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Abstract: In this article, the motion control problem of hydraulic lifting systems subject to parametric
uncertainties, unmodeled disturbances, and a valve dead-zone is studied. To surmount the problem,
an active disturbance rejection adaptive controller was developed for hydraulic lifting systems.
Firstly, the dynamics, including both mechanical dynamics and hydraulic actuator dynamics with
a valve dead-zone of the hydraulic lifting system, were modeled. Then, by adopting the system
model and a backstepping technique, a composite parameter adaptation law and extended state
disturbance observer were successfully combined, which were employed to dispose of the parametric
uncertainties and unmodeled disturbances, respectively. This much decreased the learning burden
of the extended state disturbance observer, and the high-gain feedback issue could be shunned. An
ultimately bounded tracking performance can be assured with the developed control method based
on the Lyapunov theory. A simulation example of a hydraulic lifting system was carried out to
demonstrate the validity of the proposed controller.

Keywords: hydraulic lifting system; disturbance compensation; adaptive control; valve dead-zone

1. Introduction

Hydraulic lifting systems are applied widely in modern industry owing to their
advantages including large force/torque output, small size-to-power ratio, and high re-
sponse [1–5]. However, considering that heavy nonlinearities (i.e., friction nonlinearity,
transmission nonlinearity, and valve dead-zone) and unmodeled uncertainties (i.e., para-
metric uncertainties and unmodeled disturbances) exist in hydraulic lifting systems, achiev-
ing high-performance motion control for hydraulic lifting systems is still challenging [6–10].
Therefore, to attain the enhancement of tracking accuracy for hydraulic lifting systems, it is
essential to study advanced controllers.

Over the past serval decades, many advanced control methods have been developed
to obtain high-precision tracking for hydraulic systems. The feedback linearization control
in [11,12] was employed to address dynamic nonlinearities. To dispose of parametric
uncertainties in hydraulic actuating systems, adaptive control was utilized in [13], while it
did nothing about external disturbances [14]. In [14], adaptive robust control was developed
to simultaneously handle parametric uncertainties and disturbances and is widely utilized
in actual systems [15–21]. Nevertheless, only the boundedness of the tracking error was
attained while facing time-varying disturbances. In addition, sliding mode control with a
simple structure was employed in [22] to attain anti-disturbance ability for electrohydraulic
actuators. An output–feedback-based sliding mode control framework was presented
in [23] to obtain the finite-time tracking performance. Nonetheless, as the disturbances
increased, the high-gain feedback way in [11–20,22,23] was adopted, which might make
the system become uncontrollable.
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To eliminate the influence of unmodeled disturbances on tracking performance, many
disturbance observers have been proposed. In [24], Yao et al. used an extended state
disturbance observer to obtain the estimations of mismatched and matched disturbances.
Whereas only the bounded control performance of a hydraulic system can be attained in the
face of time-variant disturbances, a new estimator [25] was adopted to deal with unknown
uncertainties for servo systems, where the bounded stability was ensured. A novel sliding
mode observer in [26] was adopted to handle pressure dynamics and force dynamics in
hydraulic actuators, whereas the sign function in the controller could result in chattering
and system instability. In [27], Deng et al. developed an extended-state-observer-based
adaptive controller to dispose of parameter uncertainties and external disturbances existing
in hydraulic systems, in which the system velocity signal was not measured. Moreover,
compared with the aforementioned controller methods for hydraulic actuation systems,
the controller development of the hydraulic lifting systems presented in this article is
more complicated in consideration of its inherent transmission nonlinearities and valve
dead-zone. Hence, developing a high-performance controller for a hydraulic lifting system
is challenging.

In this article, an active disturbance rejection adaptive control framework was devel-
oped for hydraulic lifting systems subject to parametric uncertainties, unmodeled distur-
bances, and a valve dead-zone. Firstly, the dynamics, including both mechanical dynamics
and hydraulic actuator dynamics with a valve dead-zone of the hydraulic lifting system,
were modeled. Using the system model and backstepping technique, a composite parame-
ter adaptation law and extended state disturbance observer were successfully combined,
which were adopted to dispose of parametric uncertainties and unmodeled disturbances,
respectively. This much decreased the learning burden of the extended state disturbance
observer, and the high-gain feedback issue could be shunned. In addition, based on the
Lyapunov theory, the ultimately bounded tracking performance of the controller could be
assured. A simulation example of a hydraulic lifting system was carried out to demonstrate
the effectiveness of the proposed controller.

