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Abstract: Recently, hybrid band communications have received much attention to fulfil the exponen-
tially growing user demands in next-generation communication networks. Still, determining the best
band to communicate over is a challenging issue, especially in the dynamic channel conditions in
multi-band wireless systems. In this paper, we manipulate a practical online-learning-based solution
for the best band/channel selection in hybrid radio frequency and visible light communication
(RF/VLC) wireless systems. The best band selection difficulty is formulated as a multi-armed bandit
(MAB) with cost subsidy, in which the learner (transmitter) endeavors not only to increase his total
reward (throughput) but also reduce his cost (energy consumption). Consequently, we propose two
hybrid band selection (HBS) algorithms, named cost subsidy upper confidence bound (CSUCB-HBS)
and cost subsidy Thompson sampling (CSTS-HBS), to efficiently handle this problem and obtain the
best band with high throughput and low energy consumption. Extensive simulations confirm that
CSTS-/CSUCB-HBS outperform the naive TS/UCB and heuristic HBS approaches regarding energy
consumption, energy efficiency, throughput, and convergence speed.

Keywords: WiGig; MABs; cost subsidy; VLC; RF

1. Introduction

Recently, hybrid band (HB) systems, mainly radio frequency/visible light commu-
nication (RF/VLC) systems, have received attention as an attractive paradigm to boost
ultra-high-capacity wireless applications with enhanced connectivity via multi-band stan-
dards [1]. Nevertheless, those HB systems encounter fast channel fading, signal attenuation,
acute blockage effects, etc. [2]. Still, the optimal hybrid band selection (HBS) of such sys-
tems is difficult to model due to the various multi-frequency bands with variable dynamic
channel status. Additionally, HB systems should attain satisfying arrangements as soon
as possible in order to maintain a high quality of service (QoS) in various application
environments. Implementing efficient HBS is not straightforward because of the rapidly
adapting environments where their performance relies on a plethora of parameters [3].
As a result, there is a strong direction in the wireless world to use machine learning (ML)
instead of classic HBS protocols based on predefined rules or heuristics, where learning
from the past is a powerful direction.
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1.1. Related Work

Previous formulations of the HBS optimization problem targeting the selection of
RF (Wi-Fi/WiGig) or VLC for every transmitter-receiver (Tx-Rx) pair have required full
channel knowledge; besides, such formulations are computationally difficult. Former deep
learning (DL)-aided solutions such as deep neural networks (DNNs) [4] and convolutional
NNs (CNNs) [5] require huge training data sets, which might be hard to obtain till the roll-
out of B5G/6G systems with HBs. In [6], a deep Q-learning algorithm is employed to solve
the joint optimization problem in HB systems. In [5,7], the coauthors of this manuscript
planned a DL-assisted prospective channel assignment framework to tackle the changeable
channel environment difficulty in hybrid-band relay systems. However, they neglected the
VLC band and considered RF bands only.

Current online-learning-enhanced solutions mostly influenced by reinforcement learn-
ing (RL) and multi-armed bandits (MAB) [8–12] mainly consider dynamic multi-channel
access problems. The authors in [13] propose a distributed joint power allocation and
channel assignment approach for improved power performance in D2D pairs. In addition,
in [14,15], a context-aware transfer learning network selection technique for indoor RF-VLC
systems was developed. However, previous work neither found an efficient practical
solution nor considered the optimal HBS problem. MAB is an ML technique, where the
learner tries to maximize the cumulative rewards and minimize the cost through online
learning to handle the famous “exploitation–exploration compromise” [16]. Lately, bandits
have been leveraged for vast wireless communication problems, including D2D commu-
nications [17–20], relay probing [21], aerial-enabled communications [22], wireless sensor
networks (WSNs) [23], resource allocation [24,25], reconfigurable intelligent surface (RIS)
enhanced communications [26,27], and millimeter Wave beamforming [28–30]. Further-
more, the authors of this paper recently contributed to the HBS problem using energy-aware
MAB solutions [31–33] via subtracting the cost from the reward in the exploration part only.
However, our main focus was to only handle the exploration–exploitation dilemma, which
might cause more energy consumption to obtain the highest cumulative payoff. Hence, in
this paper we extend the HBS problem to optimize both cost and payoff metrics and avoid
causing exorbitant costs. Specifically, we anticipate the cost in both the exploitation and
exploration parts of the bandit formula. This is more applicable especially in applications
that have changed types of cost and payoff. Moreover, practical energy-aware HBS applica-
tions target both reward maximization (i.e., throughput) and cost minimization (battery
life) due to their limited capacity.

