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Abstract: In this article, we proposed an analytical model based on charge distribution for switched-
capacitor trans-impedance amplifiers (SCTIAs). The changes in the load state of the amplifier under
different operating conditions and the influence of the gain of the operational amplifier (Opamp) on
the trans-impedance gain are analyzed to improve the design theory of switched-capacitor trans-
impedance amplifiers. According to the conclusion drawn from the analysis, the trans-impedance
amplifier (TIA) has been designed by adopting “correlated double sampling technology” and “cross-
connection technology” to optimize input-referred noise current, power consumption, and trans-
impedance gain. As a result, the trans-impedance gain reaches up to 206 dB, while the bandwidth is
3 kHz. The current readout system achieves an input-referred noise current floor of 2.96 f A/

√
Hz at

1 kHz, and the power consumption of the system is 0.643 mW. The circuit has been simulated with
the technology of 0.18 µm, and the layout area is 1000 µm × 500 µm.

Keywords: switched-capacitor; current readout circuit; trans-impedance amplifier; charge distribu-
tion; high gain; low noise; low power

1. Introduction

With the development of science and technology, access to information has become
more significant than before, and people are required to observe and detect various weak
signals. Weak signal detection has a wide range of applications in many fields, such as
chemistry, medicine, and food safety. In the measurement process, most methods convert
the physical quantity into an electrical signal through the corresponding sensor for easy
observation and analysis. The weak signal detection technology has also promoted the
development of medical equipment and industrial production [1–4]. It is apparent that the
development of weak signal detection technology prompts people to explore the laws of
nature and develop high technology.

Sensors are applied to convert physical quantities into current signals that sometimes
are too tiny to be detected by Analog to Digital Converter (ADC) directly. It is necessary to
employ a trans-impedance amplifier (TIA) to convert and amplify the current signal for
ADC [5]. The inserted buffer between the TIA and ADC ensures that the sampled signal
is sufficiently accurate. Since the rapid development of digital signal processing, it is a
reasonable choice to transmit the output of the ADC into processors like Microprogrammed
Control Unit (MCU) or Digital Signal Processor (DSP) for further signal processing.
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The general architecture of a weak current signal detection system is shown in
Figure 1 [6].
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Figure 1. The architecture of the weak current signal detection system.

TIAs applied to detect the current signal produced by an input device, such as current
type sensors, convert it into a voltage signal for further signal processing, and play more
and more vital roles in weak current signal detection.

A classical structure of TIA adopting a simple resistor R f between the input and output
of an operational amplifier (Opamp) is unsuited for low noise and high gain application.
The feedback resistor determines the current-to-voltage conversion factor (R f ) and the
input-referred noise current (4 kT/R f ) of the TIA, where k represents boltzmann constant
and T stands for absolute temperature [7,8]. The requirement of high-value resistors (at
the order of GΩ) is difficult to be integrated for increasing trans-impedance gain (R f ) and
decreasing input-referred noise current (4 kT/R f ) [9]. Moreover, the resistor is limited
by the gain-bandwidth product (GBW) of the Opamp as R f ≤ GBW/(2πCinBW2) for
stability [10].

Due to the difficulties of realizing resistive high-gain, low-noise TIAs, most state-of-
the-art TIAs utilize pseudo-resistors and capacitors as the feedback elements [11–17].

Chuah and Holburn presented a resistive feedback TIA, utilizing a single PR as feed-
back element, which is operated in the linear region and tunable by an adjustable gate
potential [15]. Therefore, the performance is very sensitive to process and temperature
variations [16]. To mitigate the problems, Djekic proposed the use of a modified PR with en-
hanced linearity and robustness as resistive feedback element. However, the circuit needed
to be manufactured in SOI CMOS process to greatly reduce parasitic capacitances [17].