The main contributions of this article are as follows: (1) an active disturbance rejec-
tion adaptive control framework was developed for a hydraulic lifting system subject to
parametric uncertainties, unmodeled disturbances, and a valve dead-zone, in which the ul-
timately bounded tracking performance of the controller could be assured; (2) by adopting
the adaptive control, the learning burden of the extended state disturbance observer could
be much reduced; therefore, the high-gain feedback way could be shunned; (3) the merits
of the developed control method were verified by simulation results.

The structure of this paper is as follows: a system description of the hydraulic lifting sys-
tem is shown in Section 2. The controller design and its stability proof can be found in Section 3.
The simulation results and conclusions are presented in Sections 4 and 5, respectively.

2. System Description

The hydraulic lifting system under study is presented in Figure 1. As shown in
Figure 1, O stands for the gyration center; O1 and O2 denote the rotation centers of the
upper and lower ears of the hydraulic cylinder, respectively; O3 stands for the lifting system
barycenter; q stands for the lifting arm rotary angle; G and F denote the force acting on
the arm and the arm gravity, respectively. In addition, let OO2 = L1, O1O2 = L2, OO1 = L3,
OO3 = L4, O1

′O2 = L, ∠O1OO1
′ = q, ∠O1OO2 = q0, ∠O1OO3 = β0, and ∠OO1

′O2 = α.
The dynamics of the lifting system can be written as:

J
..
q =

(
∂xp

∂q

)
(P1 A1 − P2 A2)−mgL4 cos(q + β0)− B

.
q− A f S f (

.
q) + d1(t) (1)

where J and m stand for the rotary inertia and arm mass, respectively; P1 and P2 stand for the
pressure values of two chambers of the hydraulic cylinder, respectively; A1 and A2 stand for
the effective areas of two chambers in the hydraulic cylinder, respectively; Af and Sf stand
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for the amplitude and approximated shape function of the Coulomb friction, respectively;
B stands for the viscous friction coefficient; d1(t) stands for the unmodeled disturbances.
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Figure 1. A sketch of the lifting system.

Defining the cylinder displacement as xp obtains:

xp = L− L2

=
√

L2
1 + L2

3 − 2L1L3 cos(q + q0)− L2
(2)

There exists:
∂xp

∂q
=

L1L3 sin(q + q0)√
L2

1 + L2
3 − 2L1L3 cos(q + q0)

(3)

Considering the oil compressibility, the pressure dynamics of the hydraulic actuator
are written as [28]:

.
P1 = βe

V1(q)
[−A1

∂xp
∂q

.
q− Ct(P1 − P2) + Q1 + d21(t)]

.
P2 = βe

V2(q)
[A2

∂xp
∂q

.
q + Ct(P1 − P2)−Q2 − d22(t)]

(4)

where V1 = V01 + A1xs and V2 = V02 − A2xs stand for the volumes of the two chambers,
respectively; V01 and V02 stand for the original volumes of the two chambers, respectively;
βe stands for the effective oil bulk modulus; Ct stands for the internal leakage coefficient; Q1
and Q2 stand for the return flow and supplied flow of the hydraulic cylinder, respectively;
d21(t) and d22(t) stand for the unmodeled disturbances.

Consequently, the flows Q1 and Q2 thus are modeled as [28]:

Q1 = kqxv[s(xv)
√

Ps − P1 + s(−xv)
√

P1 − Pr]
Q2 = kqxv[s(xv)

√
P2 − Pr + s(−xv)

√
Ps − P2]

(5)
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where kq stands for the flow gain; xv stands for the valve spool displacement; Pr and Ps
stand for the return pressure and supply pressure, respectively; s(*) is defined as:

s(∗) =
{

1, if ∗ ≥ 0
0, if ∗ < 0

(6)

Given that the compressibility flow is small and the valve window is configured and
symmetrical, one obtains [28]:

Ps ≈ P1 + P2 (7)

Defining the load pressure PL = P1 − AcP2, where Ac = A2/A1, it is easy to derive:

P1 =
AcPs + PL

1 + Ac
, P2 =

Ps − PL

1 + Ac
(8)