1.2. Paper Contributions

In this paper, we attempt to manage the costs (energy consumption) of the HBS
problem, where the learner is able to tolerate losing a small amount from the highest payoff
(calculated as the payoff that the naive MAB approach could achieve in the absence of costs).
This can be modeled as multi-objective optimization, which is important to investigate
using online learning solutions, especially advanced proper MAB methods. This paper’s
contributions are highlighted as follows:

• We aim to relax/reformulate the HBS multi-objective optimization problem and
obtain acceptable solutions (i.e., sub-optimal HBS decisions) in real time without prior
channel knowledge using online learning techniques that easily handle blockage and
energy consumption during the selection process.

• We reformulate the HBS optimization problem into a cost subsidy multi-armed ban-
dit (CS-MAB) that accounts for the cost during selection in both exploitation and
exploration terms.

• We propose CS—upper confidence bound (CSUCB-HBS) and CS—Thompson sam-
pling (CSTS-HBS) algorithms and evaluate their performance compared with the
ordinary MAB techniques (UCB and TS), and traditional HBS (i.e., conventional and
random choice).
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• Simulation results indicate the superior performance of our proposed CS-MAB tech-
niques over classical MAB methods, especially CSTS-HBS, which exhibits better
performance than CSUCB-HBS and others.

The paper is organized as follows: Section 2 discusses the considered HBS system
model including the formulas of utilized channel models. Section 3 overviews the HBS
optimization problem formulation. Section 4 discusses the proposed CS-HBS algorithms.
Section 5 discusses the simulation results, followed by the paper’s conclusion in Section 6.

2. System Model

Figure 1 presents the HB design under consideration, whereby a pair of Tx/Rx devices
are presented for simplicity. The Tx/Rx pair might consist of base stations, mobile terminals
or D2D relays, mounted by hybrid RF (i.e., WLAN/WiGig)/VLC frequency bands. The RF
channel is IEEE 802.11ac/n (WiFi in 5.25 GHz and 2.4 GHz), and we leverage the linkage
formula of [19]. The WiFi received power can be expressed as

PF
Rx
[dBm] = PF

Tx
[dBm]− PF

L0
− 10αF log10 (r)− ψF, (1)

where PF
Rx

, PF
Tx

, and PF
L0

reflect the received power at Rx, the transmitted power from
Tx, and the referenced path loss, respectively. αF is the WiFi path loss exponent, while
ψF v N

(
0, σF) is the log-normal shadowing with zero mean and σF standard deviation.

Tx–Rx separation distance is denoted by r.

RF (2.4GHz/5GHz)

VLC (THz) radio module
WiGig (FR1 & FR2)

VLC
WiGig

Separation Distance

Transmitter Receiver

Wireless Links

Radio 
modules
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Figure 1. Hybrid band system model: How to self optimize hybrid channels in fluctuating channel
conditions (distance, energy level, and blocking?).

For the WiGig linkage model, we leveraged the 38 GHz band [19]. The WiGig deliv-
ered power (PG

Rx
) with accounting both beamforming (BF) and blocking influences [19]

formulated by
PG

Rx
= µ(PLOS(r))PG

Tx
ΛTx ΛRx /PLG(r), (2)

where µ(PLOS(r)) is a random variable (RV) that follows Bernoulli distribution and reflects
the blockage influence via proximity-dependent line-of-sight (LOS) likelihood denoted by
PLOS(r). PG

Tx
is the Tx’s WiGig transmitted power. The Tx and Rx BF gains are ΛTx and

ΛRx , respectively. The distance-based path loss, PLG(r), is expressed in dB by:

10 log10

(
PLG(r)

)
= PLG

0 + 10αG log10 (r) + χG, (3)

where PLG
0 , αG, and χG,L v N

(
0, σ2G

)
are the WiGig path loss at a benchmark distance

r0, WiGig path loss exponent, and WiGig-based log-normal shadowing having zero mean
and variance of σ2G, respectively. We take into account only the LOS path because of its
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dominant nature [34]. ΛTx and ΛRx are the 2D steerable antenna model with a Gaussian
main loop profile, which can be written as [19]:

Λ(θ) = Λ0e
−4ln(2)

(
θ

θ−3dB

)2

, Λ0 =

 1.6162

sin
(

θ−3dB
2

)
2

, (4)

where θ, θ−3dB, and Λ0 reflect the azimuth angle, half power beamwidth, and the largest
total radiated power by the antenna, respectively.

