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Abstract: Electric vehicles (EVs) have acquired significant popularity in recent decades due to their
performance and efficiency. EVs are already largely acknowledged as the most promising solutions to
global environmental challenges and CO2 emissions. Li-ion batteries are most frequently employed
in EVs due to their various benefits. An effective Battery Management System (BMS) is essential to
improve the battery performance, including charging–discharging control, precise monitoring, heat
management, battery safety, and protection, and also an accurate estimation of the State of Charge
(SOC). The SOC is required to provide the driver with a precise indication of the remaining range. At
present, different types of estimation algorithms are available, but they still have several challenges
due to their performance degradation, complex electrochemical reactions, and inaccuracy. The
estimating techniques, average error, advantages, and disadvantages were examined methodically
and independently for this paper. The article presents advanced SOC estimating techniques, such
as LSTM, GRU, and CNN-LSMT, and hybrid techniques to estimate the average error of the SOC.
A detailed comparison is presented with merits and demerits, which helped the researchers in the
implementation of EV applications. This research also identified several factors, challenges, and
potential recommendations for an enhanced BMS and efficient estimating approaches for future
sustainable EV applications.

Keywords: electric vehicles; battery management system; Li-ion batteries; algorithms; SOC estimation
of battery; accuracy

1. Introduction

Nowadays, green environments and environmental hazards are the most significant
concerns of researchers [1,2] The world is moving towards severe consequences such as
GHG (Green House Gas) emission and global warming caused by the wide use of petrol
and diesel in vehicles’ operation, which produces lots of carbon dioxide every year [3–5].
The EVs are the most suitable solution to reduce this carbon emission [6–11]. The devel-
opment of EVs generates massive employment in different sectors of EVs, such as battery
manufacturing, powertrain modeling, highly efficient motor designing, etc. Batteries have
been widely used at small and medium scales in electricity storage technologies due to
their relatively high energy density, low noise levels, and low maintenance [12–15]. Li-
ion and Ni-MH batteries are generally utilized in a spread of EV applications. Li-ion
plays a vital role because of more advantages such as long life, high efficiency, and en-
ergy density, as shown in Table 1 [16–19]. The accuracy of SOC varies depending upon
the type of lithium-ion battery, which is heavily impacted by the positive and negative
electrode materials.

Commonly used Li-ion batteries for EV applications are lithium cobalt oxide (LCO),
lithium titanium oxide (LTO), lithium nickel oxide (LNO), lithium iron phosphate (LFP),
lithium manganese oxide (LMO), lithium nickel cobalt aluminum oxide (NCA), and lithium
nickel manganese cobalt oxide (NMC). Table 2 depicts a performance comparison of various
types of Li-ion batteries [15].
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Table 1. Comparison of different energy storage devices [16–19].

Storage Devices Nominal
Voltage (V) η (%) Energy Density

(Wh/L) Life Cycle (hrs) Depth of
Discharge (%)

Cost Estimation
(USD/kWh)

Lead Acid 2.0 85 50–80 1500 50 105–475
NaNiC1 - 84 160–275 3000 100 315–488

ZBFB 1.8 70 55–65 10,000 100 525–1680
Li-ion 4.3 96 200–400 10,000 95 200–1260

Table 2. Comparison of different Li-ion batteries and their characteristics [15].

Battery Name Nominal Voltage (V) Specific Energy (Wh/kg) Charge (c) Discharge (c) Lifespan (hrs)

LCO 3.7~3.9 150~200 0.7~1 1 500~1000
LNO 3.6~3.7 150~200 0.7~1 1 >300
LMO 3.7~4.0 100~150 0.7~1 1 300~700
NMC 3.8~4.0 150~220 0.7~1 1 1000~2000
LFP 3.2~3.3 90~130 1 1 1000~2000

NCA 3.6~3.65 200~260 0.7 1 500
LTO 2.3~2.5 70~85 1 10 3000~7000

An effective BMS can work reliably and safely. It is also essential for updating data,
controlling the voltage equalizing of a battery, and sensing faults that are substantial
influences for attaining a better precision of SOC. The SOC in a BMS is taken into account
together with severe and significant issues, which have been investigated in current years.
With a gasoline-powered automobile, the SOC of the battery organizes the fuel indicator’s
similar action, which specifies the quantity of remaining energy in the battery. An accurate
estimation of battery states not only provides information about the current and remaining
performance of the battery but also ensures the EV’s reliable and safe operation. However,
estimating battery SOC is one of the most difficult challenges for the successful operation of
EVs. Battery SOC cannot be directly observed due to nonlinear, time-varying characteristics
and electrochemical reactions [20].

Furthermore, the battery’s performance is heavily influenced by temperature variation,
aging, and charged–discharge cycles, making estimating an accurate SOC challenging [21].
Very little literature provides a detailed explanation of all methods for SOC estimation
for EVs [22–26]. The battery-accurate SOC estimation problem has not been efficiently
solved [27,28]. References [29–32] provided a detailed SOC estimation in terms of overall
research progress, future development trends, and the source of SOC estimation. However,
there is no systematic explanation of the SOC calculation process and algorithm selection
and how to deal with uncertain environmental conditions and battery pack grouping in
EVs. The literature has illustrated some standard methods for estimating SOC; however,
each technique has gaps in terms of accuracy and data availability. Furthermore, com-
plex calculations and high computation costs are two concerns that make the estimation
process difficult.

As a result, academics, researchers, and scientists have conducted extensive research
to improve the accuracy of battery SOC. Nonetheless, the issues with estimating an accurate
SOC have not been resolved. Furthermore, the challenges in estimating the SOC have
not been identified. Figure 1 shows the number of research articles on Li-ion battery SOC
estimation that have been published, which describes the growing interest in Li-ion battery
SOC estimations in recent years. These published research articles were discovered using
the Web of Science database and other journals also. From 2006 to 2022, the search criterion
was “state of charge”, followed by “Li-ion battery”. Table 3 summarizes the recently
reported studies covered and also presents the review articles’ covered aspects.
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Table 3. Summary of recently reported studies covered and review articles covered.

