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Abstract: Unmanned aerial vehicle (UAV) swarms have significant advantages in terms of cost,
number, and intelligence, constituting a serious threat to traditional frigate air defense systems.
Ship-borne short-range anti-air weapons undertake terminal defense tasks against UAV swarms. In
traditional air defense fire control systems, a dynamic weapon-target assignment (DWTA) is disas-
sembled into several static weapon target assignments (SWTAs), but the relationship between DWTAs
and SWTAs is not supported by effective analytical proof. Based on the combat scenario between a
frigate and UAV swarms, a model-based reinforcement learning framework was established, and
a DWAT problem was disassembled into several static combination optimization (SCO) problems
by means of the dynamic programming method. In addition, several variable neighborhood search
(VNS) operators and an opposition-based learning (OBL) operator were designed to enhance the
global search ability of the original Grey Wolf Optimizer (GWO), thereby solving SCO problems.
An improved grey wolf algorithm based on reinforcement learning (RL-IGWO) was established for
solving DWTA problems in the defense of frigates against UAV swarms. The experimental results
show that RL-IGWO had obvious advantages in both the decision making time and solution quality.

Keywords: dynamic weapon-target assignment problem (DWAT); reinforcement learning (RL); grey
wolf optimizer algorithm (GWO); variable neighborhood search (VNS); UAV swarm; opposition-
based learning (OBL); multi-objective optimization

1. Introduction

Taking the advantages of cost, large scale and high intelligence, UAV swarms constitute
a series of challenges to traditional ship air defense systems. Weapon-target assignment
(WTA) problems have become a particular research focus in the field of frigate air defense.
The quality of weapon-target assignments has a direct impact on the results of combat
between UAV swarms and frigates. The combat effectiveness of the ship air defense weapon
system may even determine which consequences occur, including war [1,2]. The purpose
of this study is enhancing combat effectiveness of the ship air defense weapon system as
much as possible, by improving the WTA quality of the global time-domain.

The aim of WTAs is to search for an optimal weapon target assignment under the
given model, so as to maximize the value of multi-objective functions. Naturally, WTAs
are stored in a matrix. The history of WTA problem can be traced back to the 1950s, at
which time such problems could only be used for commander training to improve their
command ability, due to the limited computer technology available. With the breakthrough
of computer science, the importance of WTA in battlefield decision making has attracted an
increasing amount of attention.

With battlefield environments becoming more complicated, there are difficulties in
adapting traditional static weapon-target allocation (SWTA) problems to new war situa-
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tions. Dynamic weapon-target assignment (DWTA) problems, as an extension of static
weapon-target assignment (SWTA) problems, have been extensively adopted in various
combat scenarios, such as air defense [3,4], air attack [5], electronic countermeasure [6], and
underwater defense [7]. There is an urgent need to improve the quality of solutions for
DWAT problems in strong stochastic and dynamic battlefield scenarios. Models of DWTA
problems are mostly established in the following 3 ways.

1. The “Attack-Observation-Attack” model (AOA). The AOA model is the most common
in DWTA problems, in which said problems are directly decomposed into a series of
SWTA problems, according to the current observation status. The AOA model is sim-
ple and effective, but it faces difficulties when handling large-scale DWTA problems
in the long time-domain. Kong established a meaningful and effective DWTA model
based on the AOA framework, which contains two practical and conflicting objectives,
namely, maximizing combat benefits and minimizing weapon costs. Besides that,
an improved multi-objective particle swarm optimization algorithm (IMOPSO) was
proposed by Kong. Experimental results showed that IMOPSO has better conver-
gence and distribution than other multi-objective optimization algorithms [8]. Lai
supplemented the following two novel schemes into the original AOA model: the
deterministic initialization scheme, and the target exchange scheme. The target ex-
change scheme is a local search updating feasible solutions, and it can be adopted
when the battlefield situation varies drastically. Through the scheme, the robust per-
formance of the AOA model was enhanced [9]. Hocaolu developed a constraint based
nonlinear goal programming model for weapon assignment problem to minimize
survival probability. The model not only gives optimum assignment but also results
in engagement times and defense success for multi-defense sites. This model was
exemplified by a land-based air defense example [10].

2. The “Observe-Orient-Decide-Act” model (OODA). In the process of AOA modeling,
the operational command process is not considered, and the combat command process
is an “Observe-Oriented-Declare-Act” (OODA) loop [11]. AOA model only contains
the “Observe-Act” stages, and the “Orient-Decide” stages are considered in the OODA
model. Deriving from the AOA framework, an “Observe-Orient-Decide-Act” loop
model for DWTA was established by Zhang. The receding horizon decomposition
strategy was proposed and adopted to disassemble DWTA problems, thereby broad-
ening the operational research space of each subproblem. A heuristic algorithm based
on statistical marginal return (HA-SMR) was designed, which proposed a reverse
hierarchical idea of an “asset value-target selected-weapon decision”. Experimental
results show that HA-SMR solving DWTA has advantages of real-time and robust-
ness [12]. A hybrid multi-target bi-level programming model was established by
Zhao. The upper level takes the sum of the electronic jamming effects in the whole
combat stage as an optimization objective, and the lower level takes the importance
expectation value of the target subjected to interference and combat consumption
as double optimization objectives to globally optimize the assignment scheme. To
focus on solving this complex model, a hybrid multi-objective bi-level interactive
fuzzy programming algorithm (HMOBIF) was proposed by Zhao; in this method,
exponential membership function was used to describe the satisfaction degree of each
level [13]. Although the weapon-target allocation problem is transformed into a two-
layer optimization problem, in full consideration of the “Observe-Orient-Decide-Act”
stages, there is no guarantee that the optimal solutions of subproblems can be the
global optimal in the whole time-domain.

3. The game theory model. All of the aforementioned DWTA models assume that an-
tagonist targets are all passive defense objects without intelligence, without fully
considering the dynamic game characteristics in actual battlefields. The introduc-
tion of game theory transforms the DWTA models from optimal control problems
into game control problems. At present, there is a scarcity of research on the game
theory model. The main idea of modeling is to calculate the operational benefits of
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the weapons and various target information on both sides, and to solve the Nash
equilibrium solution according to the operational benefits at different operational
moments [13]. A comprehensive mathematical dynamic game model based on both
sides was established to solve DWTA problems, and a phased solution was provided
based on Nash equilibrium algorithm and Pareto optimization. The results validated
that combining the mathematical model with the game theory method can effectively
deal with the problem of dynamic weapon-target assignment efficiently [14].

A WTA problem is a classic combination optimization problem, which has been
already demonstrated to be an NP-complete problem [15]. Due to the uncertainty of NP-
complete problems, traditional swarm intelligence algorithms are mostly used to solve WTA
problems, namely particle swarm optimization (PSO) [16], genetic algorithm (GA) [17,18],
evolutionary algorithm (EA) [19,20], ant colony optimization algorithm (ACO) [3], and
hybrid optimization strategies thereof [21]. Besides that, some other state-of-art algorithms
are also considered for solving DWTA problems [22,23].

In order to further improve the global searching ability of the swarm intelligence
algorithms, artificial intelligence techniques have been adopted to solve DWTA problems
under complex constraints. In previous research [24], by reformulating the original problem
to an unconstrained problem, a projection recurrent neural network (RNN) model was
proposed as a high-performance tool for problem solving. Said model was the first scientific
attempt at resolving WTA problems by means of projection RNN models. Some numerical
examples were presented to depict the performance and the feasibility of the method. In
another study [25], a WTA optimization approach based on multi-attribute decision making
and the deep Q-network (DQN) was proposed. For balancing the DQN convergence speed
and global optimum, a reward function that combined local and global rewards was
designed. Simulation results showed that the proposed WTA approach has the advantage
in solving large-scale WTA problem, compared with general heuristic approaches.

The aforementioned models and algorithms are significant contributions for DWTA
problem solving, but they also have the following problems:

1. The process of disassembling DWTA problems is not supported by effective analytical
proof, and there is no guarantee that the optimal solutions of subproblems can be the
global optimal in the whole time-domain.

2. For solving each subproblem that is disassembled from DWTA problems, several
imperfections exist in some state-of-the-art swarm intelligence algorithms, which can
become trapped into the local optimum at times.

3. For the process of multi-objective optimization of DWTA problems, various objective
functions have intense conflicts with others in many cases, and traditional objective
function design heavily relies on weight, for which there is no effective method.

To effectively solve the aforementioned problems, an improved grey wolf algorithm
was proposed based on reinforcement learning (RL-IGWO), and the framework of RL-
IGWO is shown in Figure 1.

In the present study, a DWTA problem under complex constraints was established
from the scenario of frigates defending against UAV swarms. The DWTA problem was
disassembled into several static combination optimization (SCO) problems by means of
the dynamic programming method and reinforcement learning, with rigorous analytic
proof. Several variable neighborhood search (VNS) operators and an opposition-based
learning (OBL) operator were designed to enhance the global search ability of the grey
wolf optimizer algorithm (GWO). To facilitate the generation of original solutions with
high quality through the GWO algorithm, a policy trained by reinforcement learning was
adopted. The GWO algorithm could also better execute a greedy policy, which is beneficial
for the state value function converge.
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Figure 1. Framework of the RL-IGWO algorithm.

The main contribution of this paper can be summarized as follows.

1. In this paper, the DWTA problem was disassembled into several static combination
optimization (SCO) problems by means of the dynamic programming method and
reinforcement learning, with rigorous analytic proof.

2. Several variable neighborhood search (VNS) operators and an opposition-based learn-
ing (OBL) operator were designed to enhance the global search ability of the grey wolf
optimizer algorithm (GWO).

