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Abstract: To overcome the deficiencies of the traditional open-loop cognition method, which lacks
evaluation of the cognitive results, a novel cognitive method for greengage grading based on dynamic
feature and ensemble networks is explored in this paper. First, a greengage grading architecture with
an adaptive feedback mechanism based on error adjustment is constructed to imitate the human
cognitive mechanism. Secondly, a dynamic representation model for convolutional feature space
construction of a greengage image is established based on the entropy constraint indicators, and
the bagging classification network for greengage grading is built based on stochastic configuration
networks (SCNs) to realize a hierarchical representation of the greengage features and enhance the
generalization of the classifier. Thirdly, an entropy-based error model of the cognitive results for
greengage grading is constructed to describe the optimal cognitive problem from an information
perspective, and then the criteria and mechanism for feature level and feature efficiency regulation
are given out within the constraint of cognitive error entropy. Finally, numerous experiments are
performed on the collected greengage images. The experimental results demonstrate the effectiveness
and superiority of our method, especially for the classification of similar samples, compared with the
existing open-loop algorithms.

Keywords: greengage grading; dynamic feature; entropic constraint; feedback regulation; deep
ensemble learning

1. Introduction

The realization of the automatic classification of fruit grades has become an essen-
tial precondition for the modernization of the fruit industry [1]. Greengage is a kind of
pharmaceutical and food resource with multiple healthcare functions which is favored by
the masses. At present, the existing automatic classification mostly involves screening of
the particle size and weight. The sorting of its quality often relies on manual screening,
which is not only labor-intensive but also susceptible to subjective factors such as operator
experience, so its cognitive effect is hard to evaluate satisfactorily. Therefore, development
of a fast and accurate machine grading method becomes an urgent need to promote the fruit
industry [2–4]. A fast classification method for fruit grading based on multiple kernel sup-
port vector machines (kSVM) is proposed in [2]. A fuzzy cluster-based image segmentation
method is proposed in [3], and the extracted features are introduced into the deep neural
network to achieve apple grading. In [4], a carrot surface defect detection method based
on the fusion of computer vision and deep learning was proposed to achieve real-time
carrot quality grading. Various levels of the feature space and various perspectives within
the same feature level represent discriminative attention. However, with uncertain image
inputs and indeterminate grade outputs, the traditional machine fruit grading methods
with the open-loop method lack updated data structures of the feature space and classified
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criteria once established, which is an obvious difference from the human information
interaction mechanism with repeated comparison and inference.

Deep learning can build neural networks that imitate analysis and learning from the
global to local levels with the human brain. As a typical method, the CNN has received
widespread attention [5–8]. However, the traditional cognitive methods with CNNs still
belong to the open-loop mode. Generally, increasing the network level can reduce the
feature space dimension and extract more detailed information, while the expressive ability
of the features is proportional to the number of feature maps in the same network level
within a certain range. Nevertheless, too many network levels and feature maps will result
in an enormous increase in redundant features and computational complexity. Therefore,
the joint training mechanism between deep feature extraction and a classification model
has become a popular research direction [9]. Furthermore, the random initialization of
the weight and the uncertainty of the structure would lead to an unstable output during
network modeling. Thus, ensemble network training can overcome the random deviation
of the model to a certain extent and improve the generalization performance of the model.

The human cognition mechanism is a hierarchical information processing process of
repeated comparison and inference with prior knowledge. That is to say, a system with
a feedback mechanism could make optimal decisions by performance evaluation, which
imitates the human cognition characteristics in a sense. However, the performance of
the traditional feedback system is usually measured by the index functions. It is difficult
to define a unified performance index for an intelligent cognition system. Entropy is
usually used to establish the index model and optimize the system performance [10–12].
An inherent fuzzy entropy-based algorithm is proposed in [10] to achieve a more reliable
electroencephalogram (EEG) complexity assessment. A multi-label maximum entropy
(MME) model is introduced to realize emotion classification over short text in [11]. An
improved SVD entropy-based feature reduction method is proposed in favor of the related
feature selection in [12]. Therefore, as with the employment of the intelligent control theory
of Saridis [13], the index model with the form of an entropy function can be used to evaluate
the cognitive performance so as to construct a humanoid feedback mechanism. In this way,
the entropy function is adopted as the unified performance index for hierarchical greengage
grading to establish the equivalent measurement relationship between the information
theory and optimal cognition problem.

In [9], a method for greengage grading is proposed to overcome the deficiencies of
a traditional open-loop system, which lacks evaluation of the uncertain inputs and out-
puts. Nevertheless, the joint feedback mechanism, either semi-supervised or supervised,
can learn more cognitive knowledge with fewer labeled samples while increasing the
complexity of the learning model. In practical agricultural production applications, the
learning and decision-making efficiency is one of the most important system performance
indicators. In addition, feature selection based on the Mahalanobis distance has a weakness:
performance in nonlinear space processing. From the perspective of information, more
important cognition knowledge can be picked out to enhance the discriminative power of
the compact feature space. At the same time, hierarchical labeled confidence thresholds
are set for the semi-supervised mechanism in [9] to realize feedback adjustment. However,
such a feedback mechanism is still quite different from the human cognition mechanism.
In fact, a hierarchical feature space can be constructed by considering different granular
levels of information in feature selection, and error feedback adjustment would be real-
ized to obtain a distributed cognitive knowledge space so as to effectively improve the
system performance.