Defining the state variables x = [x1; x2; x3] =
[
q;

.
q; A1PL/J

]
, the system’s state-space

form using (1)–(5) and (8) is:

.
x1 = x2

.
x2 =

∂xp
∂x1

x3 − m
J g1(x1)− B

J x2 −
A f
J S f (x2) + ∆1(t)

.
x3 = βekt

J g2(xv, x3) · xv(u)− βe
J g3(x1, x2)− βeCt

J g4(x1, x3) + ∆2(t)
(9)

where
g1(x1) = gL4cos(x1 + β0)

∆1(t) = d1(t)/J
∆2(t) = βe(A1d21(t)/V1 + A2d22(t)/V2)/J

(10)

and
g2(xv, x3) =

A1R1
′

V1
+ A2R2

′

V2
,

R1
′ = s(xv)

√
Ps − AcPs+Jx3/A1

1+Ac
+ s(−xv)

√
AcPs+Jx3/A1

1+Ac
− Pr,

R2
′ = s(xv)

√
Ps−Jx3/A1

1+Ac
− Pr + s(−xv)

√
Ps − Ps−Jx3/A1

1+Ac
,

g3(x1, x2) =
∂xp
∂x1

(
A2

1
V1

+
A2

2
V2
)x2, g4(x1, x3) = ( A1

V1
+ A2

V2
)
(Ac−1)Ps+

2Jx3
A1

1+Ac

(11)

Omitting the valve dynamics, the valve spool displacement, xv, can be modeled as a
static mapping of the control input voltage, u, with a dead-zone [29]

xv(u) = DZ(u) =


mru−mrbr, if u ≥ br

0, if bl < u < br
mlu−mlbl , if u ≤ bl

(12)

where DZ(u) stands for the valve dead-zone nonlinear function; mr > 0, ml > 0, br ≥ 0,
and bl ≥ 0 denote the unknown constants of the right slope, left slope, right break-point,
and left break-point of the dead-zone, respectively. The characteristic of the valve dead-zone
is given in Figure 2.
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Figure 2. The valve dead-zone characteristics.

Assumption 1. Although the valve dead-zone parameters are unknown, the maximum and mini-
mum values of the left slope and right slope are known, i.e., m = max{mr, ml} and m = min{mr, ml},
where m and m are known positive constants.

Based on Assumption 1, Formula (12) can be reconstructed as:

xv(u) = m(t)u + d(t) (13)

in which

m(t) ,
{

ml , if u ≤ 0
mr, if u > 0

(14)

and

d(t) ,


−mrbr, if u ≥ br
−m(t)u, if bl < u < br
−mlbl , if u ≤ bl

(15)

It is worth noting that:
m(t)

m
= 1 + k(t) (16)

where k(t) stands for a positive bounded piecewise continuous function.
Taking the parametric uncertainties into consideration, defining the unknown param-

eter vector, θ = [θ1; θ2; θ3; θ4; θ5; θ6] =
[

m
J ; B

J ;
A f
J ; βekt

J ; βe
J ; βeCt

J

]
. According to (9), (13) and

(16) can be rewritten by:

.
x1 = x2

.
x2 =

∂xp
∂x1

x3 − θ1g1(x1)− θ2x2 − θ3S f (x2) + ∆1(t)
.
x3 = θ4g2(xv, x3)u− θ5g3(x1, x2)− θ6g4(x1, x3) + ∆2(t)

(17)

in which ∆2(t) = ∆2(t) + mk(t)u + d(t).
Before developing the controller, the following assumptions were provided:

Assumption 2. The desired trajectory x1d ∈ C3 is bounded.

Assumption 3. ∆1(t) and ∆2(t) in (17) meet:

|∆1(t)| ≤ δ1,
∣∣∆2(t)

∣∣ ≤ δ2 (18)

where δi (i = 1, 2) are unknown positive constants. In addition, the set of parameters θ satisfies:

θ ∈ Ωθ , {θ : θmin ≤ θ ≤ θmax} (19)

where θmax = [θ1max; θ2max; θ3max; θ4max; θ5max; θ6max], θmin = [θ1min; θ2min; θ3min; θ4min; θ5min; θ6min].
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3. Controller Design
3.1. Discontinuous Mapping and Parameter Adaptive Law