3. This paper integrated reinforcement learning and the grey wolf optimizer algorithm.
Reinforcement learning is adopted to help the grey wolf optimizer algorithm generate
original solutions with high quality. The improved grey wolf optimizer algorithm can
better execute greedy policy, which is beneficial to the state value function converge.
Additionally, value state functions of reinforcement learning were considered to
design objective functions.

The rest of this paper is organized as follows. In Section 2, basic descriptions of the
battlefield scenario and the DWTA model are established. In Section 3, the RL-IGWO
algorithm is described. In Sections 4 and 5, the calculating samples are provided and
discussed. In Section 6, several conclusions are given, in addition to a discussion on
future research.

2. DWTA Problems of Frigate Defensing UAVS
2.1. Combat Scenario

The combat scenario in the present study involved five transport aircraft and five
fighters forming a combat formation to attack the frigate. Each fighter carried 40 miniature
air launched decoys (MALDs). In airspace within 926 km of the frigate, 40 MALDs were
launched by transport aircraft, forming a mixed swarm with fighters. By simulating the
radar reflection signals of fighters, the MALDs attracted the frigate’s medium-range and
long-range anti-air missiles to ensure that the fighters could accomplish their attacking
missions. At the accomplishment of the deception mission, the remaining MALD swarms
would continue to conduct attacking missions on the frigate’s radar antennas. The described
combat scenario involved the process of an approaching attack on the frigate’s radar
antennas after the MALD swarms accomplished the former deception tasks. The terminal
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short-range attacking range of the frigate anti-air weapon system against the UAV swarms
was 30 km.

Considering the cost-benefit ratio and the quantity of long-range missiles, a terminal
interception strategy was chosen for the frigate, in which short-range anti-air weapons
were used to fight against the UAV swarms. The frigate was equipped with two types of
short-range anti-air missiles, one being the shipboard artillery capable of terminal-guided
projectiles, and the other being the Phalanx system. The basic parameters of the short-range
anti-air weapons are shown in Table 1.

Table 1. Shipboard short-range anti-air weapons.

Field of Fire Hit Rate Cost/Million Dollars

Short-range missile-1 2–24 km 82% 1.15
Short-range missile-2 2–9 km 78% 0.8

Guided projectile 2–6 km 40% 0.06
Phalanx System 0.5–2 km 65% 0.02

The frigate comprehensively used the aforementioned short-range anti-air weapons to
maximize multi-objective functions, thereby increasing combat effectiveness.

Limited by fire control channels, only eight short-range anti-air missiles could be
guided at most simultaneously. For the short-range air defense missiles, a vertical launching
system was used with a firing frequency of one round per second. A single launching
channel could store 4 missiles, and the frigate could store 42 short-range anti-air missiles
in total. The firing frequency of guided projectiles could reach 4 rounds per second, with
the ship storing 120 rounds in total. The Phalanx could only attack one target at a time,
firing twice at most in the window time. The basic parameters of UAV swarms are shown
in Table 2.

Table 2. The UAV swarms.

Type Maximum Attacking Range Velocity Price Number

MALD-I 926 km 340 m/s 0.2 million
dollars 40

In this paper, a dynamic weapon-target allocation model was established for the
combat scenario of a frigate defensing UAV swarms. Considering the defense cost-benefit
ratio and small radar cross-section of UAV, a terminal interception combat scenario was
designed. In this combat scenario, the time window of intercepting UAV swarms is very
short, which puts forward new requirements for DWTA algorithms. The optimization time
of heuristic algorithms and exact solution algorithms is too long, and is not able to satisfy
the timeliness requirements in this given scenario. Hence, an improved grey wolf algorithm
based on reinforcement learning (RL-IGWO) was proposed in this paper, to improve the
solution quality and optimization speed.

2.2. Model and Constraints

The entire short-range airspace of the frigate was divided into seven sub-areas, and
the frigate used short-range anti-air weapons comprehensively in each sub-area, thereby
maximizing the cost-effectiveness ratio on the premise of ensuring interception probability.
The short-range airspace division is shown in Table 3 and Figure 1.

Table 3. Short-range airspace division graph.

Sub-Area D1 D2 D3 D4 D5 D6 D7

Distance/km 30–22 22–16 16–11 11–7.5 7.5–4.5 4.5–2 2–0
Time-sensitive window/s 26 19 14 11 8.5 6.5 5.5



Electronics 2022, 11, 1796 6 of 28

An observation can be made from the short-range airspace division graph that only
short-range missile-1 could be used in region D1, and that only the Phalanx system could
be used in region D7. The short-range anti-air weapons had their own action sub-areas.

The state expression of the model is shown in Equation (1), as follows:

S = [n,D] (1)

where n represents the number of the UAV, and D represents the sub-area of the UAV
swarm, counted from one to seven.

Action A of the model is an n × 4 weapon-target assignment matrix. The number of
columns of this matrix is determined by parameter n in state S. The action expression of
the model is shown by Equation (2), as follows:

A = [Aij]n×4 (2)

where the i− th row represents the i− th UAV among the UAV swarm; the four columns
refer to the four different kinds of anti-air weapons; 1 stands for the short-range missile-1;
2 denotes the short-range missile-2; 3 represents the guided projectile; and 4 refers to the
Phalanx; Ai1 = 0 indicates that no short-range missile-1 will attack the i − th UAV; and
Ai3 = 3 indicates that three guided projectiles will be used to intercept the i− th UAV.

According to the combat scenario, the action quantity A had the following restrictions,
and the expressions are shown in Equations (3)–(6), as follows:

Aj
i1
= 0, j = 7

Aj
i2
= 0, j = 1, 2, 3, 7

Aj
i3
= 0, j = 1, 2, 3, 4, 7

Aj
i4
= 0, j = 1, 2, 3, 4, 5, 6

(3)


n
∑

i=1
(Ai1 + Ai2) ≤ 8

6
∑

j=1

n
∑

i=1
(Aj

i1
+ Aj

i2
) ≤ 42

(4)

n

∑
i=1

A5
i3 ≤ 32,

n

∑
i=1

A6
i3 ≤ 24 (5)

A7
i4 ≤ 2,

n

∑
i=1

A7
i4 ≤ 2 (6)

where j is from one to seven, representing the sub-area where the UAV swarm is located.
The indication is that when a UAV swarm is in the sub-area j, the weapon-target assignment
matrix, as an action quantity, should meet the requirements of the aforementioned restrictions.

If the UAV swarm is not completely destroyed in one sub-area, the swarm will enter
the next sub-area. The state transformation formula is as shown as follows in Equation (7):

St = [n, D]→ St+1 = [n− death, D + 1] (7)

where St represents the t− th state; and death represents the number of UAVs intercepted
by WAT in sub-area D. The equation describes the process of the transformation from the
t− th state to the (t + 1)− th state under the action of the WAT.

2.3. Objective Functions

When a frigate defends against UAV swarms, there are many indicators that should
be considered, such as destruction value (Dv), resource consumption (Rc), efficiency-cost
ratio (Ecr), average interception rate (Air), and defense completion rate (Dcr). There is
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no doubt that the DWTA of a frigate defensing UAV swarms is a typical multi-objective
optimization problem. The aforementioned indicators are not fully independent, with some
being relevant, and others being contradictory. A number of feasible programs generated
by using multi-objective optimization algorithms, such as NSGA-2, will appear in the
Pareto frontier solution prepared at the same time. In the present study, to overcome such
problems, a multi-objective optimization problem was transformed into a single-objective
problem through the weighted method and constraints.

The expression of the destruction value (Dv) is as shown in Equation (8), as follows:

Dv =
n

∑
i=1

Value(UAVi) (8)

where Value ( ) represents the value of the target, n refers to the number of targets, and
UAVi represents the i− th destructed UAV.

The expression of resource consumption (Rc) is as shown in Equation (9), as follows:

Rc =
n

∑
i=1

Value(Weaponi) (9)

where Weaponi represents the i− th launched weapon.
The expression of efficiency-cost ratio (Ecr) is as shown in Equation (10), as follows:

Ecr = Dv/Rc (10)

The expression of average interception rate (Air) is as shown in Equation (11), as follows:

Air = 1− 1
n

n

∑
i=1

ei (11)

where ei represents the i− th UAV’s penetration probability.
The expression of average interception rate (Air) could also be expressed as shown in

the following Equation (12):

Air =
1
n

n

∑
i=1

npen

ntotal
(12)

where npen represents the number of penetrating UAVs, and ntotal represents the total
number of UAVs.

The expression of defense completion rate (Dcr) is as shown in the following Equation (13):
Dcr =

1
n

n
∑

i=1
suc

suc =
{

1, i f npen == 0
0, i f npen! = 0

(13)

where suc indicates that the i− th defensing task is successful.
The indicators Dv and Rc have an identical dimension. The weighted method was

adopted to construct a single objective function, as shown in the following Equation (14):

Jecr = w·Dv − Rc (14)

where w represents that the weights of destruction value (Dv), and the weights of resource
consumption (Rc) equal one. For the present scenario, w = 100 was recommended.

The efficiency-cost ratio (Ecr) could also be expressed as shown in the following
Equation (15):

Ecr = (Jecr + Rc)/w·Rc (15)
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Obviously, the weight w and the single-objective function Jecr directly determine the
indictor efficiency-cost ratio (Ecr).