Therefore, to expand our previous work, the technical contributions in this paper are
summarized as follows: (1) proposing a greengage grading model with dynamic feature
and ensemble networks to improve the accuracy of the existing methods, (2) introducing
an SCN-based bagging network model to enhance the robustness of the greengage grade
classifier, and (3) constructing the feedback regulation criteria based on the classified accu-
racy and CNN level to imitate the human cognition mechanism with repeated comparison
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and inference from macro to micro. First, a cognitive architecture for greengage grading
with an adaptive error feedback mechanism is established to imitate the human cognition
mechanism, and the functions of each layer are analyzed. Secondly, an optimal dynamic
expression model of a convolutional feature is established, and then an ensemble deep SCN
is constructed to realize the optimal representation of greengage images with sufficiency
and separability. Third, the cognitive error of the greengage grade is represented with the
form of entropy, and then the regulation criteria of the feature level and feature efficiency
are established based on the constraint of cognitive error entropy. Ultimately, the intelligent
greengage grading algorithm based on dynamic feature and ensemble networks is given to
imitate the intelligent human cognition mechanism with repeated comparison and inference
from macro to micro. Finally, numerous experiments with comprehensive comparisons are
carried out based on random greengage images. The experimental results demonstrate the
effectiveness and superiority of our method compared with existing open-loop algorithms.

2. Framework of the Cognitive Model for Greengage Grading Based on Dynamic
Feature and Ensemble Networks

Targeting the problem that a significant difference exists in the traditional open-loop
model for automatic greengage grading and the human information processing mechanism
with repeated comparison and inference, a novel cognitive model for greengage grading
based on dynamic feature and ensemble networks is proposed in this paper. With our
cognitive model, the cognitive knowledge for greengage grading is dynamically and
hierarchically represented with sufficiency and separability to realize the repeated cognition
of greengage samples in a finite domain. The framework of the proposed model is shown
in Figure 1. A three-layered interconnected structure, comprising a training layer, cognitive
layer, and feedback layer, is adopted to achieve real-time information interaction between
training and cognition.
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Figure 1. The cognitive model for greengage grading based on dynamic feature and
ensemble networks.

1 Training Layer

Based on the parameters of the feature level and maximum entropy given by the feed-
back layer, the convolutional feature space of the training greengage images with sufficient
information is dynamically modeled. Based on the parameter of feature efficiency issued
by the feedback layer, an information system for greengage grading with separable features
with a determined feature level and feature efficiency is established. Based on the bagging
algorithm, the ensemble SCN classifier is constructed to obtain the learning results of the
training space for greengage grading, and then the integrated errors are backpropagated to
optimize the model parameters for greengage grading with a determined feature level and
feature efficiency overall. The classification rules are ultimately established for greengage
grading within the cognitive layer.



Electronics 2022, 11, 1832 4 of 14

2. Cognitive Layer

According to the feature modeling and classification rule construction provided by
the training layer, the optimal feature space of the testing greengage images is dynamically
established so as to obtain uncertain cognition results for greengage grading with a deter-
mined feature level and feature efficiency. The heuristic comparison knowledge within the
feedback layer is provided to evaluate the uncertain cognition process and the results for
greengage grading.

3. Feedback Layer

Based on the knowledge information provided by the cognitive layer and to imitate
human cognition mechanism, the indexes in the form of an entropy function are constructed
to measure the credibility of the cognition results of the test database. The feedback
cognition mechanism for greengage grading is constructed within the entropic constraint of
the cognitive error, and then the network level and the classified accuracy, which represent
the feature level of the interlevel and feature efficiency within the hierarchy, respectively, are
self-optimizing and regulated to achieve fast and accurate cognition macroscopically for the
samples near the clustering center and the hierarchical feedback cognition microscopically
for the samples near the classification surface with a finite domain.

3. Dynamic Feature Modeling of a Greengage Image with a Deep Neural Network
3.1. Deep Feature Extraction of a Greengage Image with Adaptive Dynamic Optimization

Within CNNs, hierarchical feature space can be established by regulating the network
depth. However, the complexity of parameter training increases with the increase in
network depth. Therefore, a CNN-based dynamic feature extraction model of greengage
images with adaptive structures is proposed to realize the hierarchical representation of
the cognitive knowledge for greengage grading in the condition of a finite domain.

The cognitive information for greengage grading can be represented in various depths
with an alternating structure of convolution and pooling. However, the traditional open-
loop cognitive methods of CNNs are quite different from the human information interaction
mechanism with repeated comparison and inference, and the increase in network depth
will greatly increase the computational complexity during feature extraction. To imitate
the human cognition mechanism, a dynamic convolution feature extraction model of a
greengage image with an adaptive structure is proposed. The learning process of the train-
ing samples and the cognitive process of the testing samples are correlated to adaptively
regulate the network depth of CNNs with finite domains.

