0.8484 170.31 M 12.06
8 LGMSU-Net 0.8735 1.000 0.7754 0.9477 0.8769 69.02 M 15.66

The performance improvement of the proposed LGMSU-Net was mainly due to the
improvement of the recall index, which indicated that the model effectively alleviated the
problem of difficult segmentation due to large background proportions. We believed that
the key to achieving excellent performance of the proposed LGMSU-Net in the BTS task
was to reasonably and effectively integrate local features representing detailed information,
global features representing the global information, and multi-scale features enhancing the
robustness of the model.

Furthermore, we visualized the results of contrast experiments and showed that in
Figure 5. It can be seen that compared to the ground-truth segmentation of brain tumors in
the second row, our proposed model performed the best for different input images, both in
terms of brain tumor location and contour (the third row), which was consistent with the
above analysis.
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Figure 5. BTS results of seven state-of-the-art methods versus the proposed LGMSU-Net. The first
row represented the visual image of the input image, the second row represented the ground-truth
image of the brain tumor, and the third row represented the segmented brain tumor image through
our proposed model, the remaining seven rows were the segmented images of the other seven
advanced brain tumor segmentation models in Table 4.
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Moreover, considering that noise in real-world biomedical images was a well-known
problem that may reduce the accuracy of diagnosis, we added Gaussian noise to the input
image to explore its impact on models’ performance.

As can be seen from Table 5, the performance of all models declined to varying degrees
after noise was added. It can be seen from the drop value that the proposed model had
the minimum drop value and optimal performance. We believed that this was because the
proposed model combined various rich feature information, which enhanced the robustness
of the model and enabled it to show better performance for different inputs.

Table 5. Performance comparison of the proposed LGMSU-Net and seven state-of-the-art methods
under the influence of noise. The best performance was shown in bold.

Line Method Dice Score (No Noise) Dice Score (Noise) Drop Value

1 UNet [11] 0.8509 0.8110 0.0399
2 AttentionUnet [37] 0.8648 0.8455 0.0193
3 UNet3+ [16] 0.8446 0.8038 0.0408
4 DeepLab v3+ [12] 0.8482 0.8123 0.0359
5 TransBTS [20] 0.8560 0.8249 0.0311
6 Swin-Unet [26] 0.8212 0.7957 0.0255
7 Unetr [38] 0.8385 0.8121 0.0264
8 LGMSU-Net 0.8735 0.8603 0.0132

3.4. Limitations

Although our proposed method achieved excellent performance on the BTS task, it
also had some limitations. First, we conducted all experiments on 2D slices extracted
from 3D data, thus discarding the information between slices, which may influence the
performance of BTS. Second, M and K values in Formula (1) needed to be set manually,
which increased the work and thus limited the learning ability of the model. Thirdly, it had
not yet been applied in clinical practice, and it was not known what problems would arise
in clinical practice.

4. Conclusions and Future Work

Since brain tumors were currently one of the most lethal diseases and different brain
tumors may have the same or different shapes, textures, locations, or contours. Therefore,
BTS was a task with low fault tolerance and high difficulty. In this paper, we proposed an ac-
curate brain tumor automatic segmentation model that fused multiple feature information.
The model we designed had the following advantages.

(1) Our network extracted local detailed feature information through convolution op-
eration, multi-scale feature information to enhance the robustness of the network
through MSI and MSO, and global feature information through our proposed ADA
module, and reasonably fused these features to segment brain tumors automatically
and accurately on the Brats2018 dataset, which was superior to the seven state-of-the-
art methods, as shown in Table 4 and Figure 5. Furthermore, our model was found to
be the best robust among eight advanced BTS models by studying the effect of noise
on model performance, as shown in Table 5.

(2) The ADA module we proposed was a novel and useful self-attention module for the
BTS task. It sampled a small set of key points in a certain column or a certain row,
which could achieve a more accurate performance of BTS with acceptable computation
complexity, as shown in Table 3 and Figure 4.

(3) Positional embeddings were proved in self-attention mechanism could accelerate
convergence during training and slightly improve the BTS performance, as shown in
Table 2 and Figure 3.

(4) Extensive experiments had proved that the proposed network achieved excellent
performance on the task of BTS, which meant that it would help clinicians to reduce
the time spent in BTS tasks and improve the segmentation accuracy. Moreover, it also
could be used as an auxiliary tool to provide suggestions on BTS tasks to help junior
clinicians improve their skills as soon as possible.
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In future work, we plan to design a 3D BTS model with a small number of parameters
and memory footprint. In addition, finding ways to let the model learn the appropriate M
and K values automatically to further improve the performance and usability of the model
is also important. Moreover, inspired by [39], we will explore the image fusion algorithm
to achieve a more accurate segmentation of brain tumors. Last but not least, we still need
to further explore the practicality of our proposed method in clinical research.
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Abbreviation

Original Abbreviation
brain tumor segmentation BTS
multi-scale input MSI
multi-scale output MSO
convolutional neural network CNN
axial attention module AAM
deformable attention module DAM
axial-deformable attention ADA
U-shaped network fusing local features,
global features, and multi-scale features LGMSU-Net
Vertical-DAM VDAM
Horizontal-DAM HDAM
magnetic resonance imaging MRI
mean Intersection over Union mIoU
parameters of a certain model Params
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