Concentrated Parameters
Recently Reported Studies Covered Present Review

Article Covered[10] [11] [12]

Conventional Algorithms
√ √ √ √

Adaptive Filter
√ √ √ √

Learning Algorithms
√ √ √ √

Advanced Techniques X x
√ √

Hybrid
√

x
√ √

Advantages X
√

x
√

Disadvantages X
√

x
√

Applications X x
√ √

Average Error X x x
√

Factors, Challenges, and Recommendations X
√

x
√

Future Scope X
√

x
√

Note:
√

= yes and x = no.

As a result, this research paper fills the gap by investigating various existing method-
ologies and addressing the key issues and challenges associated with SOC estimation. This
study will benefit automobile manufacturers and engineers by determining the best method
and identifying the challenges.

The main contributions of the paper are summarized below.

• This review thoroughly examined the classification of conventional and advanced
SOC estimation techniques.

• The estimation techniques were reviewed, focusing on the estimation algorithm,
estimation error, advantages, and disadvantages.

• The various challenges, issues, and recommendations for monitoring SOC estimation
were thoroughly discussed.

• Finally, the review provides valuable recommendations for developing an advanced
BMS and efficient estimation methods for future sustainable EV applications.

The remaining paper is divided into six sections. Section 2 describes the framework
of BMS. Section 3 describes the SOC estimation algorithms for estimating a battery SOC.
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Section 4 describes the comparison of different SOC estimation methods. Section 5 describes
the factors, challenges, and recommendations for a BMS. Finally, Section 6 depicts the
concluding remarks.

2. Framework of BMS

Currently, a BMS is commonly employed by several vehicle companies, universities,
and colleges. BMS goods have been advanced by several corporations such as EV Power
Australia, the British REAP organization, American Edition Company, Beijing Significant
Power Technology, and Harbin Guantuo Power Equipment Company [30]. The application
of a BMS in EVs remains at the initial point. The base is that the quantity of batteries
is 100 times above that of transportable devices in EVs [33–36]. Additionally, EVs are
planned to supply high currents, voltage, and power. This process makes a BMS extra
tricky compared to portable electronics.

The general role of a BMS is shown in Figure 2 [37], which shows the general function
of a BMS, which consists of various kinds of actuators, sensors, signal lines, and controllers.
The sample circuit measures temperature, voltage, and current, affording the gating sign
achieved from the controller circuit. The vital work of the controller circuit is to estimate
the SOC, state of health (SOH), state of energy (SOE), and state of power (SOP) of batteries
over progressive algorithms and analog signals. The battery measurements of voltage,
temperature, and currents are changed. After that, the data will be communicated to
the vehicular controller and supply significant choice issues for vehicular and power
distribution [38–41]. The BMS analyzes the EV power distribution and energy storage
faults. Many researchers have proposed battery models in various ways. From [42], Figure 3
shows the BMS section divided into software and hardware assemblies.
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2.1. BMS Hardware

BMS uses various sensor frameworks to screen and measure battery parameters such
as current, temperature, and voltage. Some researchers propose EIS (electrochemical
impedance spectroscopy) to screen battery cell impedance [43]. High-cost devices and
space limits make high-accuracy information outside the lab difficult to obtain. To stop
overheating, charging, and discharging, a protection system must be developed. Constant
voltage/current is used to charge batteries, and a galvanostat and potentiostat may be
needed. Balance cells may also need a variable rheostat. Balancing cells is a key strategy
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for improving battery pack stability and estimating battery life. Temperature affects cell
reliability, performance, and imbalance. Thus, some authors [44] have acknowledged that
reducing temperature differences between cells is important and should be observed and
worked on. A BMS unit works independently after data/information transfer. A controlled
transceiver is required to send data inside the BMS. With wireless telecommunication and
smart batteries, the charger and battery can share a wealth of information [45].
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2.2. BMS Software

BMS software is the arrangement’s midpoint. It controls sensor data and hardware
operations to create choices and state approximations. BMS software must include a sample
rate, switch control checking in the cell balancing controller, a sensor scheme, and a uniform
active security circuit strategy. Online processing and research are required to inform and
regulate battery functions. Robust automated information analysis and reliability may be
key because the study handles state assessment and fault finding. This information will be
presented to the operator in an easy-to-use interface. Below are BMS-specific roles. Total
cell voltage, current, separate cell voltage measurement, temperature, impedance, and
smoke detection are battery parameters.

Battery state estimation includes SOH and SOC, which group working situations
supported by state–space representations, NN (neural networks), symbolic/fuzzy logic,
etc. [46]. Cell balancing without over-discharging/charging maximizes battery perfor-
mance. It aligns with SOC cell stages. The controller can control charging based on each
cell’s SOC. Thus, a precise estimation of the SOC of each cell is required to improve cell
balancing. Online processing will expose sensitive issues. Data analysis is needed to deter-
mine battery faults and out-of-tolerance conditions. Before potential problems, important
information will be noted. The BMS interface must display vital data. On the control panel,
the battery SOC shows the range. Additionally, irregular, disturbing, and extra ideas are
wanted to inform the operators of the battery estimate and calculation [47–49].

Figure 4 shows the BMS block diagram. The working detail is broken down. The
battery’s measurement block converts current, temperature, and voltage into digital signals
at each point.

These constraints are used to evaluate the battery’s SOH and SOC. A capability
estimation block is used to control the max charging/discharging current. The cell balance
block uses the capability estimation results to limit over-discharge/charge irregularities.
Ground fault-finding improves system safety. The thermal management lump monitors
the temperature to ensure battery safety. An input- and the output-controlled transceiver is
used. To receive and transmit massive amounts of data, a high-speed, controlled transceiver
is required.
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Figure 4. Block diagram of the BMS.

The various currently promoted BMS separately play out the elemental capacities in
an unpredicted mode. Table 4 shows the comparative analyses of different BMS products.

Table 4. Comparative analyses among various BMS products.