Defining the estimation values of θ as θ̂, and the estimation error θ̃ = θ̂ − θ, the
discontinuous mapping was designed as [30]:

Projθ̂i
(•i) =


0, if θ̂i = θimax and •i > 0
0, if θ̂i = θimin and •i < 0
•i, otherwise

(20)

in which i = 1, 2, 3, 4, 5, and 6. The adopted updated law is set as:

.
θ̂ = Projθ̂(Γτ) θ̂(0) ∈ Ωθ (21)

where Projθ̂(•) = [Projθ̂1
(•1), . . . , Projθ̂6

(•6)]
T; Γ ∈ R6×6 denotes a positive diagonal matrix,

for any adapted function τ, the projection mapping (20) ensures [30]:

θ̂ ∈ Ωθ̂ =
{

θ̂ : θmin ≤ θ̂ ≤ θmax
}

(22)

θ̃T [Γ−1Projθ̂(Γτ)− τ] ≤ 0, ∀τ (23)

3.2. Disturbance Observer Design

To realize the observation of matching and mismatching disturbances in (17), the
disturbance observer should be designed first. We defined the disturbances ∆1(t) and ∆2(t)
as the extended states xe1 and xe2, and the variables H1(t) =

.
xei for i = 1, 2. In addition, we

assumed the functions H1(t) and H2(t) were unknown bounded. Hence, based on (17),
two extended state disturbance observers were constructed as:

.
x̂1 = x̂2 + 3ωo1(x1 − x̂1).
x̂2 =

∂xp
∂x1

x3 + θ̂Tϕ2 + x̂e1 + 3ω2
o1(x1 − x̂1)

.
x̂e1 = ω3

o1(x1 − x̂1)

(24)

{ .
x̂3 = θ̂Tϕ3 + x̂e2 + 2ωo2(x3 − x̂3).
x̂e2 = ω2

o2(x3 − x̂3)
(25)

where ϕ2 =
[
−g1(x1);−x2;−S f (x2); 0; 0; 0

]
; ϕ3 = [0; 0; 0; g2(xv, x3)u;−g3(x1, x2);−g4(x1,

x3)]; ωo1 and ωo2 denote the adjustable parameters of observers (24) and (25); ·̂ denotes the
estimation of ·, and the estimation error of · is defined as ·̃ = ·̂ − · throughout the paper.

Considering the existence of the parametric uncertainties, θ̃, and the disturbances,
∆1(t) and ∆2(t), the following two constructed forms of xe1 and xe2 are given as:
(1) Define xe1 = ∆1(t) and xe2 = ∆2(t); then, (17) is rewritten as:

.
x1 = x2
.
x2 =

∂xp
∂x1

x3 + θ̂Tϕ2 − θ̃Tϕ2 + xe1
.
xe1 = H1(t)

(26)

{ .
x3 = θ̂Tϕ3 − θ̃Tϕ3 + xe2.
xe2 = H2(t)

(27)

Defining η = [η1, η2, η3]
T = [x̃1, x̃2/ωo1, x̃e1/ω2

o1]
T , χ = [χ1, χ2]

T = [x̃3, x̃e2/ωo2]
T ,

and based on (24)–(27), the dynamics of the designed observers are presented as:
.
η = ωo1A1η− B1

θ̃Tϕ2
ωo1

+ B2
H1(t)
ω2

o1.
χ = ωo2A2χ− B3θ̃Tϕ3 + B4

H2(t)
ωo2

(28)
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in which B1 = [0, 1, 0]T, B2 = [0, 0, 1]T, B3 = [1, 0]T, B4 = [0, 1]T and

A1 =

−3 1 0
−3 0 1
−1 0 0

, A2 =

[
−2 1
−1 0

]
◦ (29)

(2) Define xe1 = ∆1(t)− θ̃Tϕ2 and xe2 = ∆2(t)− θ̃Tϕ3; then, (17) is rewritten as:
.
x1 = x2
.
x2 =

∂xp
∂x1

x3 + θ̂Tϕ2 + xe1
.
xe1 = H1(t)

(30)

{ .
x3 = θ̂Tϕ3 + xe2.
xe2 = H2(t)

(31)

Based on (24), (25), (30) and (31), the dynamics of the designed observers are presented as:
.
η = ωo1A1η+ B2