A feedback capacitor replaces the resistor in the above structure as the feedback
element. Since capacitors are regarded as elements with no noise, there are fewer noise
sources in capacitive feedback type TIAs [18]. However, there is a fatal drawback in
the topology of capacitive feedback TIA. The trans-impedance gain can be expressed as
1/(sC f ). Even a very tiny leakage current, generated by the sensors and regarded as direct
current, will lead the Opamp to saturate [19].

Ferrari has proposed a topology of integrator-differentiator with dc feedback to avoid
a direct current charge to the feedback capacitor. Since the structure of the dc feedback
path has much negative feedback, stability is a challenge [9]. Another solution to solve the
saturation of the Opamp is connecting a reset network between the input and output of
the Opamp. The scheme has been proposed in [20], but the article ignored the effect of
capacitative load during the process of current amplifying, and the load state, which is
diverse in different working states of the TIA, was neglected as well.

It is necessary to analyze the transient behavior considering the charge distribution
caused by the load capacitors and conclude the load states in different operating conditions
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to optimize the trans-impedance gain and power consumption. As a supplement, the
bandwidth (BW) of the switched-capacitor trans-impedance amplifier (SCTIA) and the
influence of the Opamp on the trans-impedance gain are also analyzed to improve the
previous work.

This paper is organized as follows. Section 2 gives a brief introduction to the SCTIA
and analyzes the principle of correlated double sampling (CDS). In Section 3, an analytical
model based on charge distribution is proposed, which gives a new viewpoint on the
principle of SCTIAs. Section 4 shows the results and corresponding analysis, and Section 5
draws the conclusion.

2. Analysis and Design
2.1. The Architecture Design

Figure 2 shows the architecture of the current detection system. It consists of a TIA
adopting switched-capacitors, CDS, digital circuit controlling switches, and a low noise
buffer employed to improve the drive capability.
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Figure 2. The schematic of the weak current detection system.

2.2. The Introduction to SCTIA

As present in Figure 3, the TIA contains a fully differential operational amplifier,
several capacitors used for different functions, some switches, and a logic circuit used to
control the switches and not displayed in the circuit diagram. All switches turn on (off) at
high (low) voltage.
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Figure 3. The schematic of the switched-capacitor trans-impedance amplifier (SCTIA).
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The timing phase generated to control the switches should be appropriate to make the
circuit work properly. This paper employs the timing phases as shown in Figure 4.
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Figure 4. The diagram of timing phase.

As shown in Figure 4, there are three phases named ϕ1, ϕ2, and ϕ3, which control the
switches named φ1, φ2, and φ3 in Figure 5, respectively. The working period is marked as T
in Figure 4.
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Figure 5. The schematic of telescopic cascade amplifier.

When φ1 is on, the voltages of C1 and C2 are reset to zero so that there is no charge
on C1 and C2. When φ1 goes off at t2, the input current begins to charge C1, v1+, and v1−
starts to rise (fall) or fall (rise) until the next period comes. After φ2 is off at t3, v2+, and
v2− follow the change of v1+ and v1−, respectively. Sample and hold circuit, consisting of a
CMOS switch φ3 and a sample capacitor C3, is used to sample v2 at the end of t5 and hold
the value until the next time when φ3 is on. The brief waveforms of the node voltage of the
TIA are shown in Figure 6 [20].



Electronics 2022, 11, 1791 5 of 16

0

inI −

outV −

2V −

1V −

t

t

t

t

1t 2t 3t 4t

0

inI −

outV −

2V −

1V −

t

t

t

t

1t 2t 3t 4t

(a)

0

inI +

outV +

2V +

1V +

1t 2t 3t

t

t

t

t
4t0

inI +

outV +

2V +

1V +

1t 2t 3t

t

t

t

t
4t

(b)
Figure 6. The brief waveform of the trans-impedance amplifier (TIA). (a) The waveforms depict the
voltage of V1−,V2−,Vout− when the input current is displayed as Iin−. (b) The waveforms depict the
voltage of V1+,V2+,Vout+ when the input current is displayed as Iin+.

2.3. Correlated Double Sampling

The input-referred noise current is required to be small enough to make the TIA have
the capability of detecting weak current signals.