Parameters Maxim DS2726 [50] TI BQ78PL114 [51] OZ890 [52]

Cell constraints measured Voltage as well as current Voltage, temperature,
impedance, and current Current and voltage

Pack constraints measured Not available Not available temperature

Safety protection

• Short circuit current
• Over current
• Over voltage

• Three power field-effect
transistors

• One secondary safety
output fuse

• Short circuit current
• Over current

Estimation of SOH/SOC None SOC SOC
Data logging No On PC-based GUI only EEPROM

Dissipative equalization of cell Charge shifting Not available External resistance stable
Communication Unknown Power LAN, SMBus CAN

Non-dissipative equalization
of cell Not available Inductive charge shuttle Not available

Disadvantages of the other referenced BMSs incorporate the following:

• Restricted information working performances: The knowledge of working function
plays a crucial part in database formation and stores the driving design. It can support
developing as well as updating the SOC model.

• Absence of SOH and SOC estimations: SOH and SOC are utilized to define the present
health standing and, therefore, the outstanding practice of the battery that may ensure
the reliable and planned support operation of the battery substitution.

Apprehensions about today’s BMS vehicles
Because of the growing hydrocarbon charges and ongoing revolutions in the technol-

ogy of batteries, HEVs and EVs were introduced in the early 1990s and typically developed
in the 2000s. While the development of BMSs has been insufficient and slow in such cases,
Li-ion batteries have been widely employed in the past decade for EVs because of their
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favorable properties such as high efficiency, life cycle, and energy density. The recent
developments in BMSs for Li-ion batteries in EVs are discussed in [53].

Figure 5 shows the overview of a few works of literature that studied different SOC
estimation methods.
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3. State of Charge (SOC)

There has been a significant worry for all energy-storing devices for SOC estimation.
SOC estimation gives us data and estimates the reliability of batteries with high precision.
Since the 1980s, numerous methods have been introduced to estimate SOC. Although SOC
estimation is a crucial challenge in EV batteries, it cannot be measured directly. It requires a
specific algorithm for describing the battery’s remaining capacity. The general architecture
of the SOC system is shown in Figure 6. For SOC estimation, the current integration is the
most traditional technique. The ratio of the available capacity to the battery’s total capacity
is shown in Equation (1).

SOC = 1−
∫

i dt
cm

(1)

where i indicates the current of the battery and cm indicates the total capacity.
The battery’s total capacity decreases gradually due to its internal reaction and ex-

ternal load, leading to its nonlinear and non-stationary degradation characteristics. The
categorization of SOC estimation methods is shown in Figure 7. Different kinds of literature
have been presented in various manners. Every technique has its unique advantages along
with disadvantages. In this review, SOC estimation methods were divided into five types:
conventional, adaptive filter, learning algorithms, nonlinear observers, and others. Again,
each process was classified into sub-methods [54], described as follows.
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3.1. Conventional Methods
3.1.1. Open-Circuit Voltage Method

The open-circuit voltage method has high accuracy, is easy to implement, and is a
straightforward method, but its main disadvantage is that it takes more time to reach an
equilibrium position. Therefore, online estimation of SOC is not an appropriate method.
Therefore, this method is applicable only for low power consumption applications. More-
over, some observations are required to measure the discharge and charge voltage. For
example, at high OCV, the battery is charged, and it is discharged at small OCV because of
the hysteresis characteristics in batteries [55–58], as shown in Figure 8.
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3.1.2. Coulomb Counting (CC) Method

The CC technique is the easiest one to estimate the SOC of the battery, and it can be
implemented very quickly with low power calculation. The charging/discharging of the
battery depends upon the integration of the current concerning time. It is expressed in
Equation (2).

SOC = 1−
∫

i.ηdt
cm

(2)

where η indicates the Coulombic efficiency, i indicates the current of the battery, and cm
indicates the total capacity.

However, due to its uncertain disturbances, noise, temperature, and current, its results
could be inaccurate. Furthermore, more difficulties exist in determining the SOC initial
values, which might cause a cumulative error [59]. Additionally, to attain the maximum
capacity, this method needs periodic capacity and complete cell discharge, which shortens
the battery’s lifespan [60].

3.1.3. Electrochemical Impedance Spectroscopy (EIS)

To implement the EIS, an appropriate electrochemical model is needed. Then, it evalu-
ates the battery impedance by using capacitances and inductances over an extensive range
of frequencies [61–63] that are recognized in an equivalent circuit model that includes two
capacitive arcs and an inductive arc operated at low and high frequencies. Under various
SOC values, a nonlinear LSF technique is utilized for computing the model impedances.
If the system is not functioning in stable conditions, the EIS outcomes are difficult to re-
produce. It has the advantages of low cost, operating online, and attaining good accuracy.
From the actual values, the effect of battery temperature and the aging difference could
vary the estimated outcomes, resulting in a deficiency of precision.

3.1.4. Model-Based SOC Estimation

Since the open-circuit voltage scheme cannot execute online, it needs appropriate
rest time to monitor the SOC, which means it cannot be applied while the vehicle moves.
Therefore, for online SOC, battery model development is essential. The most used battery
models include the electrochemical [64–68] and equivalent circuit models [69,70]. An
electrochemical model is used to study the battery’s performance, which relates to the
internal materials and considers the chemical thermodynamics and the electrodynamics
effect. It can be expressed as:

V = VOC−VR−VP (3)
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where V denotes the terminal voltage, VOC means open-circuit voltage, VR indicates the
potential difference across resistance, and VP represents the electric potential.

The RC networks have been used for the equivalent circuit model by considering
dynamic and polarization characteristics. Using RLS (recursive least square) algorithm, the
online OCV is executed and, for various RC networks, the outcome of the RLS algorithm
is compared with experimental results. A model-based estimation is used online, and
it has high precision. The drawback of this method for the specific battery is that a
complete explanation of the electrochemical reactions is required, and it highly depends
on the model’s accuracy. Table 5 shows the analysis of the different conventional SOC
estimation methods.

Table 5. Analysis of the different conventional SOC estimation methods.