Considering the consistent number of feature maps of contiguous convolutional and
pooling layers, here, we treat the connected structure with a convolutional layer and a
pooling layer as a feature level to build the dynamic CNN feature space. Suppose the
current feature level in the wth feedback cognition is lw. Namely, the depth of the CNN is
lw, consisting of lw combinations of convolution and pooling within the model. The model
structure is shown in Figure 2. As we can see from Figure 2, for an input training sample of
greengage image Ui, a feature map mlw with a size uPlw

× vPlw
can be gained successively

after lw alternating processes of convolution and pooling.
Here, we mainly discuss the influence of lw on the cognitive results for greengage

grading with a finite domain. Therefore, the other parameters of the proposed model of
convolutional feature extraction in this paper were selected as follows. The convolution
kernel size is 5 × 5, the pooling range size is 2 × 2, the max pooling method is adopted
with pooling operation, and the sigmoid function is used as the activation function. At
this point, every additional feature level combination of CNNs will reduce the size of the
feature map. Therefore, according to the original size u× v of the input image samples,
the feature level lw of the CNNs should have an upper limit lmax in the feedback cognition
process, and lmax should satisfy Equation (1):

lmax <
min{u, v}+ 4

8
(1)
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In addition, based on a convolutional kernel with a size of 1 × 1, a convolution
operation is carried in the full connection layer FC. By these means, the K dimensional
feature vector Clw

i =
{

Clw
i,1, . . . , Clw

i,K

}
of Ui is obtained and sent to the following cognitive

section, where K = uPlw
× vPlw

×mlw is the dimension of the extracted feature vector.
Furthermore, during convolution operation within a determined feature level, the

mapping from an input to an output can be realized with a convolutional kernel. In general,
more feature maps will be obtained by increasing the convolutional kernels to represent
the image information from various perspectives. However, under the condition of a finite
domain, increasing the feature dimensions will result in saturated information content and
an enormous increase in computational complexity. Therefore, it is necessary to seek a
balance between the size of the feature space and the amount of computation.

Actually, in the determined feature level lw, there is a domain of a greengage feature
map space xlw−1 =

{
xlw−1

1 , . . . , xlw−1
mlw−1

}
. According to [14], when the amount of the infor-

mation content within the domain xlw−1 reaches its maximum, there is the largest value
of information entropy Hlw−1

max = log2 mlw−1. In this respect, Equation (2) is constructed as
the iterative constraint in feature extraction of the greengage image within the determined
feature level of the CNNs so that the minimum feature map space of the greengage images

xlw =
[

xlw
1 , . . . , xlw

mlw−1

]T
can be established with sufficient information:

max
mlw

H
(

R
(
xlw
))

H
(

R
(
xlw
))

= −
θlw
∑

q=1

|Zq|
|xlw | log2

|Zq|
|xlw |

s.t. 0 < mlw ≤ mmax, θlw ≤ mlw−1

(2)

where xlw
i =

[
xlw

i,1, . . . , xlw
i,mlw

]
is the feature map vector extracted from the ith input of xlw ,

i ∈ [1, mlw−1], xlw
i,j is the jth feature map of xlw

i , j ∈ [1, mlw ], H
(

R
(

xlw
))

is the information

entropy calculated by [13], and R
(

xlw
)
=
{

Z1, . . . , Zθlw

}
is the quotient set divided from

xlw based on the equivalent relationship.
From Equation (2), the minimum feature map space with the largest amount of in-

formation in the current feature level can be established so as to realize the sufficient
representation of greengage images based on the maximum information entropy. In this
way, with the increase in depth of the CNNs (namely an increasing feature level lw), deeper
image features can be extracted to achieve dynamic representation of cognitive knowledge
for greengage grading.

Because of factors such as light and the acquisition equipment, the redundant and
related information must exist in the extracted feature space of a greengage image which is
sufficiently established based on the maximum entropy. The traditional cognition method,
which gains the output directly from the full connection layer, may lead to the curse of
dimensionality. A rough set enables data mining to analyze the information of imprecise,
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inconsistent, and incomplete information [15]. With the adoption of a variable precision
rough set and the conditional entropy-based feature selection algorithm [16], the parameter
of classified accuracy is introduced in this paper. The decision information system for
greengage grading Slw ,βw =

{
U, Blw ,βw ∪ D

}
with separable representation is constructed

with a determined feature level and feature efficiency, where, U = {U1, . . . , Un} is the
training dataset of the greengage images, Blw ,βw =

{
Blw ,βw

1 , . . . , Blw ,βw
δ

}
is the simple feature

space of the training samples with δ dimensions selected from Clw =
{

Blw
1 , . . . , Clw

K

}
, Clw is

the sufficient feature space of the training samples with K dimensions extracted based on lw
levels of the network of CNNs, Blw ,βw ⊆ Clw and δ ≤ K, βw are the current given classified
accuracy, and D = [D1, . . . , Do]

T is the grade label of the training samples. From [16], it
can be seen that for Clw with a given βw, the classified quality could map with one-to-one
feature efficiency during feature space separable optimization of a greengage image so as
to improve the model generalization.