H1(t)
ω2

o1.
χ = ωo2A2χ + B4

H2(t)
ωo2

(32)

Since the matrices A1 and A2 are Hurwitz, there always exist positive definite matrices
P1 and P2 meeting AT

1 P1 + P1A1 = −I, and AT
2 P2 + P2A2 = −I, where I denotes the unit

matrix. Hence, one has:

P1 =

 1 − 1
2 −1

− 1
2 1 − 1

2
−1 − 1

2 4

, P2 =

[ 1
2 − 1

2
− 1

2
3
2

]
◦ (33)

3.3. Controller Design

In this section, the backstepping method [31] was utilized to develop the controller.
The details are as follows:

Step 1: Several error variables were designed as below:

z2 =
.
z1 + k1z1 = x2 − α1,

α1 =
.
x1d − k1z1, z3 = x3 − α2

(34)

where z1 = x1 − x1d denotes the tracking error; k1 stands for the feedback gain.
According to (17) and (34), and differentiating z2, there is:

.
z2 =

.
x2 −

.
α1

=
∂xp
∂x1

(z3 + α2) + θ̂Tϕ2 − θ̃Tϕ2 + ∆1(t)−
.
α1

(35)

From (35), the virtual control α2 is constructed as:

α2 = α2a + α2s,

α2a =
(

∂xp
∂x1

)−1
(−θ̂Tϕ2 +

.
α1 − x̂e1),

α2s = −
(

∂xp
∂x1

)−1
k2z2

(36)

where k2 stands for the feedback gain.
Putting (36) into (35), one obtains:

.
z2 =

∂xp

∂x1
z3 − k2z2 + x̃e1 + ∆1(t)− θ̃Tϕ2 − xe1 (37)
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Step 2: On the basis of (17) and (34), and differentiating z3, there is:

.
z3 =

.
x3 −

.
α2

= θ̂4g2(xv, x3)u− θ̂5g3(x1, x2)− θ̂6g4(x1, x3)− θ̃Tϕ3 + ∆2(t)−
.
α2

(38)

Given that
.
α2 contains the incalculable part, it has:

.
α2(t, x1, x2, θ̂, x̂e1) =

.
α2c +

.
α2u,

.
α2c =

∂α2
∂t + ∂α2

∂x1
x2 +

∂α2
∂x2

(
∂xp
∂x1

x3 + θ̂Tϕ2 + x̂e1) +
∂α2
∂θ̂

.
θ̂+ ∂α2

∂xe1

.
x̂e1,

.
α2u = ∂α2

∂x2
(∆1(t)− θ̃Tϕ2 − xe1 + x̃e1)

(39)

in which
.
α2c stands for the calculable part;

.
α2u stands for the incalculable part.

Hence, the controller input, u, is designed as below:

u = ua + us,
ua =

1
θ̂4g2(xv ,x3)

[θ̂5g3(x1, x2) + θ̂6g4(x1, x3) +
.
α2c − x̂e2],

us = − 1
θ̂4g2(xv ,x3)

k3z3

(40)

where k3 stands for the feedback gain.
Putting (40) into (38), one obtains:

.
z3 = −k3z3 + x̃e2 + ∆2(t)− θ̃Tϕ3 − xe2 −

.
α2u (41)

3.4. Stability Analysis

The main results of this paper are provided below.

Theorem 1. If the uncertain nonlinearities are constants (i.e.,), with Assumptions 1–3, the control
law (40), choosing the adaption function τ as:

τ = a2ϕ2z2 + a3(ϕ3 −
∂α2

∂x2
ϕ2)z3 + c2ηTP1B1

ϕ2

ωo1
+ c3χTP2B3ϕ3 (42)

and picking up the proper control parameters, k1, k2, and k3, and the positive coordinating parame-
ters aj and cj for j = 2, 3, such that the matrix Λ defined below is positive definite:

Λ =

Λ1 0 Λ3
0 v1 0

ΛT
3 0 Λ2

 (43)

in which 0 denotes the zero vector and

Λ1 =

 k1 − 1
2 0

− 1
2 k2a2 − a2

2
∂xp
∂x1

0 − a2
2

∂xp
∂x1

k3a3

, Λ2 =


v1 0 0 0
0 v1 0 0
0 0 v2 0
0 0 0 v2

, Λ3 =

0 0 0 0
0 − γ1

2 0 0
0 − γ2

2 0 − γ3
2

 (44)

in which
v1 = c2(ωo1−1)