When a frigate defends against UAV swarms, although the efficiency-cost ratio (Ecr)
is important, the fundamental task of the defender is still to protect the targets. If the
targets are attacked, the defense mission is failed. In the scenario of frigate defense, the
indicators Air and Dcr are always superior to the indicators Dv, Rc, and Ecr. Therefore, the
multi-objective optimization problems of Air and Dcr were transformed into a series of
compulsory constraints, as shown in the following Equation (16):{

Air > (1− Eair)
Dcr > (1− Edcr)

(16)

where Eair represents the fault tolerance of indicator Air, that is, 6%; and Edcr refers to the
fault tolerance of indicator Dcr, that is, 12%.

Therefore, the multi-objective optimization problem was transformed into the following
single-objective optimization problem with constraints, as expressed in Equation (17):

max Jecr.st.
{

Air > (1− Eair)
Dcr > (1− Edcr)

(17)

3. RL-IGWO Algorithm
3.1. DWTA Disassembly

The DWTA is a multi-stage sequential decision problem. In the weapon-target assign-
ment in each stage, the variation of the battlefield situation needs to be considered in real
time to obtain the global optimal solution in the time-domain.

Previous DWTA problems are mainly solved by using the framework of “Attack-
Observation-Attack” (AOA), where “observation” refers to the analysis of the battlefield
situation to determine the attack targets and available weapons, and “attack” refers to the
determination of the WAT matrix, while the attack actions are implemented according to
the decision. The process of “Observation-Attack” in the AOA framework is equated with
a SWTA problem, and the DWTA problem is able to be equivalently expressed as several
SWAT problems, as shown in the following Equation (18):

SWTA =
{

SWTA1, SWTA2, . . . , SWTAt, . . .
}

(18)

where t represents the t− th stage of the DWTA, and SWTAt refers to the SWTA of the
t− th stage of the DWTA.

The SWTAt of each stage t has its own objective function Jt, as shown in the following
Equations (19) and (20):

SWTt = max Jt(At) (19)

where At represents the weapon-target assignment matrix in the t− th stage of the DWTA.

Jt = ∑n
i=1 ∏n

j=1 (1− pt
ij)

at
ij (20)

where n indicates that there are n attacking targets in the i − th stage of the DWTA;
i represents the i − th target; m indicates that m weapons can be used at this stage; j
refers to the j− th weapon; pt

ij represents the damage probability of weapon j to target i at
the t− th stage of the DWTA, which is determined by the traits of weapons; and at

ij is the
element of At about row i and column j.

A DWTA problem is transformed into a multi-objective optimization problem through
the framework work of “AOA”, as expressed in Equation (21), as follows:

DWTA = max
{

J1, J2, . . . , Jt, . . .
}

(21)



Electronics 2022, 11, 1796 9 of 28

The strongest limitation of the AOA framework is that each SWTAt is only optimized
in the local time-domain instead of the global time-domain. For example, in the frigate, at
the first stage of defense against UAV swarms, the SWTAt generated by the OAO frame-
work only considers the short-range air defense missile-1 at the current stage, without
planning for the subsequent utilization of other weapons at the future stages. Although
heuristic algorithms can solve static optimization problems well, DWTA is a typical se-
quential decision problem with strong randomness and traits sensitive to time. Once a
decision is made, the decision cannot be changed, and the state transition caused by the
action is uncertain, which renders difficulties in optimizing the multi-objective optimiza-
tion problem of Equation (18) in the time-domain globally by means of a static heuristic
method. Reinforcement learning is a method for solving sequential decision problems.
As such, a model-based reinforcement learning framework was established [26–28], so
as to transform DWTA problems into several SCO problems by means of the dynamic
programming method.

According to the WTA matrix At = [at
ij] and the damage probability matrix Pt = [pt

ij]

at the t− th stage, the expression of the number of damaged UAVs at the t− th stage can
be obtained, as shown in the following Equations (22) and (23):

death = ∑n
i=1 broken(i) (22)

broken(i) =

0, i f x ≤
4

∏
j=1

(1− pt
ij)

at
ij

1, else
(23)

where broken(i) equals either 0 or 1, with 0 representing the successful penetration of the
i− th UAV, and 1 indicating the destruction of the i− th UAV, while x refers to a random
number uniformly distributed from 0 to 1.

According to the multi-objective functions, the reward function of reinforcement
learning is designed as shown in the following Equation (24):

r =
{
= −∞, i f death < n and D = 7

Jecr
(24)

Once a UAV breaks through the defense airspace, the frigate will pay an unacceptable
price (a considerably large negative number), where w refers to an empirical parameter,
representing the reward of each UAV being attacked, and the last four items represent
the cost for damaging those UAVs. The purpose of such design is to reduce the cost-
effectiveness ratio to the maximum extent under the constraints.

In this case, n represents the number of UAVs at this state, and S, D = 7 indicates that
the UAV flock is within sub-area 7.

The state value function v(St) of state S at the t− th stage is expressed by Equation (25).
The value of the state value function v(St) is stored in a 40 × 8 matrix V40×8.

v(St) = E(rt + rt+1 + rt+2 + rt+3 + . . .) (25)

where E( ) represents the expectation function.
Assuming that the DWAT problem follows a Markov decision process and uses a

greedy strategy when making decisions, the following Bellman discrete Equation (26) can
be obtained for the state value function:

vk+1(st) = max(rA
st + ∑

st+1

PA
stst+1

× v(st+1)) (26)

where vk(st) represents the state value function of the k− th iteration; PA
stst+1

denotes the
state transition probability matrix, representing the probability that state st transitions to
state st+1 under action A; and rA

st represents the reward value brought by the selection
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of action A under state st. The state cost function is considered to converge as vk(st)
approaches vk+1(st).

When the state value function converges, the DWTA problem is transformed into
a series of static combination optimization (SCO) problems, as shown in the following
Equations (27) and (28):

DWTA =
{

SCO1, SCO2, . . . , SCOt, . . .
}

(27)

{
SCOt : max J

(
At)

J
(

At) = (rA
st + ∑

st+1

PA
stst+1

× v(st+1)) (28)

where J
(

At) represents the objective function of this static combination optimization
problem at the t− th stage SCO(t).

3.2. Improved Grey Wolf Optimizer (IGWO)

The grey wolf optimizer (GWO) is a kind of new swarm intelligence optimization
algorithm based on the social structures and predation behaviors of wolf packs. Through
the verification of 29 standard optimization functions, the results of GWO were obviously
superior to several traditional algorithms in solving accuracy and stability [29,30]. Grey
wolf packs have a strict social hierarchy. The three wolves with the best performance
are defined as leader wolves α, β, and δ, and the other wolves are defined as follower
wolves. The follower wolves update their positions according to the condition of the leader
wolves [31,32].

The original optimization process of GWO is shown in Algorithm 1.

Algorithm 1 Grey Wolf Optimizer

1: for iter in range (itermax):
2: for i in range (n):
3: Ck = 2× random(0, 1), k = 1, 2, 3
4: Dα = C1 Aα − Ai(iter), Dβ = C2 Aβ − Ai(iter), Dδ = C3 Aδ − Ai(iter)
5: Ki = (2− iter/itermax)× [2× random(0, 1)− 1], k = 1, 2, 3
6: A1 = Aα − K1Dα, A2 = Aβ − K2Dβ, A3 = Aδ − K3Dδ

7: Ai(iter + 1) = (A1 + A2 + A3)/3
8: end for
9: end for

In Algorithm 1, Aα, Aβ, and Aδ represent the positions of the leader wolves α, β, and
δ; Ai(iter) represents the position of the wolf- i in the generation- iter; Dα, Dβ, and Dδ

represent the search neighborhood generated by α, β, and δ; random(0, 1) is a random
number between (0,1), of which the randomness determines the uncertainty of the search
neighborhood; iter represents the generation of the wolf packs; itermax represents the
maximum generation; the parameter K is a random number, of which the randomness
determines the uncertainty of the searching direction and searching depth. If the absolute
value of K is more than 1, the wolf packs will face towards the neighborhood to search. If the
absolute value of K is less than 1, the wolf packs will face away from the neighborhood to
search. The uncertainty of the search neighborhood evidently increases the global searching
ability of the GWO.

In the present study, variable neighborhood search operators and an opposition-based
learning operator were added to the GWO algorithm, which greatly enhanced the search
ability in the global decision domain.

3.2.1. Opposition-Based Learning Operator

Heuristic algorithms are mainly used to solve static optimization problems. Each
optimization is an independent process, without the function of memory. For sequential
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decision optimization problems, the state value function of reinforcement learning makes
up for the shortcomings of heuristic algorithms. A policy matrix π was designed to store
the position of leader wolves α, β, and δ. Once the state value function is determined, the
positions of leader wolves are conserved in the policy π, based on the experience gained by
reinforcement learning.

In the process of operation, the three leader wolves are put into the initial wolf pack
directly. The expression for matrix π is shown in Equation (29), as follows:

π =
[
S, Aα, Aβ, Aδ

]
(29)

where Aα, Aβ, and Aδ represent the weapon-target assignment matrix of the leader wolves
α, β, and δ, respectively.

The initial position of wolves directly determines the convergence quality of optimiza-
tion. In order to broaden the diversity of operations and avoid falling into the local optimal,
a new opposition-based learning operator [33,34] was established for generating the initial
position of wolves.

Leader wolves α, β, and δ are selected, which are generated by the policy π of rein-
forcement learning. Then, the opposition wolves α̂, β̂, and δ̂ are generated according to the
leader wolves α, β, and δ. The process of opposition-based learning is shown as Figure 2.
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Figure 2. Process of opposition-based learning.

The opposition-based position corresponds to the original position. The opposition-
based operator will select the non-zero elements of the weapon-target assignment matrix
A, and transform the elements equaling zero. The zero elements of matrix A will be
transformed into non-zero randomly. The process of the opposition-based operator is
described in Algorithm 2.