Regarding VLC linkage formulation, we employ the Lambertian model suitable for
light-emitting diode (LED) transmitters [1], where the LoS channel gain for indoor VLC
using Lambertian layouts is calculated as follows:

HVLC =
(g + 1)AR

2πr2 GTx (φvlc)g(φvlc) cosm θvlc cos φvlc∀φvlc < φc, (5)

where AR is the optical detector’s physical area. θvlc and φvlc are the angles of incidence
and radiance, respectively. φc identifies the Rx field vision’s width and (g = − ln(2)

ln(cos θvmax)
)

reflects the Lambertian model’s order. The gains of the optical filter and concentrator are
GTx (φvlc) and g(φvlc), respectively. Hence, the delivered optical power, Pvlc

Rx
, is expressed as:

Pvlc
Rx

= HvlcPvlc
Tx

. (6)

Finally, regarding the hybrid band blockage model, we leveraged the urban frequency-
dependent blockage model given in [35]. This model is almost static, where the Tx is fixed
and the Rx moves away and the blocker (small/large car) is located at a fixed distance
from the Tx. Therefore, the generalized frequency-dependent blockage formulation can be
expressed as [35]:

Blockingloss[dB] = βb + γb log(1 +
fc,n

1 GHz
), (7)

where γb and βb define the slope and the intercept of the linear relationship, and b reflects
the blocker dimensions (i.e., small or large). To estimate the blocking loss, the above
equation was utilized whilst changing the blocker size and the utilized frequency.

3. Problem Formulation

The aforementioned HBS problem in our HB system is formulated as follows:

arg max
m,n

M

∑
m=1

Nm

∑
n=1

xmnE(ψmn(t)) (8a)

s.t.

arg min
m,n

CTx ,mn(t) (8b)

ΞTx ,mn(t) > Ξth , (8c)
M

∑
m=1

Nm ≤ J (8d)

M

∑
m=1

Nm

∑
n=1

xmn = 1 , (8e)

xmn ∈ {0, 1} , (8f)

where M defines the number of heterogeneous frequency bands and Nm is the channels
count in each band m. J defines all the available channels over whole bands. ψmn(t) is the
Tx-Rx linkage throughput at time t using channel n of band m. ΞTx ,mn(t) is the remaining
energy (in Joules) of Tx at time t upon the used channel n of band m, and Ξth is the threshold
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level energy at which the transmitter will not be capable of setting up wireless linkages
and preserve its energy for its core purpose. xmn is a decision variable for choosing the best
band and its related channel that maximizes the throughput E(ψmn(t)) expressed as:

ψmn(t) =
BmnTDΓmn(t)

U(t)Th,mn + TD
, (9)

where TD is the data transmission duration while Th,mn is the Tx-Rx time overhead due to
the operating frequency. Bmn is the bandwidth, and Γmn(t) is the spectral efficiency (SE) in
bps/Hz upon the selected band/frequency at t, given by

Γmn(t) = log2(1 +
Pmn

Rx
(t)

N0 + I(t)
), (10)

where Pmn
Rx

(t) is the Rx received power at time t due to the chosen band, N0 is the Rx’s noise
power, and I(t) is the interference from surrounding equipments that use that frequency.
Only the interference from the two Wifi channels is considered here. The WiGig and VLC
systems have negligible interference compared to the random noise as they are directional
systems. As a result, there is a trade-off between investigating alternative frequency
bands/channels and keeping the selected band to obtain the maximal throughput while
reducing energy usage and so extending the battery lifespan. Such a trade-off can be
addressed using sequential self-decision-making online learning algorithms. Therefore, we
handle the above problem via reformulating it as a CS-MAB to not only deliver ultra-fast
decisions under the influence of variability and dynamic blocking, but also to save the
battery life of the transmitter. MAB is a confidence algorithmic approach that perfectly
manipulates the exploration–exploitation compromise [16,17,29]. The main CS-MAB layout
includes N probable actions (i.e., arms) to decide the best one within T trials. In each trial
t ∈ T, selecting an arm, the learner fetches a payoff from the picked arm and consumes a
cost due to the choice of that arm [16]. The player tries not only to maximize his reward
but also to minimize his cost consumption. The energy consumption of Tx according to the
selected band, CTx ,N∗MAB