2 , v2 = c3(ωo2−1)
2 ,

γ1 = a2ω2
o1, γ2 = a3ω2

o1

∣∣∣ ∂α2
∂x2

∣∣∣, γ3 = a3ωo2
(45)

then it can be concluded that all the closed-loop signals are bounded, and asymptotic tracking
performance is also realized, i.e., z1 → 0 as t→ +∞ .
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Proof of Theorem 1. For this case, define xe1 = ∆1(t) and xe2 = ∆2(t), and choose a
Lyapunov function as:

V1 =
1
2

z2
1 +

1
2

a2z2
2 +

1
2

a3z2
3 +

1
2

c2ηTP1η+
1
2

c3χTP2χ +
1
2

θ̃TΓ−1θ̃ (46)

According to (28), (34), (37) and (41), there is:

.
V1 = z1

.
z1 + a2z2

.
z2 + a3z3

.
z3 +

1
2 c2

.
η

TP1η+ 1
2 c2ηTP1

.
η

+ 1
2 c3

.
χ

TP2χ + 1
2 c3χTP2

.
χ + θ̃TΓ−1

.
θ̂

= z1(z2 − k1z1) + a2z2(
∂xp
∂x1

z3 − k2z2 + x̃e1 − θ̃Tϕ2) + a3z3[−k3z3 + x̃e2

−θ̃Tϕ3 − ∂α2
∂x2

(−θ̃Tϕ2 + x̃e1)]− 1
2 c2ωo1‖η‖2 − c2ηTP1B1

θ̃Tϕ2
ωo1

− 1
2 c3ωo2‖χ‖2 − c3χTP2B3θ̃Tϕ3 + θ̃TΓ−1

.
θ̂

(47)

Putting (42) into (47), it has:

.
V1 ≤ −k1z2

1+
∣∣∣z1

∣∣∣∣∣∣z2

∣∣∣+a2
∂xp
∂x1

∣∣∣z2

∣∣∣∣∣∣z3

∣∣∣−k2a2z2
2 + a2ω2

o1

∣∣∣z2

∣∣∣∣∣∣η3

∣∣∣
−k3a3z2

3 + a3ωo2

∣∣∣z3

∣∣∣∣∣∣χ2

∣∣∣+a3ω2
o1

∣∣∣ ∂α2
∂x2

∣∣∣∣∣∣z3

∣∣∣∣∣∣η3

∣∣∣− 1
2 c2(ωo1 − 1)‖η‖2

− 1
2 c3(ωo2 − 1)‖χ‖2 − 1

2 c2‖η‖2 − 1
2 c3‖χ‖2

(48)

This results in:
.

V1 ≤ −ZTΛZ
≤ −λmin(Λ)(zTz + ηT

a ηa + χT
a χa) , −M

(49)

where Z =
[
(zT , ηa

T , χa
T]T, z = [ |z1|, |z2|, |z3|]T, ηa = [ |η1|, |η2|, |η3|]T, χa = [ |χ1|, |χ2|]T,

and λmin(Λ) denotes the minimum eigenvalue of the matrix Λ.
Hence, V1 ∈ L∞, M ∈ L2, and the boundness of all the system’s signals holds. Based on

error dynamics, the time derivative of M is bounded as well. Thus, it is concluded that M is
uniformly continuous. Using the Barbalat’s lemma [31], M→ 0 as t→ ∞ . Consequently,
the asymptotic stability of the closed-loop system can be ensured, i.e., the tracking error
converges to zero asymptotically. As a result, Theorem 1 holds. �

Theorem 2. If the unknown nonlinearities are time-varying (i.e., H1(t) 6= 0 and H2(t) 6= 0), with
Assumptions 1–3 and the control law (40), by picking up the proper control parameters, k1, k2, and
k3, then it can be concluded that all the closed-loop signals are uniformly bounded.