In Algorithm 2, Aα[ij] represents the weapon-target assignment matrix of the leader
wolf, Aα̂[ij] represents the opposition-based weapon-target assignment matrix of the leader
wolf, and random.randint( ) is a function for generating random integer numbers.
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Algorithm 2 Opposition-Based Operator

1: Determine the position of leader wolfs: Aα[ij]
2: Bα[ij]= Aα̂[ij] = Aα[ij]
3: for i in range (n1):
4: for j in range (n2):
5: if (Bα[ij] > 0):
6: Aα̂[ij] = 0
7: if (Bα[ij] = 0):
8: Aα̂[ij] = random.randint(0, 3)
9: end for
10: end for
11: Output: Aα̂[ij]

The illumination of OB operator is shown in Figure 3.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 29 
 

 

 

Figure 2. Process of opposition-based learning. 

The opposition-based position corresponds to the original position. The opposition-

based operator will select the non-zero elements of the weapon-target assignment matrix 

A, and transform the elements equaling zero. The zero elements of matrix A will be 

transformed into non-zero randomly. The process of the opposition-based operator is 

described in Algorithm 2. 

In Algorithm 2, 𝐴𝛼[𝑖𝑗] represents the weapon-target assignment matrix of the leader 

wolf,  𝐴�̂�[𝑖𝑗]  represents the opposition-based weapon-target assignment matrix of the 

leader wolf, and 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑖𝑛𝑡( )  is a function for generating random integer 

numbers.  

Algorithm 2: Opposition-Based Operator 

1: Determine the position of leader wolfs:𝐴𝛼[𝑖𝑗] 

2: 𝐵𝛼[𝑖𝑗]=  𝐴�̂�[𝑖𝑗] = 𝐴𝛼[𝑖𝑗] 

3:    for 𝑖 in range (𝑛1): 

4:        for 𝑗 in range (𝑛2):       

5:            if (𝐵𝛼[𝑖𝑗]>0): 

6:                𝐴�̂�[𝑖𝑗] = 0 

7:            if (𝐵𝛼[𝑖𝑗]=0): 

8:                𝐴�̂�[𝑖𝑗] = 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(0,3) 

9:         end for 

10:    end for 

11: Output: 𝐴�̂�[𝑖𝑗] 

The illumination of OB operator is shown in Figure 3. 

 

Figure 3. Illumination of the OB operator. Figure 3. Illumination of the OB operator.

3.2.2. Variable Neighborhood Search Operator

In the present study, the variable neighborhood search method was adopted to enhance
the local search ability of the grey wolf algorithm [35–37]. The algorithm flow is shown in
Figure 4.
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Three different variable neighborhood searching operators were designed, namely the
balancing operator, sliding operator, and exploding operator. The wolves will find a superior
solution based on the original solution, through transforming the searching neighborhood.

The balancing operator is designed to prevent over-concentration of resources about
one target. The over-concentration of resources will increase the resource consumption of
the defender. The process of the sliding operator is described in Algorithm 3.
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In Algorithm 3, the parameter ε is a threshold of the resource concentration. The
parameter ε can be settled from one to three. If the element of the weapon-target as-
signment matrix A exceeds the threshold parameter ε, the resource concentration part of
corresponding elements will be reduced, and the reduced part will be assigned to the other
elements randomly.

Algorithm 3 Balancing Operator

1: Determine the position of wolfs: A[ij]
2: B[ij]= AB[ij]= A[ij]
3: for i in range (n1):
4: for j in range (n2):
5: if (B[ij]> ε):
6: AB[ij] = B[ij]− 1
7: Select k satisfies (B[ik]< ε)
8: AB[ik] = B[ik] + 1
9: end for
10: end for
11: Output: AB[ij]

The illumination of the balancing operator is shown in Figure 5.
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The sliding operator was designed to construct a new neighborhood. The process of
the sliding operator is described in Algorithm 4.

Algorithm 4 Sliding Operator

1: Determine the position of wolves: A[ij]
2: n = 3, t = 1
3: B[ij]= As[ij]= A[ij]
4: As[i, n2]= B[i, 0], As[i, n2− 1]= B[i, 1], As[i, n2− 2]= B[i, 2]
5: for i in range (n1):
6: for j in range (0,n2− 3):
7: As[i, j]= B[i, j + 3]
8: end for
9: end for
10: Output: As[i, j]

In Algorithm 4, the sliding operator creates a new neighborhood by means of the
sliding method. The parameter n determines the sliding units in the process of the sliding
operator. The parameter t is a random integer from one to three, which will determine
the operation of each clown. When the parameter t is zero, the relevant elements of the
weapon-target assignment matrix will stay in the original position. When the parameter t
is one, the relevant elements of the weapon-target assignment matrix will slide n units left.
When the parameter t is minus one, the relevant elements of the weapon-target assignment
matrix will slide n units right. The illumination of the sliding operator is shown in Figure 6.
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When the balancing operator and sliding operator are not able to generate superior
solutions, the exploding operator is adopted. The exploding operator will generate a ran-
dom sequence, forming a new weapon-target assignment matrix. Although the exploding
operator will explore massive feasible solutions and improve the global searching ability,
the original structure of the neighborhood will also be destroyed, and the excellence of the
initial solution will be missed. Attempts were made to maintain a balance between local
and global search, while maintaining diversity. The process of the balancing operator is as
shown in the following Equations (30)–(35):

Aexploding
i = Xi + Ei (30)

where Ai is the original solution, Ei is the exploding part, and Aexploding
i is the solution

generated by the exploding operator.
The expression of the exploding part Ei is shown in Equation (29), as follows:

Ei = Êi + Ẽi (31)

where Ẽi is stochastic disturbance term of Ei, and Êi is the neighbors learning term of Ei.
The expression of the stochastic disturbance term Ẽi is shown in Equation (30), as follows:

Ẽi[I, J] = Emax × (1− iter/itermax)·δ (32)

where δ is a random number from −1 to 1, Emax is the maximum scope of the stochastic
disturbance; Ẽi[I, J] is the element of row I and column J of the matrix Ẽi.

The expression of the neighbors learning term Êi is as shown in the following Equation (31):

Êi = ∑Aj∈Ni

(
Aj − Ai

)
(33)

where Ni is a neighborhood of the solution Ai.
The expression of the neighborhood of the solution Ai is shown in Equation (32),

as follows:
Ni =

{
Aj
∣∣(‖Aj − Ai‖ < Ri)

}
(34)

where Ri is the neighborhood radius of Ni, and Aj − Ai is the distance between Ai and Aj.
The expression of the neighborhood radius Ri is shown in Equation (33), as follows:

Ri =
1

5n ∑n
j=1 ‖Ai − Aj‖ (35)

where n is the number of the wolf population.

3.3. Flow of Improved Grey Wolf Optimizer Based on Reinforcement Learning (RL-IGWO)

The flow of RL-IGWO is shown in Figure 7.
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The DWTA model was established from the scenario of a frigate defending against
UAV swarms. The constraints of the model of DWTA were extracted from the real constraint
conditions of a frigate’s anti-air system. The multi-objective functions were designed
according to the evaluation indicators of the battlefield, such as destruction value (Dv),
resource consumption (Rc), efficiency-cost ratio (Ecr), average interception rate (Air), and
defense completion rate (Dcr).

Based on the damage probability of the anti-air weapon system of the frigate, the state
transition probability matrix was known, and the reinforcement learning based on model
was able to be directly established. The state value function of reinforcement learning
generated the initial generation of the grey wolf pack. The experience accumulated by
reinforcement learning improved the GWO’s searching ability.

The reinforcement learning framework can transform a DWTA problem into a series of
SCO problems, which enables the grey wolf algorithm to search for global optimal solutions
in the time-domain. The improved grey wolf algorithm also helps the state value function
converge rapidly.

4. Numerical Experiment
4.1. Simulation of Benchmark Functions

The performance evaluation of the I-GWO was conducted by means of the CEC
benchmark suite [38,39], and six unimodal test functions were selected, as shown in Table 4.
All benchmark functions were evaluated with dimension of 20 by 20 independent runs.

All the experiments were implemented using Python 3.8.5 and run on a desktop with
1.8 GHz Core i7-8565U CPU and 16.00 GB RAM.

The results of the I-GWO were compared with the state-of-the-art metaheuristic
algorithms, namely particle swarm optimization (PSO) [40], krill herd algorithm (KH) [41]
and genetic algorithm (GA) [42]. As shown in Table 5, in all experiments, the parameters of
the comparative algorithms were the same as the recommended settings.

The optimization results of the different algorithms on the benchmark functions are
shown in Table 6.

Table 6 shows the optimization results of the different algorithms on the benchmark
functions. For the benchmark functions F1 to F4, the IGWO algorithm was able to converge
to the theoretical minimum value, while the PSO algorithm, the KH algorithm, and the GA
algorithm had problems of local convergence in different degrees for high-dimensional
problems. Among said algorithms, the results of the GA genetic algorithm were better
than the KH algorithm, and the KH algorithm was better than the PSO algorithm. For the
benchmark function F5, all algorithms fell into local convergence in different levels within
3000 iterations. Among the algorithms, the optimal value of the IGWO algorithm was three
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orders of magnitude higher than the other three algorithms, and the optimization results of
the PSO algorithm was significantly superior to the GA algorithm and the KH algorithm.
For the benchmark function F6, the IGWO algorithm and the GA algorithm were superior
to the KH algorithm and the PSO algorithm in global searching ability. The results of the
IGWO algorithm were one order of magnitude higher than the GA algorithms, and the
local convergence phenomenon of the PSO algorithm was the most significant.

Table 4. Benchmark functions.