(t) given in (8b), is expressed as follows:

CTx ,N∗MAB
(t) =

PN
Tx

LD

BN∗MAB
Γ

N∗MAB
(t)

, (11)

where MAB refers to the applied MAB technique (e.g., CSUCB, CSTS, UCB, and TS) and
CTx ,N∗MAB

(t) is the consumed energy to transmit a datum of LD bits with a transmission
speed of BN∗MAB

Γ
N∗MAB

(t) bps.

The objective function (8a) contains several constraints. For each Tx, constraint (8b)
indicates that the selected band should have low power consumption. Constraint (8c)
states that Tx’s standing energy should be greater than a certain level, Ξth. The following
constraint (8d) indicates that the overall number of channels over all the frequency bands
analyzed should be equal to or less than the observed accessible number of channels, J.
Afterwards, constraints (8e) and (8f) indicate that a relay node can only choose one band
and its associated channel at a time, and xm,n is a binary decision variable. We should
always draw the arm with the lowest cost subsidized from a of the maximum mean reward
µm,n. Note that 0 ≤ a ≤ 1. If a = 0, then the priority is the highest reward arm regardless
cost and if a = 1, the priority will be the lower-cost arm regardless its reward value. Hence,
the optimal multi-objective arm is the cheapest arm of the high-quality arms that achieves

{m, n}∗ = arg max
m,n

(1− a)µm,n S.T arg min
m,n

Cm,n. (12)
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4. Envisioned CS-HBS Methods

In this section, we discuss our planned CSUCB-HBS and CSTS-HBS schemes. Both
methods modify the naive UCB and TS stochastic bandit schemes, respectively, to be cost
subsidy, where the Tx can tolerate a small loss from the largest payoff (subsidy, i.e., the
amount of payoff the Tx may forgo to refine costs). Since UCB and TS are the most common
stochastic MAB schemes, we present the cost subsidy concept of both of them to check their
performance regarding the HBS issue.

4.1. CSUCB-HBS Algorithm

Our proposed CSUCB-HBS algorithm makes use of the UCB strategy, which provides
optimism under unknown channel constrains through heterogeneous bands. Rather than
using the same confidence bound for each arm in every trial, the UCB strategy selects the
best arm via a conservative estimate [16]. Changed from the original UCB, CS-UCB first
chooses the highest reward according to the subsidy parameter, and then investigates the
cheapest arm from the feasibility set to play with it. This can be expressed as:

µscore
N (t) = ψ̄N(t) +

√
2ln t
ρN,t

, (13a)

mt = arg max
N

µscore
N (t), (13b)

F(t) = {N : µscore
N (t)− (1− a)µscore

mt (t) ≥ 0} (13c)

N∗CSUCB−HBS(t) = arg min
N∈F(t)

CN ; (13d)

where ψ̄N(t) is the average throughput collected from the transmission band N until time
t. ρN,t is a counter for arm N if it has been drawn until time t. Equation (13a) is the
original UCB equation and its arm selection mt policy in Equation (13b) without arm cost
consideration [16]. F(t) is the feasibility set according to subsidy factor a from reward.
Equation (13d) is the CSUCB-selected cheapest arm within F(t) computed from (11).