Compared with the topology of resistive feedback, there is no resistor used in the
structure of SCTIA, and then we can conclude the noise sources in the circuit. The noise
sources of the TIAs are flicker noise, thermal noise of the operational amplifier, noise from
the clock phase, and the shot noise caused by the leakage currents of the Electro-Static
Discharge (ESD) protection diodes at the input of TIA, which is on the order of f A during
regular operation. Since the transistors of switches work in the deep linear region, the clock
noise is greatly reduced. Consequently, the noise from the Opamp usually dominates other
noise sources. CDS is a technique commonly applied to reduce the noise of operational
amplifiers, especially utilized for flicker noise and offset cancellation [20].

Signify the sum of the offset and low-frequency noise, principally flicker noise, as
shown in Figure 7. To simplify the analysis, assume that vn exists only at the positive port
of the amplifier.
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Figure 7. The principle of correlated double sampling (CDS). (a) The switch state of the first stage of
CDS; (b) The switch state of the second stage of CDS.

At the time of t3 as shown in Figure 8, vn(t3), denotes the voltage of vn at t3, is
amplified by the operational amplifier and the amplification coefficient depends on the
ratio of parasitic capacitance Cp and feedback capacitance C1 and stored in C2 as a voltage
verr across C2.

It is effortless to get the expression of verr as shown in the following.

verr(t3) = 1 +
Cp

C1
vn(t3). (1)
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When all switches are off, charges stored in C2 will not be variational for one end of C2
connected to high resistance, like a floating state. Obviously, v1+, at t5 , can be expressed as

v1+ = verr(t5) + vsi(t5). (2)

vsi(t5) denotes the signal when noise is going to be omitted. Compared with a clock signal,
the frequency of vn is much smaller, for that vn is mainly comprised of offset and flicker
noise of the Opamp. Then it is reasonable to regard vn as a constant in a single period so
that the effect of offset and flicker noise at the output can be canceled through the above
technology [21].

� �� ��� �	 ��	 ���	
���

���

���

���

���

���

���

���

���

���

���

���

���

���

��
��
���������	

��	�����	����
��

�	����
��

�
�
�
�
�


�


	
�
�
�
�
	
�
�
�
�
�
�

�
�	��������
�

�
����
���������	
�

��
��
���������	

�����

��

��	����������
��

����
���������	

Figure 8. The comparison result of the frequency response of the input and the output of the buffer.

3. Detailed Analysis
3.1. The Charge Distribution Model

In the previous sections, we have introduced the working principle of TIA briefly. An
analysis in detail of the circuit is needed to be carried out to guide the actual design. We
can derive the equations which describe the working process according to the following
analysis based on charge distribution.

When φ1 is on, the input and the output of the Opamp are connected directly, and
then the charge on the feedback capacitor C1 and capacitor C2 is zeroed. Compared with
the branch of the capacitor, the output of the Opamp shows lower impedance, so the input
current flows into the output stage of the Opamp through the feedback switch directly,
then v1+ and v1− are expressed below.

v1+ = 0, (3)

v2+ = 0. (4)

To simplify the analysis, the differential terminals v1− and v2− are omitted. The same
goes for the following analysis. Since the sampling switch is not closed, vout+ remains
unchanged as a value as the previous period vout+ was.

When φ1 is off and φ2 is still on, the input current will charge C1. At the moment
switch φ1 is off, feedback capacitor C1, which was originally shorted, is connected to the
circuit, and then the load state of the operational amplifier will change. The voltage of the
input and output of the amplifier will not mutate for both the charge stored in C1 and C2 at
the moment before and after the switch φ1 is off is zero.
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An Opamp has the character of a virtual short circuit and virtual open circuit for its
high gain and high input impedance. As a result, the input current flow from the input
node to the output node of the amplifier through the feedback capacitor will not make the
voltage of the input node of the amplifier change. According to the relationship between
voltage and current of the capacitors, the voltage of C1 can be expressed as

uc1(t) =
1

C1

∫ t

t2

iin(t)dt + uc1(t2). (5)

where t2 6 t 6 t3,uc1(t2) = 0.
Compared with the period of the clock, the period of the input current is longer. As a

result, it is reasonable to regard the input current iin(t) as a constant Iin, so that the above
expression can be simplified as

uc1(t) =
t− t2

C1
Iin. (6)