3.2. Cognitive Rule Construction for Greengage Grading Based on Bagging Ensemble SCNs

In recent years, SCNs have been widely applied due to their advantages in learning
efficiency and approximation performance [17–20]. However, the randomness of a single
model would make for an unstable network output. It has been proven that ensemble
modeling can improve the generalization, effectiveness, and robustness of the model [21].
The bagging ensemble method can effectively reduce the model variance while ensuring
model deviation to further improve the generalization performance of the model [22].
Therefore, a bagging SCN-based classifier is constructed to build an accurate and stable
cognitive criterion for greengage grading.

Considering the compactness of the model, nh sample feature subspaces are con-
structed with random sampling from the compact feature space of a greengage image
Blw ,βw , which is gained with adaptive dynamic optimization, and then the classifier training
can be realized based on the above subspace. On the basis of the classic SCN [21], the
structure of a bagging SCN-based classifier for greengage grading is shown in Figure 3.
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For the subspace Blw ,βw
h (h ∈ [1, nh]), suppose that there is an SCN with L− 1 hidden

layer nodes. Its input-output relationship is

f h
L−1

(
Blw ,βw

h

)
=

L−1

∑
j=1

µh,jγh,j

(
ωT

h,j·B
lw ,βw
h + ρh,j

)
(L = 1, 2, . . . ; f0 = 0) (3)

where µh = [µh,1, . . . , µh,L−1]
T is the output weight, ωh,j and ρh,j are the input weights and

biases, respectively, and γh,j(·) is the activation function with which the sigmoid function
is chosen. In the SCN, ω and ρ can be found from [−λ, λ], and λ is adjustable.

The output error of the current network can be expressed aseh
L−1

(
Blw ,βw

h

)
= f h

(
Blw ,βw

h

)
− f h

L−1

(
Blw ,βw

h

)
=
[
eh

L−1,1

(
Blw ,βw

h

)
, . . . , eh

L−1,d

(
Blw ,βw

h

)]
eh

L−1,t

(
Blw ,βw

h

)
=
[
eh

L−1,t

(
Blw ,βw

1

)
, . . . , eh

L−1,t

(
Blw ,βw

δ

)] (4)
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For the current Blw ,βw , when the calculated network output residual ‖eh
L−1

(
Blw ,βw

h

)
‖

cannot meet the error requirements of the system, the hidden layer node parameters ωh,j
and ρh,j are optimized according to the supervision mechanism until the preset conditions
are met. Thus, the optimal parameters of the nh basis classifiers can be obtained. More
details on the SCN can be found in [17].

The output residuals of the classifier need to be backpropagated through the feature
space to update the relative parameters of the CNNs and bagging SCN in a global sense.
During the backpropagation process of the output error of the ensemble classifier, assuming
the cognition result of the hth SCN output is Xh. Then, the training error of the network can

be expressed as eh =
√
(Xh −D)T(Xh −D), (h ∈ [1, nh]). Therefore, the backpropagated

error of the input-output is

exh = ωh((µ̂he†
h)

†
((µ̂he†

h)
†·(1− (µ̂he†

h)
†
))) (5)

where
(
µ̂he†

h
)† denotes the error of the sub-SCN backpropagated to the hidden layer.

From Equation (5), it can be seen that the error at the input terminal of the ensemble
classifier can be calculated as E =

(
∑nh

h=1 exh
)
/nh. Therefore, the calculated E would be

backpropagated to the CNNs to optimize the model overall. To solve the problem of
the changed dimension during feature reduction, and by learning from the upsampling
method [23], zero is assigned to the positions, which are reduced in the process of Clw to
Blw ,βw ; that is to say, the dimension of Blw ,βw is expanded from δ to K so as to calculate the
backpropagation residuals as the reconstructed B̂lw ,βw =

[
B̂lw ,βw

1 , . . . , B̂lw ,βw
K

]
.

4. The Intelligent Mechanism with Feedback Cognition for Greengage Grading Based
on the Entropic Constraint of the Cognitive Error

The traditional machine cognition is generally open loop; that is, with the above
trained feature extraction and ensemble cognition model, the corresponding cognition
result of the testing database can be obtained. However, due to the randomness in the
process of image sampling, feature extraction, and model training, the cognition and
decision-making for greengage grading are uncertain. Therefore, the traditional open-loop
method lacks evaluation of the cognitive result.

4.1. The Error Representation for Greengage Grading Based on the Entropy

The cognitive results for greengage grading with a determined feature level and
feature efficiency should be measured according to the obtained greengage grades of the
testing samples and the relative information of the training samples with the corresponding
labels. The semantic information system of the cognitive error for greengage grading is
constructed based on [24]. Then, the probability knowledge model for cognitive result
evaluation can be established.