Proof of Theorem 2. For this case, define xe1 = ∆1(t)− θ̃Tϕ2 and xe2 = ∆2(t)− θ̃Tϕ3, and
choose a Lyapunov function as:

V2 =
1
2

z2
1 +

1
2

a2z2
2 +

1
2

a3z2
3 +

1
2

c2ηTP1η+
1
2

c3χTP2χ (50)

According to (32), (34), (37) and (41), there is:

.
V2 = z1(z2 − k1z1) + a2z2(

∂xp
∂x1

z3 − k2z2 + x̃e1) + a3z3(−k3z3 + x̃e2 − ∂α2
∂x2

x̃e1)

− 1
2 c2ωo1‖η‖2 + c2ηTP1B2

H1(t)
ω2

o1
− 1

2 c3ωo2‖χ‖2 + c3χTP2B4
H2(t)
ωo2

(51)
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One has:
.

V2 ≤ −k1z2
1+
∣∣∣z1

∣∣∣∣∣∣z2

∣∣∣+a2
∂xp
∂x1

∣∣∣z2

∣∣∣∣∣∣z3

∣∣∣−k2a2z2
2 + a2ω2

o1

∣∣∣z2

∣∣∣∣∣∣η3

∣∣∣
−k3a3z2

3 + a3ωo2

∣∣∣z3

∣∣∣∣∣∣χ2

∣∣∣+a3ω2
o1

∣∣∣ ∂α2
∂x2

∣∣∣∣∣∣z3

∣∣∣∣∣∣η3

∣∣∣− 1
2 c2(ωo1 − 1)‖η‖2

− 1
2 c2‖η‖2 + c2‖η‖

‖P1B2‖|H1(t)|max
ω2

o1
− 1

2 c3(ωo2 − 1)‖χ‖2 − 1
2 c3‖χ‖2

+c3‖χ‖
‖P2B4‖|H2(t)|max

ωo2
≤ −ZTΛZ + ζ

(52)

in which

ζ =
1
2

c2(
‖P1B1‖|H1(t)|max

ω2
o1

)
2

+
1
2

c3(
‖P2B4‖|H2(t)|max

ωo2
)

2

(53)

This results in:

.
V2 ≤ −λmin(Λ)(||z||2+||η||2+||χ||2) + ζ

≤ −λmin(Λ)[λ1(z2
1 + a2z2

2 + a3z2
3) +

1
c2λmax(P1)

c2ηTP1η+ 1
c3λmax(P2)

c3χTP2χ] + ζ

≤ −λ2V2 + ζ

(54)

where λ1 = min{1, 1/a2, 1/a3}, λ2 = 2λmin(Λ)min{λ1, 1/(c2λmax(P1)), 1/(c3λmax(P2))},
and λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of the
matrix ·, respectively.

Hence, using the comparison Lemma [31], it is easy to obtain:

V2(t) ≤ V2(0)e−λ2t +
ζ

λ2
(1− e−λ2t) (55)

Consequently, the uniformly ultimately bounded stability of the closed-loop system
can be guaranteed, i.e., the tracking error is bounded, and all the system’s signals are
bounded. Thus, Theorem 2 holds. �

4. Simulation Results

The physical parameters of the hydraulic lifting system are collected in Table 1.
The function was set as S f (x2) = 2arctan(900x2)/π, and the disturbances were set as
d1(t) = 50000sin(t)N·m, d21(t) = 5 × 10−5 sin (πt) m3/s, d22(t) = −5 × 10−5 sin (πt) m3/s.
The valve dead-zone nonlinear function was set as:

xv(u) = DZ(u) =


u− 1, if u ≥ 1

0, if − 1 < u < 1
u + 1, if u ≤ −1

(56)

where mr = 1, ml = 1, br = 1, and bl = 1. The sample time was set as 0.5 ms.

Table 1. Physical parameters of the hydraulic lifting system.

Parameter Value Parameter Value

m (kg) 10,000 B(N ·m · s/rad ) 2.5 × 105

J
(
kg ·m2 ) 1.5 × 105 A f (N ·m ) 3 × 103

Ps (Pa) 2.1 × 106 kt

(
m4/(s ·V ·

√
N
)

) 7.937× 10−8

Pr (Pa) 0 βe (Pa) 7 × 108

A1 (m2) 3.14 × 10−2 Ct
(
m5/(s · N) ) 9.6 × 10−13

A2 (m2) 1.6 × 10−2 L1 (m) 1.6
V01 (m3) 3.1416 × 10−4 L2 (m) 2
V02 (m3) 3.04 × 10−2 L3 (m) 3.5
g (m/s2) 9.8 L4 (m) 3
q0 (rad) 0.2648 β0 (rad) 0.2618
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Three controllers were compared to verify the validity of the developed controller.