Technique Pros Cons

OCV [55–58]

• Very simple method
• High accuracy
• Cost-effective
• Easily implemented

• Not suitable for online
• Reaching an equilibrium state requires

a long time.

CC [59,60]

• Low power consumption
• Easily implemented
• Simple method

• Inaccurate outcomes
• Difficulties in defining the SOC initial values

EIS [61–63]

• Operates online
• Low cost
• If the impedance value is stabilized, it

attains good accuracy.

• The effect of battery temperature and the
aging difference could vary the
estimated outcomes.

Model-based [64–71]
• Operates online
• High precision

• It highly depends on the accuracy of
the model.

3.2. Adaptive Filter (AF) Algorithm
3.2.1. Kalman Filter (KF) Algorithm

KF is a well-designed and intelligent tool commonly used in automobiles, navigator
tracking, and aerospace applications. The striking feature of the Kalman filter is it has a self-
correcting nature. A Kalman filter linear model contains a state equation, which predicts
the current state, and a measurement equation, which updates the current state [72], which
are expressed as follows:

State equation : xm+1 = Amxm + Bmum + fm (4)

Measurement equation : ym = Cmxm + Dmum + zm (5)

where A, B, C, and D represent the covariance matrices, x is the system state, f represents
the process noise, u represents the control input, y represents the measurement input, and
z represents measurement noise. Ting et al. [73] developed an RC battery model, which is
used for modeling a Kalman filter. To explain the dynamic battery characteristics, the RC
model mathematical equations remain converted into a state–space model to describe the
dynamic battery characteristics. The outcome indicates that the estimated RMS error of the
SOC using the Kalman filter is minor compared to the measured error. The authors of [74]
also used the same method on the electrical equivalent model of a Li-ion battery with the
help of the dSPACE real-time card and Matlab/Simulink software. The estimated SOC error
was less than 5%. Yatsui [75] combined the results of a Kalman filter with two methods, the
OCV, and the CC methods, to ameliorate the non-ideal factors. After executing the Kalman
filter, the SOC precision was improved, with an error of ±1.76%. However, the Kalman
filter cannot be used directly. It needs a complex calculation and is profoundly dependable
with great strength to various working conditions and battery aging. On the other hand,
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MI-UKF is impervious to unanticipated operational requirements and can improve UKF
accuracy by more than 1% [76–78].

3.2.2. Extended Kalman Filter (EKF)

EKF has been applied to work the framework in nonlinear applications. It uses first-
order Taylor series expansion and partial derivatives to linearize the battery model. At
every instant of time, the state-space model is linearized and equates the predicted value of
the battery with the measured voltage to precisely approximate the constraints for the SOC.
If the scheme is exceptionally nonlinear, a linearization blunder might still happen. In any
case, the linearization blunder could happen when the framework is profoundly nonlinear
since the first-order Taylor series experiences an absence of precision in an exceptionally
nonlinear state. Finally, the improved dual AEKF algorithm was applied, and the SOH and
SOC estimation errors were within 1% [79–86].

3.2.3. H ∞ Filter

This is a very simple method in the designed model, and it does not have to know
any details and measurement characteristics of noise. It considers only the time-varying
parameters of the battery to carry out the system under the specific condition, which
has robust strength. The precision of the model is deviated due to hysteresis, aging, and
temperature effects [87–90]. In [91], this method was introduced to estimate battery SOC.
The time-varying parameters are current, SOH, and temperature for second-order RC filter
circuit design. An HPPC (hybrid pulse power characterization) experiment was performed
to extract the voltage, resistance, and present characteristics. The projected model was
tested using six Urban Dynamometer Driving Schedule tests and attained a good accuracy.
In [92], the adaptive H∞ filter was introduced to estimate SOC. In this method, a polynomial
function is helpful to evaluate the system functions, and the performance is examined and
then compared with the adaptive extended Kalman filter (AEKF). The AHF performed
better in accuracy and computational cost than other methods.

3.2.4. Sigma Point Kalman Filter

This is another nonlinear technique for the calculation of states, and it achieves more
precise outcomes than the extended Kalman filter. The sigma-point Kalman filter (SPKF)
algorithm is subjected to a numerical approximation. The algorithm selects sets of sigma
points that are identical to the mean and covariance values of the developed model. The
SPKF has the advantage of having a similar calculation. Furthermore, without taking
Jacobian matrices into account, the complexity of the EKF is reduced [93,94]. The SPKF
can demonstrate more accuracy while using less memory and performing fewer computa-
tional calculations. However, the estimated SOC was compared with the SPKF, Luenberger
observer, and EKF algorithms, and the drawbacks are heavy and complicated calcula-
tions [95,96].

3.3. Learning Algorithms
3.3.1. Neural Network (NN) Algorithm

An NN is a self-learning algorithm and also an intelligent tool. It uses trained data
to estimate the state of the charge without knowing the initial data of the SOC. It consists
of input, hidden, and output layers to form an NN structure, as shown in Figure 9 [97].
Building the NN structure takes discharge current, temperature, and voltage as inputs and
the SOC as the output. The benefit of an NN is that it has a talent for being employed in
nonlinear battery circumstances. The drawbacks are that training requires a large amount
of data and a big memory to store the information [98,99]. Table 6 shows the analysis of the
different adaptive filter SOC estimation methods.
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Table 6. Analysis of the different adaptive filter SOC estimation methods.

Technique Pros Cons

Kalman Filter [72–78]

• Self-correcting nature
• Intelligent tool
• Accurately estimates

• It cannot be used directly for SOC
estimation.

• Needs complex calculations.