By assuming the current wth feedback cognition process with lw and βw, for the
input testing dataset of greengage image Y = {Y1, . . . , Yd}, its corresponding grade label
Olw ,βw =

{
Olw ,βw

1 , . . . , Olw ,βw
d

}
would be obtained, where Olw ,βw

t is the tth grade label of Yt

and t ∈ [1, d].
To measure the performance of the cognitive result under the current conditions, the

semantic information system of the cognitive error for greengage grading for the testing
sample Yt is constructed as Πt(w, lw, βw) =

(
Ut,g, Mg

t (w, lw, βw)
)

, where Ut,g is the ng

dimensional semantic domain of the cognitive error for greengage grading between Yt and
the corresponding training samples with the same class (the gth category) as the grade
label Olw ,βw

t , and Mg
t (w, lw, βw) is the zw dimensional semantic matrix of the cognitive error

for greengage grading for Yt in the current process g ∈ [1, o].
Regarding Πt(w, lw, βw), readers may refer to our previous work [25] for details. Here,

Mg
t (w, lw, βw) is an ng× zw matrix, which represents the performance of the cognitive result

for Yt with the current model in the semantic space. Based on the equivalence relationship,
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the quotient set Ut,g/Mg
t (w, lw, βw) = {E1,w, . . . , Es,w} can be gained by dividing Ut,g by

Mg
t (w, lw, βw), where Eσ,w is the σth equivalence class, σ ∈ [1, s], and s ≤ ng. It denotes a

larger error in the current cognitive process for Yt, with more elements in Ut,g/Mg
t (w, lw, βw)

and vice versa. Therefore, from the information theory, the cognitive process can be
represented with an entropy function. The probability density function of the cognitive
error distribution in the domain for the current process can be defined as in Equation (6):

P(Eσ,w) =
|Eσ,w|∣∣Ut,g

∣∣ (6)

The corresponding entropy of the above probability distribution, namely the cognitive
error entropy for greengage grading of the sample Yt during the wth feedback cognitive
process with lw and βw, is calculated as

Ht(w, lw, βw) = −
∑s

σ=1 P(Eσ,w) log2 P(Eσ,w)

log2 ng
(7)

In Equation (7), a smaller Ht(w, lw, βw) indicates that the smaller uncertainty of
Πt(w, lw, βw). Therefore, the cognition error of the testing sample Yt in the current cognition
process is smaller and vice versa. Accordingly, the arbitrary regulation of lw and βw to
make Ht(w, lw, βw) extremely small in the feasible region is our goal for optimal cognition.

4.2. The Feedback Regulation Mechanism of the Feature Efficiency and Feature Level Based on the
Cognitive Error

The calculation of the semantic error entropy for greengage grading quantitatively
represents the system performance of the cognitive result with the determined feature
level and feature efficiency. Thus, in this paper, Ht(w, lw, βw) is calculated to correlate the
training and testing processes. Furthermore, lw and βw are used as the regulative indexes
of the model. The intelligent cognition for greengage grading with imitating the repeated
comparison and inference would be realized though increasing the information level and
controlling the classification quality.

In fact, the final cognitive result of a testing sample can be output with the cognitive
performance that meets the target; otherwise, the feedback cognition is needed. Therefore,
for the input testing dataset Y in the wth feedback cognition process with lw and βw, the
sub-sample set Yw =

{
Y1, . . . , Yψ

}
is constructed first with the process which meets the

target and outputs the cognitive result, where Yα is the αth sample obtaining the grade
label in Yw and α ∈ [1, ψ]. In this way, the samples with the process which could not
satisfy the target currently and the corresponding calculation information can be extracted
to reconstruct the testing dataset Y according to the instruction Y ← Y−Yw . Then, the
optimal regulation of the feature level and feature efficiency can be achieved based on the
reconstructed testing dataset. At this moment, the domain of the testing dataset involving
parameter regulation is updated to d← d− ψ .

Specific to the regulation of the feature efficiency within the level, βw with non-
uniform regulation is more in line with the human cognition mechanism. In this paper, the
incremental calculation model of classified accuracy is constructed based on Ht(w, lw, βw),
and the feature efficiency is adaptively regulated with the entropic constraint to enhance
the fault tolerance and generalization of the model with a finite domain.

Suppose there is a current wth the feedback cognitive process with lw and βw, and
the calculated Ht(w, lw, βw) of Yt when the feature level l = lw = lw+1; that is, the model
level of the CNN remains unchanged. Then, the increment of the classified accuracy in the
w + 1th feedback cognitive process is defined as in Equation (8):

∆βw+1 =

lw+1· min
t=1,...,d

[Ht(w, lw, βw)]

w
(8)

In this way, the regulation of the feature efficiency of the system in the w+ 1th feedback
cognitive process should abide by Equation (9):
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{
βw+1 = βw + ·βw+1

β1 = 0.5, βw ∈ (0.5, 1]
(9)

In this way, ∆βw decreases with the increased w, which is closer to the sensory charac-
teristics of human cognition from macro to micro.

Specific to the regulation of the feature level, as can be seen from the CNN calculation
process, more hierarchical knowledge of greengage image can be extracted with the larger
lw, while the computation will also increase greatly. Therefore, it is generally desirable to
obtain a relatively comprehensive feature space with the smallest feature level.