(1) ADRAC: This controller was introduced in Section 3, and the controller parame-
ters were provided by k1 = 200, k2 = 50, k3= 30, Γ = diag {1.1 × 10−4, 10.5,
4 × 10−3, 2.6 × 10−9, 1.8 × 106, 3.5 × 10−7}, a2 = 1, a3 = 0.01, c2 = 0.01, c3 = 0.01,
ωo1 = 200, ωo2 = 200, θmax = [1, 10, 1, 1 × 10−2, 2 × 105, 1 × 10−7]T, and θmin = [0,
0, 0, 0, 1 × 102,−1 × 10−7]T. The initial parameter estimation values were set as
θ̂0 = [0.05, 0, 0, 4× 10−4, 3.5× 103, 4× 10−9]

T .
(2) ADRC: This is an active disturbance rejection control without parameter adaption.

The difference between the ADRC and the ADRAC was that the parameter adaption
matrix was set as Γ= 0 in the ADRC. The other control parameters were the same as
the ADRAC.

(3) AC: This is an adaptive controller without disturbance compensation. The difference
between the AC and the ADRAC was that the observer parameters were set as ωo1 = 0
and ωo2 = 0 in AC. The other control parameters were the same as the ADRAC.

Case 1: First, a designed tracking trajectory, which had a maximum value of 45◦, with
maximum values of velocity and acceleration at the most at 2◦/s and 2◦/s2, respectively,
was employed to test the control performance of the developed control method. The
simulation results are shown in Figures 3–7. Figure 3 shows the pitch angle tracking
performance and tracking error under the ADRAC controller. It can be seen that although
the overall steady-state tracking error was small (i.e., the actual pitch angle could well track
the desired trajectory), there was an error jump due to the non-smooth characteristics of
the dead-zone break-point of the valve. This shows that the error jump caused by the non-
smooth valve dead-zone could not be eliminated, although the disturbance observer-based
controller could ensure the overall tracking performance. The comparison of tracking errors
between the ADRAC and the other two controllers is shown in Figure 4. By comparing
the tracking errors of the ADRC and the ADRAC, the transient and steady-state tracking
errors were both larger than those of the ADRAC, which indicates that the adaptive law
adopted in the ADRAC could learn the part of the parameter uncertainties under the
same observer bandwidth, thus reducing the burden of the extended state disturbance
observer and achieving better control performance. The AC controller achieved the worst
tracking performance because its parameter adaptation could not achieve good convergence
under the influence of uncertain nonlinearities, which also verifies the validity of the
disturbance compensation technique based on the extended state disturbance observer in
the ADRAC. The parameter estimations of the system under the ADRAC controller are
shown in Figure 5, all of which obtained good convergence characteristics. In addition, the
estimations of mismatched and matched disturbances by the extended state observer are
shown in Figure 6, and the control input voltage applied to the valve with the proposed
ADRAC is presented in Figure 7.

Case 2: To further test the control performance of the developed control method, a
new reference tracking signal, presented in Figure 8, was adopted. Similarly, it can be
seen from Figures 8 and 9 that the ADRAC designed in this section still ensured the best
tracking performance, which further verifies the validity of its adaptive law and extended
state disturbance observer design. The parameter estimations, disturbance estimations,
and control input of the ADRAC are shown in Figures 10–14, respectively. Consequently,
the merits of the presented control method are verified by Case 2 once again.
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5. Conclusions

In this paper, an active disturbance rejection adaptive controller was developed for
hydraulic lifting systems subject to parametric uncertainties, unmodeled disturbances, and
a valve dead-zone. First, the dynamics, including both mechanical dynamics and hydraulic
actuator dynamics with a valve dead-zone of the hydraulic lifting system, were modeled.
Then, using the system model and backstepping technique, a composite parameter adapta-
tion law and extended state disturbance observer were successfully combined, which were
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used to dispose of the parametric uncertainties and unmodeled disturbances, respectively.
This preserved the merits of both the control methods while surmounting their practical
limitations. By using the Lyapunov function, the stability of the closed-loop system was
assured. A simulation example of a hydraulic lifting system was performed to verify the
validity of the proposed controller.
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