Extended Kalman Filter [79–86]
• Predicts nonlinear dynamic errors
• Improves accuracy

• Limited robustness
• Linearization error occurs

H ∞ Filter [87–92]
• Computational cost
• Satisfactory performance in precision

• Deviates the precision values due to
aging and temperature

Sigma-Point Kalman Filter
[93–96]

• Robustness
• Improvement in precision

• Heavy calculations
• Complicated

3.3.2. Fuzzy Logic Algorithm

FL is the most influential algorithm for extending nonlinear, complex prototypes by
using the training data. The employment of fuzzy logic includes rule-based inputs and
outputs, a reasoning membership function, and defuzzification. However, estimating a
nonlinear model is a powerful function. It needs an intricate calculation, dispensation unit,
and large memory storage. Salkind et al. [46] applied FL for the estimation of SOC by
using CC method data. This method uses three inputs at different frequencies, including
impedances and SOC. It predicts the SOC with a max ±5% of error. The advanced ANFIS
is most effective for estimating the SOC in Li-ion batteries; it was studied and applied
in [100–105].

3.3.3. Genetic Algorithm (GA)

A genetic algorithm is mainly used for finding the optimum parameter. The primary
function of a GA is to alter the constraint’s trendy active method to improve the efficacy
of the arrangement. It has been applied in mathematics, physics, and engineering for
identifying nonlinear optimal parameters. Zheng et al. [106] used a genetic algorithm
to assess four LiFePO4 battery cells, which were allied on a sequence. In addition, the
outcome of this method was under 1% of the estimated SOC error. Xu et al. [107] applied a
genetic algorithm for finding the parameters. By using various driving cycles, the method
was validated; the outcome of this method had better accuracy, with below 1% error.
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3.3.4. Support Vector Machine Algorithm

The SVM algorithm practices regression algorithm and works on kernel function,
which is intended for converting the nonlinear type in an inferior measurement into a
linear variety in an extreme measurement. In [108], the SVM technique was used for SOC
estimation. The independent variables current, temperature, and voltage were obtained
to excerpt the model constraints even though the batteries were discharging/charging.
This method was authenticated, and an approved extreme SOC precision of 0.97 estimated
quantity was determined. The benefits of SVM are performing in high-dimension models
and nonlinear forms. By using training data, the SOC is estimated quickly and accurately.
The drawback of this method is that trial and process errors are needed and require a long
time [109]. Table 7 shows the analysis of the different learning SOC estimation algorithms.

Table 7. Analysis of the different learning SOC estimation algorithms.

Technique Pros Cons

Neural Network [97,98]
• Accomplished work of batteries in

nonlinear circumstances
• For storing the trained information, it

needs a bulky memory unit.

Fuzzy Logic [100–105]
• Performs well
• It is very effective.

• Complex computation
• Large memory storage is needed.
• Costly

Genetic Algorithm [106,107]
• High accuracy
• Robust

• Heavy computation
• Good tuning parameters are needed to

obtain effective outcomes.

Support Vector Machine [108,109]

• Performs outstandingly in
nonlinear models

• Performs well in high-dimension
models

• Heavy computation
• Requires trial along with process error

to alter the parameters.

3.4. Nonlinear Observer (NLO)
3.4.1. Sliding Mode Observer (SMO)

SMO is an improved training controller for ensuring robustness and constancy of
the system alongside model uncertainties as well as ecological disturbances. SMO is
established by using the state equation in the next stage, which is decayed to the observer
questions. In [110], a developed SMO was introduced to balance the nonlinear battery
dynamic characteristics by using an RC circuit. This method can provide a controller for
the conjunction period at the sophisticated discharge/charge value rate. The UDDS is
situated to justify the method, and outcome details showed under 3% of the SOC error.
In [111], the adaptive gain sliding mode observer (AGSMO) algorithm estimated the battery
SOC on a combined equivalent circuit model. To extract the constraints, a battery pulse
was used, and, by using the circuit model as well as terminal voltage, the state equations
were developed. Experiments were performed to assess the recommended archetype, and
outcomes proved that the model has an advantage in regulating the toughness derived
when affecting all sound-on wrinkles.

3.4.2. Nonlinear Observer (NLO)

Several observers have been applied, including both a linear observer [112–114] as
well as a nonlinear [115] observer, to estimate the SOC. In [116], the NLO-dependent SOC
estimation was introduced via a first-order corresponding RC circuit. This model was
performed by using a driving cycle as well as a discharge test, and the outcomes were
improved compared to extended KF and SMO in standings of speed and precision as well
as cost. They are still discovering an appropriate gain matrix to decrease the error. Table 8
shows the analysis of the different nonlinear observer SOC estimation algorithms.
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Table 8. Analysis of the different nonlinear observer SOC estimation algorithms.

Technique Pros Cons

Sliding Mode Observer [110,111]
• Robustness
• It enhances sstability. • Difficult to alter switching gain

Nonlinear Observer [112–116]

• Improved accuracy
• Improved convergence speed
• Robustness

• To reduce the error, it is problematic to find
the appropriate gain matrix.

3.5. Advanced SOC Estimation Techniques
3.5.1. Deep Learning Algorithm (DLA)

Deep learning (DL) algorithms have contributed to a better understanding of SOC
estimation. Among the most notable are the long short-term memory (LSTM) network,
deep neural networks (DNN), gated recurrent unit (GRU), and convolutional neural net-
works (CNN). The LSTM network [117] provides a strong SOC estimation performance
because of its strong self-learning ability. The SOC of a battery is estimated using an LSTM
network based on measured voltage, current, and temperature. Furthermore, DNN [118]
exploits the battery’s dependent behaviors on ambient temperatures and encodes them
into DNN weights, resulting in a competitive estimation performance over a wide range
of temperatures. GRU [119] is used to estimate the battery SOC at different temperatures
and to evaluate the performance of two common lithium-ion batteries. Unlike a tradi-
tional feedforward neural network, the RNN employs hidden nodes to store information
about previous inputs, allowing the SOC estimation to incorporate this information. LSTM
and GRU are RNN variants that extend the original RNN’s ability for long-term depen-
dency. Another successful architecture in deep learning research is CNN. While the LSTM
defines long-term dependency and is capable of handling time series data, the CNN em-
ploys convolutional behavior in a certain way to extract interconnections among input
data. To model the complex battery dynamics, a combined CNN–LSTM network was
proposed [120]. The CNN was specifically used to obtain advanced spatial features from
the original data, while the LSTM was used to model relationships between the current
SOC and past and present inputs. Both CNN and LSTM networks capture both spatial and
temporal features of battery data. Table 9 shows the analysis of the different deep learning
SOC estimation algorithms.