Suppose there is a current wth feedback cognition process with lw and βw. If the
cognitive error of the current system cannot meet the constraints of the entropy index
along with repeated regulation of βw, the optimal model parameters in the current level are
reserved, and the regulation of the feature level in the w + 1th feedback cognition process
should abide by Equation (10): {

lw+1 = lw + 1
l1 = 1

(10)

Thus, the deeper level of sample knowledge is mined to re-represent the greengage image.

5. The Feedback Cognitive Algorithm for Greengage Grading Based on Dynamic
Feature and Ensemble Networks

Based on the above analysis, the feedback cognitive algorithm for greengage grading
based on dynamic feature and ensemble networks is proposed in this paper to realize the
feedback cognition of the greengage grade while imitating the human cognition mechanism.
The pseudo-code is shown in Algorithm 1.

Algorithm 1: The feedback cognitive algorithm for greengage grading based on dynamic feature
and ensemble networks

1. Input: U = {U1, . . . , Un} and Y = {Y1, . . . , Yd}. Set Yw =
{

y1, . . . , yψ
}

as all labeled testing
samples in the wth cognition process, ε as the expected error tolerance, wmax as the
maximum number of feedback, mmax as the maximum number of the feature map, lmax as
the maximum number of the feature layer, and ∆βmin as the minimum number of ∆βw.

2. Ensure: The cognitive result Ropt and the optimal model parameter Popt.
3. w← 1 , lw ← 1 , βw ← 0.5 ;
4. WhileY 6= φ, Then
5. While w ≤ wmax, and lw ≤ lmax
6. Obtain the optimal ensemble CNN-SCN model with lw and βw according to

Equations (3)–(5);
7. Obtain Olw ,βw

8. For t from 1 to d
9. Calculate Ht(w, lw, βw) according to Equation (7);
10. If Ht(w, lw, βw) ≤ ε, Then

11. Rt ← Olw ,βw
t , yα ← Yt ;

12. End If;
13. End For;
14. End While;
15. Obtain Rw and Yw,
16. Reconstruct Y ← Y−Yw , and d← d− ψ ;
17. If βw ≤ 1 and ∆βw > ∆βmin, Then
18. Calculate ∆βw+1 and βw+1 by Equations (8) and (9), and continue;
19. Else, Then
20. Calculate lw+1 according to Equation (10), and continue;
21. End If;
22. End While;
23. return Final Ropt and Popt of testing dataset
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6. Results and Discussion

To validate the performance of the proposed method, 3000 greengage images with
a size of 56 × 56 were selected to build a sample database, including 5 grades with
superior products, good products with scars, defective products, defective products with
scars, and rotten products, which were used to carry out the simulation experiments.
Then, 2500 greengage images were randomly selected as the training dataset U, and the
remaining 500 greengage images were taken as the testing dataset Y for 500 simulation
experiments. Some samples of greengage grades are shown in Figure 4. The actual grades
of the greengage samples are labeled by multiple sorters. All sampling experiments were
run in MATLAB R2014b on a computer with a 2.90-GHz Intel Core i5-3380M processor and
4G memory. After many experimental attempts and a literature review, the expected error
tolerance ε = 0.01, the maximum times for feedback cognition wmax = 20, the maximum
number of convolutional feature maps mmax = 20, the maximum depth of the feature level
lmax = 5, the minimum increment of the classified accuracy ∆βmin = 0.001, the network
parameters of the bagging SCN λ = [1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50], the subnetwork
number of SCNs nh = [2, 11] with a search step size of 1, and the number of SCN hidden
layer nodes L = [5, 50] with a search step size of 5 were selected as the preset parameters
for the simulation experiments to find the most favorable performance.
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Figure 4. Some typical greengage samples: (a) superior products, (b) good products with scars,
(c) defective products, (d) defective products with scars, and (e) rotten products.

Figure 5 shows the cognitive accuracy of the greengage grade Γ for different parameters
of the bagging SCN classifier, where l = 2, m1 = 7, m2 = 5, and β = 0.76. As can be seen in
Figure 5a, the bagging SCN classifier had the global approximation capability of nonlinear
mapping, and each hidden node in the network matched the different image features. Thus,
Γ would enhance with an increase in L when nh = 1. However, the cognitive performance
may have been deteriorated with overfitting caused by the excess basis functions in the base
network. That aside, each point in Figure 5b was obtained when the best L value was used.
As can be seen in Figure 5b, the adoption of the ensemble method could effectively enhance
the reliability of the classification model to obtain a cognitive result with more robustness.
However, not all nh values were appropriate. Having excessive basis functions not only
did not improve the recognition accuracy, but it also incurred an additional computational
cost. In our study, 6 SCN networks with 40 basis functions were sufficient to construct a
reliable ensemble model.



Electronics 2022, 11, 1832 11 of 14

Electronics 2022, 11, x FOR PEER REVIEW 11 of 15 
 

 

 

Figure 4. Some typical greengage samples: (a) superior products, (b) good products with scars, (c) 

defective products, (d) defective products with scars, and (e) rotten products. 