Name Benchmark Function Dimension Variable
Bounds

Theoretical
Value

F1 f1(x) = ∑n
i=1 x2

i 20 [−100,100] 0

F2 f2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 20 [−100,100] 0

F3 f3(x) = ∑n
i=1[(∑

i
j=1 xj)]

2 20 [−100,100] 0

F4 f4(x) =
max{|xi|, 1 ≤ i ≤ n} 20 [−100,100] 0

F5
f5(x) =

∑n−1
i=1 [100

(
xi+1 − x2

i
)2

+ (xi − 1)2]
20 [−30,30] 0

F6 f6(x) = ∑n
i=1[(xi + 0.5)]2 20 [−100,100] 0

Table 5. Parameters of algorithms.

Algorithm Population Size Iteration

PSO 1500 3000
GA 1500 3000
KH 50 3000

IGWO 50 3000

Table 6. Results of benchmark functions.

Test
Problems Statistic PSO GA KH IGWO

F1

max 0.50× 10−1 1.74× 10−8 4.21× 10−2 0
min 2.23× 10−2 8.55× 10−9 1.32× 10−2 0
ave 2.86× 10−1 1.44× 10−8 2.49× 10−2 0
std 2.05× 10−2 4.51× 10−9 1.07× 10−2 0

F2

max 3.08× 100 4.63× 10−4 7.20× 10−1 0
min 6.26× 10−1 3.71× 10−4 4.35× 10−1 0
ave 1.56× 100 4.15× 10−4 5.92× 10−1 0
std 9.61× 10−1 3.22× 10−5 1.07× 10−1 0

F3

max 9.26× 100 8.92× 10−3 7.64× 10−1 0
min 1.16× 100 2.90× 10−3 9.77× 10−2 0
ave 3.74× 100 6.33× 10−3 3.46× 10−1 0
std 3.09× 100 2.38× 10−3 2.65× 10−1 0

F4

max 3.47× 10−1 1.15× 10−4 6.40× 10−2 0
min 1.41× 10−1 1.06× 10−4 4.86× 10−2 0
ave 2.52× 10−1 1.12× 10−4 5.56× 10−2 0
std 7.92× 10−2 1.43× 10−5 6.88× 10−3 0

F5

max 1.84× 101 1.02× 101 2.53× 101 6.11× 100

min 1.25× 100 9.44× 100 3.92× 100 3.56× 10−3

ave 7.54× 100 9.78× 100 1.07× 101 3.26× 100

std 6.17× 100 4.47× 10−1 7.78× 100 3.71× 100

F6

max 8.75× 10−1 2.39× 10−8 6.97× 10−2 9.05× 10−9

min 4.32× 10−1 1.58× 10−8 3.57× 10−2 3.32× 10−11

ave 6.31× 10−1 2.09× 10−8 5.05× 10−2 4.61× 10−9

std 1.71× 10−1 4.25× 10−9 1.59× 10−2 3.69× 10−9
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The best optimization processes of different algorithms in benchmark functions are
shown in Figure 8.
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Figure 8 shows the optimization process of the different algorithms on the benchmark
functions. For the benchmark functions F1 to F4, the IGWO algorithm converged to the the-
oretical value rapidly in finite iterations, and the PSO algorithm and the KH algorithm fell
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into local convergence for high-dimensional problems. The GA algorithm, although exhibit-
ing serious oscillation, still exhibited a strong global search ability, constantly approaching
the theoretical minimum value, albeit at a considerably slower rate of convergence than
IGWO. For the benchmark function F5, the genetic algorithm performed poorly, failing
to converge within 3000 iterations. The PSO and KH algorithms optimized rapidly in the
initial phase and then fell into local convergence. The IGWO algorithm approached the
theoretical minimum after several oscillations in the process of global optimization-seeking.

For the benchmark function F6, the PSO algorithm converged rapidly and then fell
into a local optimal immediately. Although the KH algorithm successfully left a local con-
vergence state several times, the algorithm still fell back into local convergence eventually.
Further, the results of the KH algorithm were already substantially superior to those of the
PSO algorithm. The results of both the GA algorithm and the IGWO algorithm were close
to the theoretical minimum value; however, the GA algorithm was significantly slower
than the IGWO algorithm in terms of optimization speed.

To enhance the search ability of the grey wolf optimizer algorithm, the methods of
opposition-based learning operator and variable neighbor search operator were adopted.
The experiments on the benchmark functions demonstrate that the IGWO algorithm was
superior to several state-of-the-art metaheuristic algorithms.

4.2. Numerical Experiment of DWTA Problems
4.2.1. Parameters of Numerical Experiment

In the numerical experiment, six different battle scenarios were simulated, each of
which was repeated 35 times to test the algorithm performance in different population
scales and iterating generations. Through simulation results and algorithm comparison,
the advantages of the RL-IGWO algorithm could be identified in terms of decision making
time and solution quality.

At present, there is no single performance indicator that can comprehensively measure
the performance of an algorithm in respect to DWTA problems. Therefore, several typical
indicators were selected to compare the performance of different algorithms, such as
destruction value (Dv), resource consumption (Rc), efficiency-cost ratio (Ecr), average
interception rate (Air), and defense completion rate (Dcr).

For all algorithms, the public parameters were first set as shown in Table 7, with Pop
representing the population size, and Gen representing the number of iterations.

Table 7. Parameters of algorithms.

Scenario Scen1 Scen2 Scen3 Scen4 Scen5 Scen6

Pop
RL-IGWO 10 10 10 10 50 50

Others 10 10 50 50 50 50

Gen 20 100 20 50 20 50

Table 8 shows the relevant parameters of each scenario. Number represents the
number of the surviving UAV swarms, while Region represents the sub-area where the
UAV swarms exist.

Table 8. Parameters of scenarios.

Parameters Scen1 Scen2 Scen3 Scen4 Scen5 Scen6

Number 40 39 38 37 36 35
Region D1 D1 D2 D2 D3 D3

4.2.2. Process of Reinforcement Learning

In the present study, a model-based reinforcement learning framework was established
according to the scenario of a frigate defending against UAV swarms, so as to train a
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weapon-target assignment policy. Policy evaluation and policy iterations are the major
parts of the process of reinforcement learning, and these two steps are executed alternately
until the optimal strategy is obtained.

The validity of the aforementioned theorem is based on the greedy extent of the greedy
strategy. The greedy extent of the greedy strategy directly determines the convergence
speed and convergence quality of the state value function. In the present study, the original
grey wolf optimizer (GWO) algorithm and the improved grey wolf optimizer (IGWO)
algorithm were used to search for the optimal actions in decision space, executing the
greedy strategy. The convergence of the state value under different policies is shown
in Figure 9. The horizontal axis is the number of iterations, and the vertical axis is the
state value. Graph (A) corresponds to the state (40,0); Graph (B) corresponds to the state
(35,0); Graph (C) corresponds to the state (30,1); Graph (D) corresponds to the state (20,2);
Graph (E) corresponds to the state (10,3); and Graph (F) corresponds to the state (5,4). The
black line represents the state value function of the improved grey wolf optimizer (IGWO)
algorithm, and the red line represents the state value function of the original grey wolf
optimizer (GWO) algorithm.
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Through the results of policy evaluation, the improved grey wolf optimizer algorithm
(IGWO) obviously had higher global searching ability than the original grey wolf optimizer
algorithm (GWO). State (5,4) and state (10,3) were close to the ultimate state. Because the
state value of the ultimate state was directly set as a large negative number, the state values
of state (5,4) and state (10,3) were determined by the ultimate state to a large extent. Hence,
the results of IGWO were slightly better than those of GWO, but the convergence speed of
IGWO was still significantly higher than GWO.

State (40,0), state (35,0), state (30,1), and state (20,3) were far away from the ulti-
mate state. The state value functions were determined by the policy to a large extent.
The policy evaluation results show that the policy based on IGWO had a higher state
value than the policy based on GWO. The policy based on IGWO also had advantages in
convergence speed.

For state (40,0), the results of policy based on GWO even exhibited a slight oscillation
phenomenon, without convergence. For state (40,0), the state value of policy based on IGWO
was almost three times as high as the policy based on GWO. As such, the effectiveness of the
IGWO algorithm in terms of DWAT problems has been adequately demonstrated.

4.2.3. Results of DWTA

In order to prove the effectiveness of the improved grey wolf optimizer algorithm
based on reinforcement learning (RL-IGWO), the algorithm was compared with three
other algorithms, including original grey wolf optimizer algorithm (GWO), the improved
grey wolf optimizer algorithm (IGWO), and the multi-objective nondominated sorting
genetic algorithm (NSGA-2), where the unified crossover and random mutation operators
were applied.

The simulation results of different indicators, namely destruction value (Dv), resource
consumption (Rc), efficiency-cost ratio (Ecr), average interception rate (Air), and defense
completion rate (Dcr) under four different algorithms were as follows. The comparison of
the destruction values is shown in Table 9.

Based on the results of Table 9, the UAV swarm destruction values under the weapon-
target assignment policy based on RL-IGWO were obviously higher than the GWO, IGWO,
and NSGA-2 algorithms. The average value and median value of the UAV swarm de-
struction values under RL-IGWO were also higher than the GWO, IGWO, and NSGA-2
algorithms. For Scen1 and Scen2, the results of RL-IGWO were superior to the other
algorithms. The results of GWO and IGWO were similar, being higher than NSGA-2,
but the results of NSGA-2 were more stable than GWO and IGWO. For Scen3 and Scen4,
the RL-IGWO algorithm, with a smaller population and fewer iterations, obtained better
solutions than the other algorithms, which demonstrates that the proposed RL-IGWO had
stronger goal searching ability. For Scen3, the results of IGWO were superior to GWO, and
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the NSGA-2 performed poorly. Comparing “Scen1 and Scen2” with “Scen5 and Scen6”, the
RL-IGWO algorithm could offer dynamic weapon-target assignments of high destruction
values in different air-defense regions.