That t2 6 t 6 t3 is assumed. The voltage of the output of the Opamp varies linearly
concerning the input current over time. Since the voltage of the output of the amplifier
has changed, and another port of capacitor C2 is connected to VCM, current will flow
through capacitor C2, whose value depends on the rate of change of the output voltage
of the Opamp. According to the expression of uc1(t), the current which flows through
capacitor C2 can be calculated below.

iC1 = C2
du2

dt
= C2

Iin
C1

. (7)

According to Kirchhoff’s Current Law (KCL), the output current of the Opamp is
required to be larger than the sum of current flowing through the capacitor C1 and capaci-
tor C2.

When φ1, φ2, φ3 all are off, the port of capacitor C2 connected to switch φ3 is considered
to be in a high resistance state, as a consequence, there is no current flow through capacitor
C2, so that the voltage of the two ports of C2 do not change, v2 is going to change as
v1 changes.

The expression of v1+ and v2+ can be derived as follows when t3 6 t 6 t4.

v1+ =
1

C1

∫ t

t2

iin+(t)dt + uc1(t2), (8)

v2+ =
1

C1

∫ t

t3

iin+(t)dt. (9)

Assuming that the output voltage of the TIA is V(nT− T) at the end of the last cycle,
as a result, charges stored in capacitor C3 at t4− can be expressed as

QC31 = V(nT − T)C3. (10)

During the phase when φ1 is off, and φ2 is on, charges stored in C2 at t4− can be
derived as

QC21 = iin(t3 − t2)C3. (11)

That t4− denotes the moment before φ3 is on.
The voltage of a capacitor does not change dramatically since C1 is connected across

the input and output of the Opamp, which means that the voltage at the node where the C1
is connected to the input of the Opamp remains zero.

Suppose that the final stable output at the end of the period is V(nT), and
V(nT) > V(nT − T). According to the analysis above, we can derive v2 as

v2 =
Iin
C1

(t4 − t3). (12)
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The charging process when the switch φ3 is on is analyzed separately to simplify the
analysis. As a result, the voltage across C1 is regarded as constant during the process of
charge redistribution between C2 and C2.

Given the assumption of V(nT) > V(nT − T), the charge will be transferred from
capacitor C2 to capacitor C3 when the redistribution of charge happens. In other words, v1
will drop sharply, and then v1 will drop sharply as well. The voltage of the input of the
Opamp connected to capacitor C1 changes in the same way as v1. Through the adjustment
of the feedback of the Opamp, the input voltage of the amplifier will change to zero, and
the output voltage of the amplifier will return to Iin/C1(t4 − t2), during the above process,
the charge is transferred.

Before and after the transfer of charge, the amount of charge is conserved, so the
charges stored in capacitor C2 and C3 have the relationship as follows.

(V(nT)− iin(t4 − t2)

C1
)C2 + V(nT)C3 = (V(nT − T))C3 +

iin(t3 − t2)

C1
C2, (13)

V(nT) = V(nT − T)
C3

C2 + C3
+

C2

C1(C2 + C3)
iin(t4 + t3 − 2t2). (14)

For the assumption of V(nT) > V(nT − T), we can define VnT−T = αVnT , where
0 < α < 1, so that the trans-impedance gain of the TIA can be derived as

V(nT)
iin

=
C2

[C2 + (1− α)C3]C1
(t4 + t3 − 2t2). (15)

3.2. Equivalent Load Capacitance

In order to optimize the power consumption, it is necessary to know the load state of
the Opamp at each phase. Figure 9 is the different working states of the TIA. In separate
circuit states, capacitors connected to the output of the Opamp are dissimilar. According to
the method concluded in [22], the equivalent load capacitances of the Opamp at different
phases are expressed below.
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Figure 9. The different working states of the TIA. (a) The working state when t1 < t < t2; (b) The
working state when t2 < t < t3; (c) The working state when t3 < t < t4; (d) The working state when
t4 < t < t5.