Table 9. Analysis of the different deep learning SOC estimation algorithms.

Technique Pros Cons

LSTM [117]

• Has a track record of success in the face of
long-term dependencies.

• During the online stage, computation is
less intensive.

• Complex training execution requires the
use of an expensive device to
enhance training.

GRU [118]
• Long-term sequential dependencies are captured.
• LSTM gating mechanism issues are addressed.

• It necessitates a large amount of training
data as well as a large storage device.

CNN–LSMT [120]
• Improved tracking precision
• It has a strong nonlinear fitting ability.

• The structure is complex, with a hidden
layer and a visible layer.

3.5.2. Hybrid Methodologies

The mixing of two or more algorithms is known as a hybrid, which improves the
accuracy and efficiency of the battery. It requires a large memory unit because of its complex
mathematical computations. However, a hybrid methodology accomplishes consistent
as well as operative outcomes and then, likewise, decreases the BMS price. In [121], the
multi-state and extended Kalman filter methods were proposed, using the equivalent
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circuit model. The prototype is situated to move for a discrete state space that can provide
supplementary data as opposed to linearized data by utilizing a Jacobian matrix. The
simulation outcomes provided better accuracy, with a 2.7% average error. In [122], the CC,
KF, and OCV methods were reviewed for SOC estimation. First, by using the OCV and CC
methods, the SOC was estimated, which decreased the estimated error of CC. Then, the
Kalman filter was utilized to enhance the precision value of the SOC.

In [123], a hybrid methodology was introduced; it included the CC and EKF meth-
ods for a time-changing dynamic estimation. The first open-circuit voltage method was
applied for the SOC. The EKF was applied for the corrected SOC values, and this process
was continued until the battery was fully discharged. The accuracy of the model was
under 6.5%.

In [124], SOC was estimated based on AUKF utilizing RBF, and it was utilized to alter
the particulars of the system. The AUKF stayed employed for evaluating the SOC. Then,
united, both methods were equated by adaptive KF. The results of the AUKF were superior
to the adaptive KF from the perspective of error. In [125], the H ∞ filter and discrete-time
KF were applied to the nonlinear model of the Li-ion battery. The outcomes of this method
were compared with adaptive Luenberger as well as SMO-based estimation models, and the
accuracy of this method was improved, with <1% of error. In [126], the SOC of the lithium-
ion cell was adaptively estimated using the multiple model adaptive estimation (MMAE)
technique using a modified enhanced self-correcting (ESC) cell model. When compared to
the EKF result, the SOC estimation converged more quickly. In [127], this study designed an
enhanced Kalman filter (KF)-based adaptive observer by approximating the electrochemical
model. The estimator’s predictions were compared against the experimental data in
simulations. The simulation outcomes were more precise and efficient than those of the KF.
The accuracy of this method was improved, with <2% of error.

In [128], EKF paired with an adaptive neuro-fuzzy inference system (ANFIS) reduced
error and improved accuracy over EKF alone. The root mean square error (RMSE) com-
pared the EKF with the EKF-assisted ANFIS. In this way, the hybrid technology improved
precision and accuracy while reducing expenses. In [129], for Li-ion batteries with un-
certain noise circumstances, a new noise adaptive moving horizon estimating (NAMHE)
approach was suggested. The simulation outcomes showed that the suggested technique
reduced the SOC estimate error compared to the classic moving horizon estimating (MHE)
method. The RMSE of the suggested technique and MHE were 0.7543% and 1.3026%,
respectively. In [130], different OCV test methodologies impacted the correlation of the
OCV and SOC; an effective OCV–SOC relationship may increase SOC online convergence
speed and accuracy. The AEKF SOC estimate technique was more accurate and reliable
than EKF during driving cycles, with a 0.5481% mean error of the proposed system. Hybrid
methods give accurate outcomes and are cost effective. Table 10 shows the analysis of
hybrid SOC estimation algorithms.

Table 10. Analysis of hybrid SOC estimation algorithms.

Technique Pros Cons

CC and KF [122]

• CC has low power consumption.
• KF has a self-correcting nature and is an

intelligent tool.

• Inaccurate outcomes by CC and KF
need complex calculations.

EKF and multi-state [121]
• Predicts nonlinear dynamic errors.
• Improves accuracy.

• Limited robustness
• Linearization error occurs.

H ∞ filter and discrete-time KF [125]

• High accuracy
• Robustness
• It enhances the stability.

• Deviates the precision values due to
aging and temperature.
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Table 10. Cont.

Technique Pros Cons

NAMHE [129]
• Worked in conditions with unknown

noise levels.
• More stability and precision

• The program’s computational
complexity and memory use will
rise as it runs.

4. Comparisons

A comparison of different SOC methods is shown in Table 11. The table consists
of different types: conventional methods, adaptive filter, learning algorithms, nonlinear
observers, and hybrid. Again, each type can be subdivided into different methods and algo-
rithms. First, the conventional methodologies [131–134] use a battery’s physical properties
involving resistance, impedance, voltage, and discharge current. The methods are very
simple, very cost effective, and have high accuracy. Compared to the remaining methods,
the average error is between ≤±4 to ≤±5%. It is moderate, as shown in Figure 10. Second,
the adaptive filter methodologies [75,91,135,136] use different algorithms and models to
estimate the SOC; these methods have a self-correcting nature, are intelligent tools, and
their estimates are but need complex calculations. The average accuracy error is ≤±1 to
≤±2.19%, which is very low; the best method for SOC estimation is as shown in Figure 11.
Third, learning methodologies [46,106,137,138] need heavy computation as well as a large
amount of training data to define the Li-ion nonlinear characteristics for SOC estimation.
Nevertheless, the advantages are efficiency, high accuracy, and robustness, but the average
error is between≤±2 to≤±6%, which is very high compared to filter algorithms, as shown
in Figure 12. Fourth, nonlinear observer methodologies [110,131] are handled with highly
nonlinear schemes, and the benefits are robustness and enhanced stability. However, the
drawback is that it is difficult to alter the switching gain. The average error is between≤±3
to ≤±4.5%, higher than KF; they are less related to a conventional methodology, as shown
in Figure 13. Fifth, in the deep learning [117–120] and hybrid methodology [121,123,139],
the average accuracy error of deep learning is ≤±1.33 to ≤±1.88%, as shown in Figure 14.
The mixing of two or more algorithms is known as a hybrid, which improves the accuracy
and efficiency of the battery. It requires a large memory unit because of its complex mathe-
matical computations, and the average error is between ≤±2.7 to ≤±6.5%, as shown in
Figure 15. Table 12 summarizes the different SOC estimation methods for Li-ion batteries.