Table 9. Comparison of destruction values.

Scenario Dv RL-IGWO IGWO GWO NSGA-2

Scen1

Average 800 788.0 788.2 787.4
Std. dev 0 27.1 26.2 19.2
Median 800 800.0 800.0 800.0

Maximum 800 800.0 800.0 800.0
Minimum 800 680.0 700.0 720.0

Scen2

Average 778.9 771.9 770.9 777.1
Std. dev 4.6 22.8 21.0 8.5
Median 780.0 780.0 780.0 780.0

Maximum 780.0 780.0 780.0 780.0
Minimum 760.0 680.0 700.0 740.0

Scen3

Average 758.3 760 760.0 744.6
Std. dev 5.6 0.0 0.0 18.6
Median 760.0 760 760.0 760.0

Maximum 760.0 760 760.0 760.0
Minimum 740.0 760 760.0 700.0

Scen4

Average 736.6 712.6 704.0 734.9
Std. dev 11.2 38.9 44.5 12.0
Median 740.0 740.0 740.0 740.0

Maximum 740.0 740.0 740.0 740.0
Minimum 680.0 600.0 600.0 680.0

Scen5

Average 717.7 686.9 716.6 692.5
Std. dev 13.3 39.2 14.7 27.7
Median 720.0 720.0 720.0 700.0

Maximum 720.0 720.0 720.0 720.0
Minimum 640.0 580.0 640.0 640.0

Scen6

Average 697.1 676.0 697.1 683.4
Std. dev 10.8 39.9 16.7 20.6
Median 700.0 700.0 700.0 700.0

Maximum 700.0 700.0 700.0 700.0
Minimum 640.0 580.0 600.0 620.0

The comparison of resource consumption is shown in Table 10.
Based on the results of Table 10, the UAV swarm resource consumption under the

weapon-target assignment policy based on RL-IGWO was lower than the IGWO and GWO
algorithms. The standard deviation of RL-IGWO was at a low level, showing that the results
under RL-IGWO were more stable than the GWO and IGWO algorithms. The resource
consumption of NSGA-2 was slightly better than RL-IGWO, but NSGA-2 performed poorly
in terms of average interception rate (Air), and defense completion rate (Dcr). For Scen1
and Scen2, the results of RL-IGWO were significantly lower than GWO and IGWO, and
at the same level as the results of NSGA-2. For Scen3 and Scen4, the RL-IGWO algorithm,
with a lower population and fewer iterations, was able to obtain a better solution with
lower resource consumption. Comparing “Scen1 and Scen2” with “Scen5 and Scen6”,
the RL-IGWO algorithm could offer dynamic weapon-target assignments of low resource
consumption in different air-defense regions. For Scen5 and Scen6, the operational research
ability of the IGWO algorithm was much higher than that of the GWO algorithm, being at
the same level as the results of RL-IGWO.
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Table 10. Comparison of resource consumption.

Scenario Rc RL-IGWO IGWO GWO NSGA-2

Scen1

Average 4953.3 6353.9 6600.6 5156.4
Std. dev 444.0 1580.8 706.8 236.3
Median 4946.0 5786.0 6510.5 5176.0

Maximum 5980.0 11,824.0 7997.0 5502.0
Minimum 4212.0 4798.0 5274 4576.0

Scen2

Average 5182.5 6378.6 6432.4 5179.2
Std. dev 401.2 1147.0 838.4 175.9
Median 5178.0 6187.5 6352.0 5199.0

Maximum 6124.0 9993.0 9478.0 5506.0
Minimum 4450.0 5007.0 5368.0 4721.0

Scen3

Average 4727.7 6562.5 6344.8 4640.8
Std. dev 484.6 985.8 638.2 220.2
Median 4677.0 6239.5 6263.0 4636.0

Maximum 6357.0 8791.0 8009.0 5179.0
Minimum 3965.0 5060.0 5031.0 4212.0

Scen4

Average 5005.4 5636.4 5642.0 4688.6
Std. dev 446.9 2081.9 607.3 227.1
Median 4989.0 5202.0 5446.0 4697.0

Maximum 6333.0 14,450.0 6761.0 5156.0
Minimum 4000.0 4183.0 4276.0 4209.0

Scen5

Average 4285.3 4051.8 5726.6 3916.5
Std. dev 383.6 498.5 688.2 214.7
Median 4310.0 3993.5 5756.0 3888.0

Maximum 5127.0 5269.0 7081.0 4303.0
Minimum 3665.0 3125.0 4226.0 3485.0

Scen6

Average 4043.9 4025.4 5773.2 4033.6
Std. dev 354.7 1225.5 562.0 289.8
Median 4072.0 3751.0 5731.0 4087.0

Maximum 4730.0 10778.0 7161.0 4485.0
Minimum 3200.0 3253.0 4742.0 3361.0

The results of efficiency-cost ration (Ecr), average interception rate (Air), and defense
completion rate (Dcr) under different algorithms are shown in Figures 10–12. Graph(A)
to Graph(F) correspond to the Scen1 to Scen6 in Figures 10–12. The orange bar chart is
the results under the policy based on the RL-IGWO algorithm. The green bar chart is the
results under the policy based on the IGWO algorithm. The purple bar chart is the results
under the policy based on the GWO algorithm. The yellow bar chart is the results under
the policy based on the NSGA-2 algorithm.

Based on the results of Figure 10, the efficiency-cost ratio based on the RL-IGWO
was much higher than the IGWO and GWO algorithms, at the same level as the results of
NSGA-2. The efficiency-cost ratio of IGWO was slightly higher than that of GWO. For Scen1,
Scen2, Scen3, and Scen4, the efficiency-cost ratio of the RL-IGWO algorithm exhibited a
slight decrease to some extent, with the number of iterations increasing. As the number of
iterations increases, the superiority of the initial population provided by the reinforcement
learning strategy is likely to gradually disappear, and, thus, the local search operators of
IGWO should maintain a balance between exploration and exploitation. For Scen3 and
Scen4, the RL-IGWO algorithm, with a smaller population and fewer iterations, was able
to obtain a better solution with higher efficiency-cost ratio. Comparing “Scen1 and Scen2”
with “Scen5 and Scen6”, the RL-IGWO algorithm could offer dynamic weapon-target
assignments of high efficiency-cost ratio in different air-defense regions.



Electronics 2022, 11, 1796 23 of 28Electronics 2022, 11, x FOR PEER REVIEW 24 of 29 
 

 

   

   

Figure 10. (A–F) Comparison of the efficiency-cost ratio. 

   

   

Figure 11. (A–F) Comparison of the average penetration number. 

Figure 10. (A–F) Comparison of the efficiency-cost ratio.

Electronics 2022, 11, x FOR PEER REVIEW 24 of 29 
 

 

   

   

Figure 10. (A–F) Comparison of the efficiency-cost ratio. 

   

   

Figure 11. (A–F) Comparison of the average penetration number. Figure 11. (A–F) Comparison of the average penetration number.



Electronics 2022, 11, 1796 24 of 28Electronics 2022, 11, x FOR PEER REVIEW 25 of 29 
 

 

   

   

Figure 12. (A–F) Comparison of defense completion rate. 

Based on the results of Figure 10, the efficiency-cost ratio based on the RL-IGWO was 

much higher than the IGWO and GWO algorithms, at the same level as the results of 

NSGA-2. The efficiency-cost ratio of IGWO was slightly higher than that of GWO. For 

Scen1, Scen2, Scen3, and Scen4, the efficiency-cost ratio of the RL-IGWO algorithm 

exhibited a slight decrease to some extent, with the number of iterations increasing. As 

the number of iterations increases, the superiority of the initial population provided by 

the reinforcement learning strategy is likely to gradually disappear, and, thus, the local 

search operators of IGWO should maintain a balance between exploration and 

exploitation. For Scen3 and Scen4, the RL-IGWO algorithm, with a smaller population and 

fewer iterations, was able to obtain a better solution with higher efficiency-cost ratio. 

Comparing “Scen1 and Scen2” with “Scen5 and Scen6”, the RL-IGWO algorithm could 

offer dynamic weapon-target assignments of high efficiency-cost ratio in different air-

defense regions. 

Based on the results of Figure 11, the average penetration number based on RL-IGWO 

was significantly superior to the IGWO, GWO, and NSGA-2 algorithms, with NSGA-2 being 

the worst. For Scen2, Scen5, and Scen6, the average penetration number of the IGWO 

algorithm was even higher than that of the GWO algorithm. However, IGWO had a stronger 

optimization capability than GWO, which also could not guarantee a better weapon-target 

assignment scheme. On the premise of defending against UAV swarms successfully, the 

efficiency-cost ratio was enhanced greatly, which is the fundamental interest of frigates. In 

fact, higher requirements are established for model construction, and objective functions 

need to achieve a reasonable balance under a variety of conflicting indicators. For the RL-

IGWO algorithm, attempts were made to solve the conflict of different indicators by 

designing a new objective function, in which value state functions of reinforcement learning 

are considered. For Scen3 and Scen4, the RL-IGWO algorithm, with a lower population and 

fewer iterations, was able to obtain a better solution with a lower average penetration 

number. Comparing “Scen1 and Scen2” with “Scen5 and Scen6”, the RL-IGWO algorithm 

could offer dynamic weapon-target assignments of low average penetration number in 

different air-defense regions. 