Ceqa = Cp + C2, (16)

Ceqb = Cp + C2(1 + Cp/C1), (17)
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Ceqc = Cp, (18)

Ceqd = Cp + (C2//C3)(1 + Cp/C1). (19)

According to the equations above, it is clear that when φ2 is on and φ1 is off, the load
capacitance of the Opamp is the largest.

3.3. Analysis of Bandwidth

Different from the analysis in conventional circuit structures, it is hard to analyze the
bandwidth in SCTIAs accurately, but the factors affecting the bandwidth can be obtained
through qualitative analysis.

Because of switch capacitors, there is a hypothesis about the trans-impedance gain—
that the input current is regarded as a constant in a complete working period in the above
analysis. To satisfy the assumptions, the bandwidth of the TIA is far less than the frequency
of a complete working cycle.

As a consequence, we can improve the bandwidth of the TIA through the method
of increasing the frequency of the system clock, which will decrease the charging time of
capacitor C1 in a single cycle, the trans-impedance gain will decline. In addition, the time
when switch φ1 is closed becomes shorter, and the power consumption of the Opamp is
required to be higher to meet the quick setting up under the condition of unit feedback.
Therefore, the system clock should be reasonable according to the trade-off of power,
bandwidth, and trans-impedance gain.

In addition to a constraint on bandwidth from the system clock, the pole generated
by the equivalent resistance and the input capacitor also has an impact on the bandwidth.
Since the frequency of this pole is relatively high, it is generally not taken into account
when the requirement of bandwidth is low.

3.4. Analysis of Leakage Current

In the sub-pA current detection circuit, the leakage current needs to be concerned.
In CMOS technology, it is considered that leakage of PN junction and leakage of MOS
operating in the sub-threshold region are the primary leakage current in the circuit [23].

The leakage current of the PN junction is caused by the drift of minority carriers at the
edge of the depletion region and the recombination of electron–hole pairs in the depletion
region. Generally, the leakage current of PN junction in 0.18 µm CMOS technology is in the
order of aA/µm2 , which is a low leakage current level in the CMOS circuit [24,25].

The leakage current of MOS operating in the sub-threshold region is generated by the
channel between source and drain when the gate-source voltage is less than the threshold
voltage, which is mainly determined by the diffusion of carriers [26].

Some secondary effects of MOS, such as DIBL (Drain Induced Barrier Lowering), body
effect, and threshold voltage roll-off, will affect the threshold of MOS and then influence
the sub-threshold leakage current of MOS [27]. DIBL often occurs in small size devices
because of the decrease in channel length, increasing the voltage at the drain. The source
and drain depletion zone will close together. As a result, the number of electrons injected
into the channel from the source will increase, resulting in an increase in leakage current.
It is obvious that we can increase the length of the MOS to reduce the effect of DIBL on
leakage current. Body effect is caused by different potentials of bulk and source, and it
will change the threshold voltage of the MOS. It is a good method to take advantage of
the body effect to increase the threshold voltage of the MOS and then decrease leakage
current [28]. Threshold voltage roll-off is caused by short channel length as DIBL. The
typical sub-threshold leakage current of MOS is several decades f A of orders [29].

3.5. Effects of the Operational Amplifier on TIA

It is obvious to be seen from the above analysis that we can converse current signal
to voltage signal because of the charging of the feedback capacitor C1. It is necessary to
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analyze the transient process when considering the influences of the Opamp, for the reason
that the amplifier is the core element in the TIA.

The following equations hold at both the input and output of the Opamp.