Figure 5 shows the cognitive accuracy of the greengage grade 𝛤 for different param-

eters of the bagging SCN classifier, where 𝑙 = 2, 𝑚1 = 7, 𝑚2 = 5, and 𝛽 = 0.76. As can 

be seen in Figure 5a, the bagging SCN classifier had the global approximation capability 

of nonlinear mapping, and each hidden node in the network matched the different image 

features. Thus, 𝛤 would enhance with an increase in 𝐿 when 𝑛ℎ = 1. However, the cog-

nitive performance may have been deteriorated with overfitting caused by the excess basis 

functions in the base network. That aside, each point in Figure 5b was obtained when the 

best 𝐿 value was used. As can be seen in Figure 5b, the adoption of the ensemble method 

could effectively enhance the reliability of the classification model to obtain a cognitive 

result with more robustness. However, not all 𝑛ℎ values were appropriate. Having ex-

cessive basis functions not only did not improve the recognition accuracy, but it also in-

curred an additional computational cost. In our study, 6 SCN networks with 40 basis func-

tions were sufficient to construct a reliable ensemble model. 

 

Figure 5. Cognitive accuracy vs. parameters of bagging SCN classifier: (a) performance with vari-

ous 𝐿 values and (b) performance with various 𝑛ℎ values. 

Figure 6 shows the average cognition accuracy ρ for different training dataset do-

mains |𝑈|  with convolution feature extraction using our information entropy-based 

method and other fixed feature map-based methods (𝑚 = 3, 𝑚 = 6, 𝑚 = 12, and 𝑚 =

18) in the open-loop experiment, in which the feature level 𝑙 = 1 and fixed correspond-

ence parameters were taken as an example. The information quantity required for classi-

fication increased with the sample domain, but the feature extraction method based on 

Figure 5. Cognitive accuracy vs. parameters of bagging SCN classifier: (a) performance with various
L values and (b) performance with various nh values.

Figure 6 shows the average cognition accuracy ρ for different training dataset domains
|U| with convolution feature extraction using our information entropy-based method and
other fixed feature map-based methods (m = 3, m = 6, m = 12, and m = 18) in the open-
loop experiment, in which the feature level l = 1 and fixed correspondence parameters
were taken as an example. The information quantity required for classification increased
with the sample domain, but the feature extraction method based on fixed feature maps
obviously did not take this into account. Therefore, as indicated by the broken lines in
Figure 6, the system performance was unitarily poor with m = 3 due to the small quantity
of extracted feature information. When m was 6, 12, and 18, relatively sufficient image
information was extracted in a certain domain to improve the cognitive accuracy to a
certain extent. However, for the cognitive problem within a limited domain, excessive
extraction of feature information would lead to a deterioration in system performance,
resulting in overfitting. As shown in Figure 6, when m = 6, m = 12, and m = 18, a
better adaptation effect could be obtained around |U| = 800, |U| = 1200, and |U| = 2000,
respectively. As shown by the solid line in Figure 6, our proposed method always built the
feature space based on the maximum information quantity, so it had better performance
for the classification with different domain sizes, especially in the large sample domain.
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Figure 7 shows the cognitive accuracy of the testing dataset for different feedback
cognition numbers w with other fixed parameters in a closed-loop experiment. The coor-
dinates of w = 1, w = 2 ∼ 4, w = 5 ∼ 10, w = 11 ∼ 16, and w = 17 ∼ 20 in the figure
correspond to the system performance with the feature level l = 1 ∼ 5, respectively. The
cognitive results under the l level were obtained based on the optimal parameters with the
l − 1 level. From Figure 7, in the determined feature level, the feature appropriateness for
the samples with a finite domain was controlled by regulating β to improve the cognitive
performance. The overall performance of each feature level correspondingly improved with
the increasing l value, which was due to the extraction of multi-level cognition knowledge
from global to local through increasing the feature level during CNN modeling. However,
when l was close to lmax, limited by the image size, and influenced by the image quality, a
large amount of invalid and faulty information was added into the feature space, resulting
in misclassification, and the computational complexity increased sharply with an increase
in l. As a result, the system performance would be affected by deterioration since l ≥ 4.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 15 
 

 

 

Figure 7. Cognitive accuracy vs. feedback cognition number 𝑤. 

To prove the effectiveness of our method, the performance of several cognition meth-

ods were compared, including dynamic CNNs + Ensemble-RVFL [8], dynamic CNNs + 

SCN [9], dynamic CNNs + RVFL, a traditional CNN, color feature + quadratic discrimi-

nant analysis (QDA) [26], and Gabor wavelet + color moments + support vector machine 

(SVM) [27]. The average cognition accuracy and the average test time are listed in Table 

1. All the comparative results are expressed as the mean ± standard deviation. 

Table 1. Comparison of various methods. 