Table 11. Comparisons of average error (%) on different SOC estimation methods.

Type Methodology Average Error (%) Application in EVs

Conventional Method

OCV [131] Unspecified No
CC [132] ≤±4 Yes
EIS [133] Unspecified No

Model-based [134] ≤±5 Yes

Adaptive Filter

KF [75] ≤±1.76 Yes
EKF [135] ≤±1 Yes
H ∞ F [91] ≤±2.49 Yes
SPKF [136] ≤±2 Yes

Learning Algorithms

NN [137] ≤±4.6 Yes
FL [46] ≤±5 Yes

GA [106] ≤±2 Yes
SVM [138] ≤±6 Yes

Nonlinear Observer
SMO [110] ≤±3 Yes
NLO [125] ≤±4.5 Yes
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Table 11. Cont.

Type Methodology Average Error (%) Application in EVs

Deep Learning Algorithms
LSTM [117] ≤±1.40 Yes
GRU [119] ≤±1.33 Yes
CNN [120] ≤±1.88 Yes

Hybrid
Hybrid [121] ≤±2.7 Yes
Hybrid [123] ≤±6.5 Yes
Hybrid [139] ≤±3.5 Yes
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Table 12. Summary of the different SOC estimation methods for Li-ion batteries.

Type Major Benefits Major Limitations

Conventional Method [132–134]

• Easy implementation
• Low power consumption
• High accuracy
• Easy to understand

• Not suitable for online
• It highly depends on the accuracy of

the model.
• Susceptible to aging and temperature

Adaptive Filter [75,91,135,136]

• High accuracy
• Excellent filtering effect
• Insensitive to initial SOC
• High robustness

• High computation complexity
• Large computation cost
• Unfit for large noise measurement
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Table 12. Cont.

Type Major Benefits Major Limitations

Learning Algorithms [46,106,137,138]

• Independent models
• Great accuracy
• Rule-based inference
• Nonlinear mapping ability

• Requires a large amount of training data
• Requires large memory units
• Costly processing unit
• Time-consuming process

Nonlinear Observer [110,131]

• Robustness
• Powerful tracking performance
• The excellent nonlinear processing

capability

• Inaccurate
• Difficult to find proper gain matrix
• Insufficient stability

Hybrid [121,123,139]

• More effective
• Reliable
• High precision

• Requires longer computation time
• High complex computation

5. Factors, Challenges, and Recommendations

Due to performance degradation and complex electrochemical reactions, developing
and arranging a Li-ion battery organization system for EVs is a top priority. Moreover, most
well-defined battery experiments are performed in a controlled laboratory environment
with constant current, voltage, and temperature. Few analyses exist on battery performance
in severe, hot, wet, and rainy conditions. External mass affects battery capacity. Unmodeled
consequences add to unconsidered algorithms and models. Temperature, aging, cell
unbalancing, hysteresis characteristics, battery modeling, self-discharge, charge/discharge
rate, etc. are also factors in battery performance decline. The work summarizes the
key findings by applying aging modeling to four different Li-ion battery capacity loss
datasets [58]. Figure 16 shows Li-ion battery cycle life versus temperature at different
charge rates. Many researchers have proposed battery SOC models. Every model suffers
from missing data for real-world EV applications. To accurately estimate battery states,
complex calculations, high cost, and accuracy are issues. Table 13 lists SOC monitoring
challenges, causes, and recommendations. Figure 17 explains battery anode aging.
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Table 13. Challenges, causes, and recommendations to monitor the SOC.

Ref. No. Challenges Causes Recommendations

[140–144] Temperature

• It is caused by an increase in inconsistency
and an increment in the electrolyte’s
development, which can support the
movement consequence and
particle diffusion.

• The finest temperature range and
battery cycle charging rate are
acknowledged in [144].
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Table 13. Cont.

Ref. No. Challenges Causes Recommendations

[145,146] Aging
• It is caused by capacitance degradation as

well as internal resistance.

• An OCV curve model to evaluate the
battery SOH is planned by
enhancing one only constraint, the
aging of batteries [146].

[147–156] Cell unbalancing

• Due to the manufacturing and chemical
characteristics of the battery, which might
vary while discharging
and charging

• An active cell balancing mechanism
is separated into two types, passive
and active, which were
proposed in [153].

[156–160] Hysteresis characteristics

• Ohmic resistance, electro-chemical issues,
and concentration polarization are the key
causing issues along with it being produced
by scattering of energy in the development.

• Hysteresis assessment of Li-ion cells
is established for improving the
precision in contradiction of the
impact of hysteresis [156].

[161–164] Battery modelling
• Due to the complex dynamics and

electro-chemical environment, it is
challenging to create a battery model.

• ESC model along with higher-order
RC model was proposed in [70].

[165,166] Self-discharge
• Lithium species loss and SEI formation are

accountable for causing self-discharge.

• ECN model for estimation of SOC by
using prediction error minimization
method was proposed in [166].

[167–170] Charge and discharge rate
• Phase dispersion is the key warning factor

for high discharge current in plastic
Li-ion batteries.

• The discharge as well charges in a
current range of the Li-ion battery
were acknowledged in [170].