Figure 12. (A–F) Comparison of defense completion rate.

Based on the results of Figure 11, the average penetration number based on RL-IGWO
was significantly superior to the IGWO, GWO, and NSGA-2 algorithms, with NSGA-2
being the worst. For Scen2, Scen5, and Scen6, the average penetration number of the IGWO
algorithm was even higher than that of the GWO algorithm. However, IGWO had a stronger
optimization capability than GWO, which also could not guarantee a better weapon-target
assignment scheme. On the premise of defending against UAV swarms successfully, the
efficiency-cost ratio was enhanced greatly, which is the fundamental interest of frigates. In
fact, higher requirements are established for model construction, and objective functions
need to achieve a reasonable balance under a variety of conflicting indicators. For the
RL-IGWO algorithm, attempts were made to solve the conflict of different indicators by
designing a new objective function, in which value state functions of reinforcement learning
are considered. For Scen3 and Scen4, the RL-IGWO algorithm, with a lower population
and fewer iterations, was able to obtain a better solution with a lower average penetration
number. Comparing “Scen1 and Scen2” with “Scen5 and Scen6”, the RL-IGWO algorithm
could offer dynamic weapon-target assignments of low average penetration number in
different air-defense regions.

Based on the results of Figure 12, the defense completion rate based on RL-IGWO
was much better than the IGWO, GWO, and NSGA-2 algorithms, with NSGA-2 still being
the worst. For Scen3 and Scen4, the RL-IGWO algorithm, with fewer population and
fewer iterations, was able to obtain a better solution with higher defense completion rate.
Comparing “Scen1 and Scen2” with “Scen5 and Scen6”, the RL-IGWO algorithm could
offer dynamic weapon-target assignments of high defense completion rate in different
air-defense region.

According to the results of Figures 10–12, the results of RL-IGWO had obvious ad-
vantages in both efficiency-cost ration (Ecr), average interception rate (Air), and defense
completion rate(Dcr), compared with the other state-of-the-art algorithms.

5. Discussion

In order to evaluate the proposed RL-IGWO algorithm, two sets of comparative ex-
periments with state-of-the-art optimization algorithms were conducted. According to
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the experimental results of benchmark functions, the proposed IGWO algorithm achieved
the best values in all evaluation indexes with rapid convergence. According to the ex-
perimental results of DWAT problems, the proposed RL-IGWO algorithm had obvious
advantages in both efficiency-cost ration (Ecr), average interception rate (Air), and defense
completion rate (Dcr), compared with the other state-of-the-art algorithms. Although the
RL-IGWO algorithm exhibited excellent performance, several flaws remain when dealing
with DWAT problems.

1. Based on the Markov decision process and the model-based reinforcement learning
framework, the algorithm RL-IGWO decomposes a dynamic weapon-target assign-
ment problem (DWTA) into n static combinatorial optimization problems (SCO). In
n = M× N, M is the number of the stages of the whole process of DWTA, and N
is the number of UAV swarms in the battlefield. The computational complexity of
each SCO is o(N!), and the computational complexity of the RL-IGWO algorithm is
M× N × o(N!). The assumption is that the IGWO algorithm transforms the compu-
tational complexity of each SCO problem from o(N!) to o

(
Nk
)

, k is a natural number,

and the computational complexity of RL-IGWO algorithm is also M × o
(

Nk+1
)

.
High computational complexity is a common problem in solving dynamic weapon-
target assignment problems, and there is no doubt that certain effective optimization
algorithms with low computational complexity are urgently needed. Distributed
optimization and parallel computing are one of the crucial technologies for solving
dynamic problems in the future.

2. For certain scenarios, with the increase in iteration, the influence of high-quality initial
population offered by a reinforcement learning policy on the whole optimization
process will gradually weaken or even disappear. In the process of solving SCO
problems, the addition of search operators to improve the performance of the original
GWO algorithm should enhance the balance between local and global search, and
work to maintain diversity

3. Assuming that an algorithm has strong optimization capability, the same algorithm
cannot also offer a good weapon-target assignment scheme. Objective functions are
significant factors in the process of optimization, which influences the optimization
process of DWTA, and, thus, a reasonable balance needs to be achieved under a variety
of conflicting indicators.

6. Conclusions

An improved grey wolf optimizer algorithm based on reinforcement learning (RL-
IGWO) was proposed for solving DWTA problems. The methods of an opposition-based
learning operator and a variable neighbor search operator were adopted to enhance the
search ability of the grey wolf optimizer algorithm. The state value function of reinforce-
ment learning facilitated the generation of high-quality original solutions through the grey
wolf optimizer algorithm, and the search ability of the grey wolf optimizer algorithm also
enhanced the convergence speed of reinforcement learning. Through comparison with
other algorithms, the advantages of the RL-IGWO algorithm in solving DWTA problems
were demonstrated. The conclusions of the present study are as follows.

1. Based on the Markov decision process and the model-based reinforcement learning
framework, the RL-IGWO algorithm decomposes a dynamic weapon-target assign-
ment problem (DWTA) into a series of static combinatorial optimization problems
(SCO). Multi-objective optimization was achieved in the global time-domain under the
scenario of a frigate defending against UAV swarms. The algorithm proposed in this
paper is applied for the model-based reinforcement learning, and it lays a foundation
for the utilization of model-unknown reinforcement learning in future work.

2. The policy π based on reinforcement learning was designed to store the information
of leader wolves α, β, and δ in different states. The three leader wolves will be put
into the original wolf population at the beginning of optimization process, which
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enhances solution quality greatly and reduces operation time significantly. A method
combining reinforcement learning and heuristic algorithms was proposed in this
paper, which provided an idea for solving the DWTA problem through reinforcement
learning in the future.

3. Facing the conflicts of different indicators, traditional objective function design heavily
relies on weight to resolve conflicts between indicators. For the RL-IGWO algorithm,
a new form of objective function was designed, in which value state functions of
reinforcement learning are considered. The simulation results show that the contradic-
tions between different indicators were well reconciled, illustrating the significance
of the state value function of the reinforcement learning to the design of objective
function in the problem of DWTA, raising the issue about the objective functions
design covering the state value function in the future.

4. The methods of an opposition-based learning operator and a variable neighbor search
operator were adopted to significantly enhance the search ability of the grey wolf
optimizer algorithm.

The method proposed in this paper can be applied to the fire control problem in the
scenario of a frigate defensing UAV swarms. Besides that, it also could be utilized in other
typical scenarios, such as islands and reefs defensing UAV swarms. The future scope of the
method may be extended as follows.

1. Extend the utilization scope of the algorithm, especially for the scenario of model-
unknown reinforcement learning.

2. Propose more combination methods of heuristic algorithms and reinforcement learn-
ing, and improve the solution quality and optimization speed further.

3. Design more appropriate objective functions problems in different scenarios, covering
the state value function of the reinforcement learning.

In further work, the proposed algorithm could be considered to combine with dis-
tributed optimization and parallel computing to solve large scale DWAT problems, and
could also be adapted for solving dynamic multi-objective optimization problems in
other scenarios.

Author Contributions: Conceptualization, M.N. and Y.Z.; methodology, M.N. and L.K.; software,
M.N. and T.W.; validation, X.Z. and T.W. All authors have read and agreed to the published version
of the manuscript.

Funding: National Natural Science Foundation of China: No. 72101263.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ca, O.M.; Fang, W. Swarm Intelligence Algorithms for Weapon-Target Assignment in a Multilayer Defense Scenario: A Compara-

tive Study. Symmetry 2020, 12, 824. [CrossRef]
2. Zhao, Y.; Chen, Y.; Zhen, Z.; Jiang, J. Multi-weapon multi-target assignment based on hybrid genetic algorithm in uncertain

environment. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420905922. [CrossRef]
3. Hu, X.; Luo, P.; Zhang, X.; Wang, J. Improved Ant Colony Optimization for Weapon-Target Assignment. Math. Probl. Eng. 2018,

2018, 6481635. [CrossRef]
4. Zhao, P.; Wang, J.; Kong, L. Decentralized Algorithms for Weapon-Target Assignment in Swarming Combat System. Math. Probl.

Eng. 2019, 2019, 8425403. [CrossRef]
5. Davis, M.T.; Robbins, M.J.; Lunday, B. Approximate dynamic programming for missile defense interceptor fire control. Eur. J.