Iin(t) = I1(t) + I2(t), (20)

−Vin(t)A = Vout(t), (21)

Vout(t)−Vin(t) =
1

C1
I2(t)(t− 0), (22)

Vin(t) = −
I1(t)t

Cp
. (23)

where Iin(t) is the input current, I1(t) is the current flowing through the parasitic capacitor
Cp, I2(t) is the current flowing through the feedback capacitor C2, Vin(t) is the voltage at the
input of the Opamp, and Vout(t) is the voltage at the output of the Opamp, all are shown in
Figure 10. According to above equations, the relationship between Vout(t) and Iin(t) can be
derived as follows.

Vout(t)
Iin(t)

=
t

C1

1
1 + 1/A + Cp/(AC1)

. (24)

The gain of the Opamp A is required to be large enough to avoid the influence of the
parasitic capacitor on trans-impedance gain.

( )in tI

1C

pC

A

1 ( )tI

2 ( )tI

( )out tV

pC

1C

( )in tI

1C

pC

A

1 ( )tI

2 ( )tI

( )out tV

pC

1C

Figure 10. Schematic of the resistive feedback TIA describing the noise performance

Compared with telescopic cascade and two-stage amplifier, folded cascade amplifier
has a better trade-off in power consumption and output swing. In this design, we adopt the
structure of folded cascade amplifier, and the diagram is shown in Figure 11. Compared
with NMOS, PMOS has lower flicker noise because the probability of capturing and
releasing carriers is much smaller. Therefore, it is reasonable to choose PMOS as the input
MOS of the amplifier.
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Figure 11. The schematic of fully differential folded-cascade amplifier (CMFB is not displayed).
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3.6. Buffer Design

The TIA has a poor ability to drive load since its output is capacitive. Therefore,
the TIA needs to be connected to an appropriate buffer to drive a load. In this paper,
cross-connection technology is adopted to design a fully differential buffer with high input
impedance and low output impedance based on telescopic operational amplifiers. The
structure of the buffer is shown in Figure 12.

The relationship between the output and the input of the buffer can be derived as
follows [30].

Vout

Vin
= 2× (

R1

R2
− R1

R3
). (25)

2R 3R

1R

1R

R

R

R

R

R

R

inV +

inV −

outV +

outV −

VCM

cross 
connection

resistor
2R 3R

1R

1R

R

R

R

R

R

R

inV +

inV −

outV +

outV −

VCM

cross 
connection

resistor

Figure 12. The schematic of the low noise buffer.

To reduce the overall power consumption, Opamps adopting a telescopic cascade
structure, as shown in Figure 5, are applied to build the low noise buffer. For the reason
that there are sampling capacitors at the output of the core TIA, the signal at the output will
change due to the effect of clock feedthrough and charge injection of switches if low noise
technology like chopper or auto-zero is adopted to reduce input-referred noise voltage of
buffer. As a result, it is necessary to increase the size of the input MOS of the buffer to
achieve the requirement of low noise, as described in Figure 5.

4. Result and Analysis

The frequency response and noise performance of the TIA have been simulated. We
can obtain the periodic operating point of the TIA through “Periodic Steady State” (PSS)
analysis. After PSS is completed, “Periodic Alternating Current” (PAC) analysis computes
the frequency response of the TIA, and “Periodic Noise” (PNOISE) analysis is run to find
out its noise behavior.

That shown in Figures 13 and 14 are the results representing the gain of the input and
output nodes of the buffer.

Low-frequency trans-impedance gains as high as 206 dB with a 3 kHz–3 dB bandwidth
at the output node of the buffer and 183 dB with a 3 kHz bandwidth at the input node
of the buffer have been simulated in the worst case from the result. This shows that the
gain of the in-band signal is very high, and the designed current readout circuit has a good
ability to amplify the tiny current.

The curves of the frequency response are shown in Figure 8 under the condition of
27 ◦C and “typical–typical” (tt) process corner to facilitate the comparison of the input and
output gains of the buffer. The gain is observed to increase from 183.51 dBΩ to 210.19 dBΩ,
indicating that the buffer could improve the ability to drive loads and enhance the gain of
the trans-impedance amplifier.
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Figure 13. Frequency response of the complete system.
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Figure 14. Frequency response of the input node of the buffer.