Methods Average Recognition Accuracy (%) Average Test Time (s) 

Dynamic CNNs + bagging SCNs (our method) 97.62 ± 0.6 10.47 ± 1.9 

Dynamic CNNs + SCN 97.41 ± 0.9 10.29 ± 1.3 

Dynamic CNNs + Ensemble-RVFL 97.48 ± 1.2 10.36 ± 1.5 

Dynamic CNNs + RVFL 96.15 ± 1.5 9.67 ± 1.2 

Traditional CNN + softmax 94.26 ± 0.8 5.53 ± 1.5 

Color feature + QDA 93.91 ± 0.9 4.23 ± 1.1 

Gabor wavelet + color moments + SVM 92.72 ± 1.1 4.41 ± 0.9 

From Table 1, the following observations can be made. 

The proposed greengage grading algorithm was effective and feasible, with an aver-

age cognition accuracy of 97.62%. The feedback cognition algorithm imitated the infor-

mation interaction process of human cognition with repeated comparison and inference. 

Based on the entropy index, the credibility of the cognitive process and results for green-

gage grading were measured and constrained to regulate the feature level and feature 

efficiency, which realized the self-optimizing construction of the cognitive feature space 

and classified criteria for greengage grading in the sense of pattern classification. There-

fore, the performance was better than that of the traditional open-loop cognition mode. 

In addition, the algorithm complexity could be evaluated by the running time. The 

cognitive results of the greengage images with obvious features which met the index re-

quirements could be obtained at a lower feature level and feature efficiency. However, for 

those similar samples near the classified surface, the cognitive results were gained by re-

peated cognition from global to local with the cognitive error calculation to dynamically 

optimize the cognitive criterion in the sense of pattern classification. In fact, this caused a 

lack of real-time performance under the premise of improving the cognitive accuracy. 

However, the overall system performance was better with the condition of a finite do-

main. 

7. Conclusions 

Figure 7. Cognitive accuracy vs. feedback cognition number w.

To prove the effectiveness of our method, the performance of several cognition meth-
ods were compared, including dynamic CNNs + Ensemble-RVFL [8], dynamic CNNs +
SCN [9], dynamic CNNs + RVFL, a traditional CNN, color feature + quadratic discrimi-
nant analysis (QDA) [26], and Gabor wavelet + color moments + support vector machine
(SVM) [27]. The average cognition accuracy and the average test time are listed in Table 1.
All the comparative results are expressed as the mean ± standard deviation.

Table 1. Comparison of various methods.

Methods Average Recognition
Accuracy (%) Average Test Time (s)

Dynamic CNNs + bagging
SCNs (our method) 97.62 ± 0.6 10.47 ± 1.9

Dynamic CNNs + SCN 97.41 ± 0.9 10.29 ± 1.3
Dynamic CNNs +
Ensemble-RVFL 97.48 ± 1.2 10.36 ± 1.5

Dynamic CNNs + RVFL 96.15 ± 1.5 9.67 ± 1.2
Traditional CNN + softmax 94.26 ± 0.8 5.53 ± 1.5

Color feature + QDA 93.91 ± 0.9 4.23 ± 1.1
Gabor wavelet + color

moments + SVM 92.72 ± 1.1 4.41 ± 0.9

From Table 1, the following observations can be made.
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The proposed greengage grading algorithm was effective and feasible, with an average
cognition accuracy of 97.62%. The feedback cognition algorithm imitated the information
interaction process of human cognition with repeated comparison and inference. Based on
the entropy index, the credibility of the cognitive process and results for greengage grading
were measured and constrained to regulate the feature level and feature efficiency, which
realized the self-optimizing construction of the cognitive feature space and classified criteria
for greengage grading in the sense of pattern classification. Therefore, the performance was
better than that of the traditional open-loop cognition mode.

In addition, the algorithm complexity could be evaluated by the running time. The
cognitive results of the greengage images with obvious features which met the index
requirements could be obtained at a lower feature level and feature efficiency. However,
for those similar samples near the classified surface, the cognitive results were gained by
repeated cognition from global to local with the cognitive error calculation to dynamically
optimize the cognitive criterion in the sense of pattern classification. In fact, this caused
a lack of real-time performance under the premise of improving the cognitive accuracy.
However, the overall system performance was better with the condition of a finite domain.

7. Conclusions

An intelligent cognition model for greengage grading based on dynamic feature
and ensemble networks was explored in this paper. Cognitive knowledge for greengage
grading is dynamically modeled with multi-level and multi-perspective approaches based
on the adaptive feature level and maximum entropy. The entropy-based cognitive error
calculation and the corresponding feedback mechanism for the feature level and feature
efficiency regulation imitated the human cognition mechanism with repeated comparison
and inference effectively. The experimental results show that our closed-loop dynamic
feature modeling and ensemble network architecture can effectively improve the cognitive
accuracy. In this paper, the classified accuracy parameter increased from 0.5 to 1 with
variable steps at each feature level to improve the model’s fault tolerance. However, during
the experiment at a lower feature level, the regulated quantity tended to exceed the range
of the parameter. Therefore, how to find the optimal classified accuracy in the determined
feature level with the condition of a finite domain to optimize the system performance from
the perspective of pattern classification is the focus of future research.
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