Oper. Res. 2017, 259, 873–886. [CrossRef]
6. Zheng, X.; Zhou, D.; Li, N.; Wu, T.; Lei, Y.; Shi, J. Self-Adaptive Multi-Task Differential Evolution Optimization: With Case Studies

in Weapon–Target Assignment Problem. Electronics 2021, 10, 2945. [CrossRef]
7. Li, X.; Zhou, D.; Yang, Z.; Pan, Q.; Huang, J. A Novel Genetic Algorithm for the Synthetical Sensor-Weapon-Target Assignment

Problem. Appl. Sci. 2019, 9, 3803. [CrossRef]
8. Kong, L.; Wang, J.; Zhao, P. Solving the Dynamic Weapon Target Assignment Problem by an Improved Multi-objective Particle

Swarm Optimization Algorithm. Appl. Sci. 2021, 11, 9254. [CrossRef]

http://doi.org/10.3390/sym12050824
http://doi.org/10.1177/1729881420905922
http://doi.org/10.1155/2018/6481635
http://doi.org/10.1155/2019/8425403
http://doi.org/10.1016/j.ejor.2016.11.023
http://doi.org/10.3390/electronics10232945
http://doi.org/10.3390/app9183803
http://doi.org/10.3390/app11199254


Electronics 2022, 11, 1796 27 of 28

9. Lai, C.-M.; Wu, T.-H. Simplified swarm optimization with initialization scheme for dynamic weapon–target assignment problem.
Appl. Soft Comput. 2019, 82, 105542. [CrossRef]

10. Hocaolu, M.F. Weapon target assignment optimization for land based multi-air defense systems: A goal programming approach.
Comput. Ind. Eng. 2019, 128, 681–689. [CrossRef]

11. Zhang, K.; Zhou, D.; Yang, Z.; Li, X.; Zhao, Y.; Kong, W. A dynamic weapon target assignment based on receding horizon strategy
by heuristic algorithm. J. Phys. Conf. Ser. 2020, 1651, 012062. [CrossRef]

12. Zhang, K.; Zhou, D.; Yang, Z.; Zhao, Y.; Kong, W. Efficient Decision Approaches for Asset-Based Dynamic Weapon Target
Assignment by a Receding Horizon and Marginal Return Heuristic. Electronics 2020, 9, 1511. [CrossRef]

13. Zhao, L.; An, Z.; Wang, B.; Zhang, Y.; Hu, Y. A hybrid multi-objective bi-level interactive fuzzy programming method for solving
ECM-DWTA problem. Complex Intell. Syst. 2022, 1–19. [CrossRef]

14. Zhang, X.J. Land defense weapon versus target assignment against air attack. J. Natl. Univ. Def. Technol. 2019, 41, 6. [CrossRef]
15. Hu, L.; Yi, G.; Huang, C.; Nan, Y.; Xu, Z. Research on Dynamic Weapon Target Assignment Based on Cross-Entropy. Math.

Problem. Eng. 2020, 2020, 8618065. [CrossRef]
16. Lu, X.; Di, H.; Jia, Z.; Zhang, X. Optimal weapon target assignment based on improved QPSO algorithm. In Proceedings of

the 2019 International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 20–22
December 2019; pp. 217–220.

17. Li, J.; Chen, J.; Xin, B.; Dou, L. Solving multi-objective multistage weapon target assignment problem via adaptive NSGA-II and
adaptive MOEA/D: A comparison study. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan,
25–28 May 2015; pp. 3132–3139.

18. Wang, C.; Fu, G.; Zhang, D.; Wang, H.; Zhao, J. Genetic Algorithm-Based Variable Value Control Method for Solving the Ground
Target Attacking Weapon-Target Allocation Problem. Math. Probl. Eng. 2019, 9, 6761073. [CrossRef]

19. Li, X.; Zhou, D.; Pan, Q.; Tang, Y.; Huang, J. Weapon-target assignment problem by multi-objective evolutionary algorithm based
on decomposition. Complexity 2018, 2018, 8623051. [CrossRef]

20. Huang, J.; Li, X.; Yang, Z.; Kong, W.; Zhao, Y.; Zhou, D. A Novel Elitism Co-Evolutionary Algorithm for Antagonistic Weapon-
Target Assignment. IEEE Access 2021, 9, 139668–139684. [CrossRef]

21. Wu, X.; Chen, C.; Ding, S. A Modified MOEA/D Algorithm for Solving Bi-Objective Multi-Stage Weapon-Target Assignment
Problem. IEEE Access 2021, 9, 71832–71848. [CrossRef]

22. Gupta, S.; Dalal, U.; Mishra, V.N. Novel Analytical Approach of Non Conventional Mapping Scheme with Discrete Hartley
Transform in OFDM System. Am. J. Oper. Res. 2014, 04, 281–292. [CrossRef]

23. Gupta, S.; Dalal, U.; Mishra, V.N. Performance on ICI self cancellation in FFT-OFDM and DCT-OFDM system. J. Funct. Spaces
2015, 2015, 854753. [CrossRef]

24. Shojaeifard, A.; Amroudi, A.N.; Mansoori, A.; Erfanian, M. Projection Recurrent Neural Network Model: A New Strategy to
Solve Weapon-Target Assignment Problem. Neural Process. Lett. 2019, 50, 3045–3057. [CrossRef]

25. Xie, J.; Fang, F.; Peng, D.; Ren, J.; Wang, C. Weapon-Target Assignment Optimization Based on Multi-attribute Decision-making
and Deep Q-Network for Missile Defense System. J. Electron. Info. Technol. 2022, 42, 1–9. [CrossRef]

26. Vieira, A. Reinforcement Learning and Robotics. In Introduction to Deep Learning Business Applications for Developers; Apress:
Berkeley, CA, USA, 2018; pp. 137–168.

27. Recht, B. A Tour of Reinforcement Learning: The View from Continuous Control. Annu. Rev. Control. Robot. Auton. Syst. 2019, 2,
253–279. [CrossRef]

28. Ramírez, J.; Yu, W.; Perrusquía, A. Model-free reinforcement learning from expert demonstrations: A survey. Artif. Intell. Rev.
2022, 55, 3213–3241. [CrossRef]

29. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Soft. 2014, 69, 46–61. [CrossRef]
30. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.

Appl. 2020, 166, 113917. [CrossRef]
31. Hu, P.; Pan, J.S.; Chu, S.C. Improved binary grey wolf optimizer and its application for feature selection. Knowl. Based Syst. 2020,

195, 105746. [CrossRef]
32. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Zamani, H.; Bahreininejad, A. GGWO: Gaze cues learning-based grey wolf

optimizer and its applications for solving engineering problems. J. Comput. Sci. 2022, 61, 101636. [CrossRef]
33. Izci, D.; Ekinci, S.; Eker, E.; Kayri, M. Augmented Hunger Games Search Algorithm Using Logarithmic Spiral Opposition-based

Learning for Function Optimization and Controller Design. J. King Saud Univ. Eng. Sci. 2022. [CrossRef]
34. Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 2018, 39, 1–23.

[CrossRef]
35. Cheikh, M.; Ratli, M.; Mkaouar, O.; Jarboui, B. A variable neighborhood search algorithm for the vehicle routing problem with

multiple trips. Electron. Notes Discret. Math. 2015, 47, 277–284. [CrossRef]
36. Amous, M.; Toumi, S.; Jarboui, B.; Eddaly, M. A variable neighborhood search algorithm for the capacitated vehicle routing

problem. Electron. Notes Discret. Math. 2017, 58, 231–238. [CrossRef]
37. Baniamerian, A.; Bashiri, M.; Tavakkoli-Moghaddam, R. Modified variable neighborhood search and genetic algorithm for

profitable heterogeneous vehicle routing problem with cross-docking. Appl. Soft Comput. 2019, 75, 441–460. [CrossRef]

http://doi.org/10.1016/j.asoc.2019.105542
http://doi.org/10.1016/j.cie.2019.01.015
http://doi.org/10.1088/1742-6596/1651/1/012062
http://doi.org/10.3390/electronics9091511
http://doi.org/10.1007/s40747-022-00730-9
http://doi.org/10.11887/j.cn.201902027
http://doi.org/10.1155/2020/8618065
http://doi.org/10.1155/2019/6761073
http://doi.org/10.1155/2018/8623051
http://doi.org/10.1109/ACCESS.2021.3119363
http://doi.org/10.1109/ACCESS.2021.3079152
http://doi.org/10.4236/ajor.2014.45027
http://doi.org/10.1155/2015/854753
http://doi.org/10.1007/s11063-019-10068-y
http://doi.org/10.11999/JEIT211136
http://doi.org/10.1146/annurev-control-053018-023825
http://doi.org/10.1007/s10462-021-10085-1
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.eswa.2020.113917
http://doi.org/10.1016/j.knosys.2020.105746
http://doi.org/10.1016/j.jocs.2022.101636
http://doi.org/10.1016/j.jksues.2022.03.001
http://doi.org/10.1016/j.swevo.2017.09.010
http://doi.org/10.1016/j.endm.2014.11.036
http://doi.org/10.1016/j.endm.2017.03.030
http://doi.org/10.1016/j.asoc.2018.11.029


Electronics 2022, 11, 1796 28 of 28

38. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Liang, J.J.; Qu, B.Y. Problem Definitions and Evaluation Criteria for the CEC 2017 Special
Session and Competition on Single Objective Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological
University: Singapore, 2017.

39. Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter
Optimization; Nanyang Technological University: Singapore, 2010; p. 24.

40. He, Y.; Xue, G.; Chen, W.; Tian, Z. Three-Dimensional Inversion of Semi-Airborne Transient Electromagnetic Data Based on a
Particle Swarm Optimization-Gradient Descent Algorithm. Appl. Sci. 2022, 12, 3042. [CrossRef]

41. Rytis, M. Agent State Flipping Based Hybridization of Heuristic Optimization Algorithms: A Case of Bat Algorithm and Krill
Herd Hybrid Algorithm. Algorithms 2021, 14, 358.

42. Zou, G. An Integrated Method for Modular Design Based on Auto-Generated Multi-Attribute DSM and Improved Genetic
Algorithm. Symmetry 2021, 14, 48.

http://doi.org/10.3390/app12063042

	Introduction 
	DWTA Problems of Frigate Defensing UAVS 
	Combat Scenario 
	Model and Constraints 
	Objective Functions 

	RL-IGWO Algorithm 
	DWTA Disassembly 
	Improved Grey Wolf Optimizer (IGWO) 
	Opposition-Based Learning Operator 
	Variable Neighborhood Search Operator 

	Flow of Improved Grey Wolf Optimizer Based on Reinforcement Learning (RL-IGWO) 

	Numerical Experiment 
	Simulation of Benchmark Functions 
	Numerical Experiment of DWTA Problems 
	Parameters of Numerical Experiment 
	Process of Reinforcement Learning 
	Results of DWTA 


	Discussion 
	Conclusions 
	References