Figure 15 displays the input-referred noise voltage of the buffer. In this paper, the low-
frequency input-referred noise voltage of the buffer is decreased through the increasing size
of the input MOS. As shown in the result, input-referred noise voltage of 33.143 nV

√
Hz at

1 kHz has been achieved regardless of process and temperature variation.
That shown in Figure 16 is the performance of the input-referred noise current of the

TIA. A low input-referred noise current of 2.69 f A/
√

Hz is achieved. Its noise performance
ensures that the current readout circuit can amplify the weak current in the band effectively
without introducing too much noise.

That shown in Figure 17 is the layout of the complete system, and all sub-circuits have
been marked on the layout.

A comparison result of the performance of the published circuits in recent years is
shown in Table 1.
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Figure 15. Noise performance of the TIA.
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Figure 16. Noise performance of the low noise buffer.
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Figure 17. The layout of the TIA with buffer.
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Table 1. The comparison result of the performance of circuits. CT represents continuous type, DT
represents discrete type.

This Work IEEE J. Solid State ISCAS [31] Sensors [20] CoDIT [32] IEEE J. Solid State Circuits [33] Electronics [34] IEEE J. Solid State
Circuits [11] Circuits [35]

Bandwidth/MHz 3× 10−3 4 1 4× 10−2 10 1× 10−3 0.555 2
Input referred noise/ f A

√
Hz 2.69 4 27 25 500 − 390 140

DC gain/dBΩ 206 153 148.9 158 104.1 148 124 120
Power/mW 0.643 45 2.71 3.2 0.71 0.4 0.0361 9.5
Technology 0.18 0.35 0.18 0.35 0.18 0.6 0.18 0.18
Circuit Type DT CT CT DT CT DT CT CT

Result Simulated Measured Simulated Measured Simulated Measured Simulated Measured

From the comparison result, it is apparent that CT-TIAs (Continuous type trans-
impedance amplifiers) [11,13,31,35] reach the MHz bandwidth, while DT-TIAs (Discrete
type trans-impedance amplifiers) [20,33], including the design in this paper, are limited in
bandwidth by system clock as analyzed in Section 3.3.

According to the conclusion drawn from the charge distribution model and equivalent
load capacitance, the trans-impedance gain and power consumption of the design have
been optimized.

This work has advantages in the performance of gain and power consumption com-
pared with the previous work displayed in Table 1, so it is suitable for low-noise and
low-power application scenarios with the relaxed bandwidth requirement, such as the
current process in ECG, EGG, NIRS, and DNA analysis [36–38].

5. Conclusions

Building on previous work, in order to analyze the factors affecting the trans-impedance
gain of SCTIAs accurately, the analytical model of charge distribution proposed improves
the analysis theory of SCTIAs. Grounded on the proposed model, combined with the
analysis of load states and effects on the trans-impedance gain of the Opamp, the designed
circuit achieves a trans-impedance gain as high as 206 dB with 3 kHz bandwidth and
0.643 mW power consumption. Its input-referred noise current is as low as 2.69 f A/

√
Hz

at 1 kHz. The simulation results show that the model is referential on low power and
high gain TIAs. The detailed analysis process helps technical personnel, engineers, and
researchers specializing in TIAs to design high-performance current readout circuits.
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ADC Analog to Digital Converter
MCU Micro Control Unit
DSP Digital Signal Processor
TIA Transimpedance amplifier
SCTIA Switched-capacitor transimpedance amplifier
Opamp Operational amplifier
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GBW Gain-Bandwidth product
CDS Correlated double sampling
ESD Electro-Static Discharge
KCL Kirchhoff’s Current Law
CT-TIAs Continuous type trans-impedance amplifiers
DT-TIAs Discrete type trans-impedance amplifiers
PSS Periodic Steady State
PAC Periodic Alternating Current
PNOISE Periodic Noise
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