[171–174] Communication method
• Due to the non-uniform charging

mechanism, developing an advanced, even
charger is problematic.

• Wireless expertise was employed to
transfer the data between charger
and battery in [173].

Electronics 2022, 11, x FOR PEER REVIEW 22 of 32 
 

 

are the key causing issues along with it 
being produced by scattering of energy 
in the development. 

precision in contradiction of the 
impact of hysteresis [156]. 

[161–164] Battery modelling 
• Due to the complex dynamics and 
electro-chemical environment, it is 
challenging to create a battery model. 

• ESC model along with 
higher-order RC model was proposed 
in [70]. 

[165,166] Self-discharge 
• Lithium species loss and SEI 
formation are accountable for causing 
self-discharge. 

• ECN model for estimation of 
SOC by using prediction error 
minimization method was proposed 
in [166]. 

[167–170] Charge and discharge 
rate 

• Phase dispersion is the key 
warning factor for high discharge 
current in plastic Li-ion batteries. 

• The discharge as well charges in 
a current range of the Li-ion battery 
were acknowledged in [170]. 

[171–174] 
Communication 
method 

• Due to the non-uniform charging 
mechanism, developing an advanced, 
even charger is problematic. 

• Wireless expertise was 
employed to transfer the data 
between charger and battery in [173]. 

 
Figure 17. Explanations for the aging of a battery at the anode [145]. 

6. Conclusions 
This paper critically reviewed BMS with attention to several methods for estimating 

the SOC. A Li-ion battery is recommended for complex in-vehicle operation due to 
having benefits such as high efficiency, energy density, voltage-generating capability, 
and long-life cycle span. The importance of a BMS to achieve reliable and safe operating 
of Li-ion batteries was described in detail. A BMS includes both hardware and software, 
which were discussed briefly. This analysis mainly explored several algorithms in 
addition to estimation methods of SOC. From the various literature reviewed, a complete 

Figure 17. Explanations for the aging of a battery at the anode [145].



Electronics 2022, 11, 1795 22 of 30

6. Conclusions

This paper critically reviewed BMS with attention to several methods for estimating
the SOC. A Li-ion battery is recommended for complex in-vehicle operation due to having
benefits such as high efficiency, energy density, voltage-generating capability, and long-life
cycle span. The importance of a BMS to achieve reliable and safe operating of Li-ion
batteries was described in detail. A BMS includes both hardware and software, which
were discussed briefly. This analysis mainly explored several algorithms in addition to
estimation methods of SOC. From the various literature reviewed, a complete explanation
including method drawbacks, benefits, and estimation errors was broadly studied.

This review paper recognizes that the conventional techniques are simple, and im-
plementation is also easy. Nevertheless, they are highly affected by temperature, aging,
and external disturbances. Similarly, the situation was observed that an AF algorithm can
calculate the nonlinear dynamic condition utilizing better accuracy, high efficiency, and
low computational cost. Nevertheless, this method suffers from poor robustness and a
heavy burden. Regarding the learning algorithm (LA), it executes a nonlinear dynamic
modeling arrangement better by bearing in mind the temperature, aging, and noises. How-
ever, it requires composite computation and large memory storage parts. The nonlinear
observer (NLO) method has improved robustness, accuracy, computation costs, and cover-
age speed. However, this method could provide inaccurate outcomes if the device is not
designed correctly. Estimating a precision SOC has become a significant challenge due to
the electrochemical reactions of several external and internal factors of Li-ion batteries.

7. Future Scope

Based on a comprehensive review of existing analyses on SOC estimation, this review
makes several important recommendations for future research, as shown in Figure 18.
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• Hybridizing algorithms: To achieve satisfactory SOC estimation performance, hybrid
methods are highly recommended, in which multiple methods enhance each other.

• Advanced sensing equipment: It is essential in developing high-precision sensors to
improve current and voltage measurement accuracy for accurate SOC estimation.
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• Cloud computing technology: The real-time operation of intelligent algorithms and
BMS controller schemes can be enhanced further with proper monitoring and analysis
via the cloud storage and big data platform.

• Embedded systems: Additional research is needed to create an embedded prototype
with a low computational cost and small memory units.

• High-performance processors: To accelerate the training operation, a GPU-based
high-performance processor and appropriate activation functions, excitable parame-
ters, and training algorithms are necessary.

• State monitoring for the battery packs: State estimation and fault diagnosis for bat-
tery packs must be evaluated to reduce cost, power loss, size, and voltage stress, and
improve equalization time and efficiency.

• It is necessary to have a generalized validation and benchmark method for SOC estimation.

In conclusion, key information and the critical analysis obtained from this review
will be useful for automobile engineers and the EV-related industries to develop and
implement advanced BMSs for EV applications. Thus, further research on BMSs using
advanced intelligent algorithms will improve battery performance and lifespan and ensure
the safe and reliable operation of EVs, resulting in significant growth of the battery and EV
markets. Furthermore, the battery-related market and expansion of the EV market can help
achieve long-term development goals such as emission reduction, clean energy, economic
development, and job creation. As a result, long-term future innovation is required to
improve EV performance in terms of accurate battery monitoring and control strategy
development, global collaboration, and sustainable development.
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ESC Enhanced Self-Correcting
LA Learning Algorithms
LSTM Long Short-Term Memory
LCO Lithium Cobalt Oxide
LTO Lithium Titanium Oxide
LNO Lithium Nickel Oxide
LFP Lithium Iron Phosphate
LMOMHE Lithium Manganese OxideMoving Horizon Estimation
MMAENAMHE Multiple Model Adaptive EstimationNoise Adaptive Moving Horizon Estimation
NCA Lithium Nickel Cobalt Aluminum Oxide
NMC Lithium Nickel Manganese Cobalt Oxide
NLO Nonlinear Observer
NN Neural Network
OCVRMSE Open-Circuit VoltageRoot Mean Square Error
SMO Sliding Mode Observer
SOC State of Charge
SOE State of Energy
SOH State of Health
SOP State of Power
SPKF Sigma-Point Kalman Filter
SVM Support Vector Machine
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