4.2. CSTS-HBS Algorithm

Similar to CSUCB-HBS, the CSTS-HBS makes use of the TS algorithm [16] Bayesian
strategy through prior Gaussian reward assumption. After defining the maximum reward
arm, the feasibility set is constructed according to the subsidy value a, and then the cheapest
arm is drawn from this set. This can be mathematically expressed as:

N∗TS−HBS(t) = arg max
N
{θn(t)}, θN(t) ∼ N(ψ̄N(t),

1
ρN,t + 1

), (14a)

F(t) = {N : θscore
N (t)− (1− a)θscore

N∗TS−HBS
(t) ≥ 0} (14b)

N∗CSTS−HBS(t) = arg min
N∈F(t)

CN ; (14c)

where N(ψ̄N(t), 1
ρN,t+1 ) is a normal distribution with ψ̄N(t) mean and 1

ρN,t+1 variance.
Algorithm 1 outlines the key steps of our suggested online HBS algorithms. First,

we try each arm once (i.e., channel) (N = Nch) and fetch its payoff. If the conditions
(Nch + 1) < t < T and ETx > Eth are not fulfilled, no more steps are completed and the
algorithm terminates. On the other hand, it extracts a better payoff (channel index) N∗MAB(t)
in the time trial t ∈ T based on the CSUCB-HBS and CSTS-HBS policies, which select the
lowest-cost arm from (1− a) of the maximum reward, respectively. Afterwards, the bandit-
based parameters are upgraded and the remaining energy levels of the transmitting device
are estimated taking into account the drown band/channel. As a result, when the Tx
decides to send new data frames to Rx, the process begins again.
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Algorithm 1: CSUCB/CSTS-HBS Algorithms
Result: Channel N drawn every trail t ∈ [T].
Input: t = 0, ψ̄N(t) = 0, ρn,t = 0, Ξth, ΞS,N(t = 1), 1 ≤ N ≤ J, 1 ≤ t ≤ T.

1 for t ∈ [J] do
2 It = t;
3 play arm It and observe reward ψIt;
4 ρi(t + 1) = ρi(t) + 1 {It = i} ∀ i ∈ [J]
5 update ΞTx ,i(t) = ΞTx ,i(t)− CTx ,i(t), {It = i} ∀ i ∈ [J]
6 end
7 for t ∈ [J + 1 : T] do

8 µ̂i(t)← ψi(t)/ρi(t), βi(t)←
√

2log(T)
ρi(t)

, UCB:µscore
i (t)← min{µ̂i(t) + βi(t)},

9 TS: sample µscore
i (t) from posterior distribution, mt = arg maxi µscore

i (t);
F(t) = {i : µUCB

i (t)− (1− a)µscore
mt

(t) ≥ 0 ; It = arg mini∈F(t) Ci;

10 Play arm It then obtain reward ψIt (t); ρi(t + 1) = ρi(t) + 1 {It = i} ∀ i ∈ [J]
11 update ΞTx ,It (t) = ΞTx ,It (t)− CTx ,It (t)
12 end

5. Results

This section investigates the performance of our proposed CSUCB-HBS and CSTS-HBS
algorithms compared to the original UCB/TS [16] schemes and traditional (e.g., optimal,
conventional, and random) HBS schemes. The optimal HBS is achieved through the
instantaneous selection of the best channel, while the conventional HBS scheme investigates
all available bands first and then decides which one to link with. Finally, the random HBS
approach selects a random band without any channel quality curiosity. Table 1 lists the
utilized simulation parameters including blockage information. The average throughout,
convergence rate, and the normalized energy consumption per selected band/channel in
mjoule are the evaluation metrics.

Table 1. Simulation parameters.

Simulation Parameters Value

Number of channels 4 (WiFi 2.4 GHz, 5.25 GHz,
WiGig 38 GHz, VLC 105 GHz)

T, LD, Eth 1000, 1 TB, 1%
Operating frequencies of each channel 5.25, 2.4, 38, 105 GHz

BW 40, 20, 40, 20 MHz
r {10–100} m

Blocking model
[35]

Small blocker:
{length, width, height}

{5.07, 1.69, 1.93} m

Large blocker:
{length, width, height}

{7.01, 2.04, 2.63} m

Figure 2 presents the energy consumption against different values of the cost subsidy
parameter a for both CSUC-HBS/CSTS-HBS. At low a values, the energy consumption is
increased, especially the CSUCB-HBS scheme due to the main focus of the maximum re-
ward. At higher values of a, the energy consumption is reduced according to the algorithm
selection policy.
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Figure 2. The energy consumption (cost) vs. subsidy parameter a at r = 10 and no blocking.

Figure 3 presents the throughput performance evaluation of our proposed CSUCB-HBS
and CSTS-HBS algorithms at a = 0.5 with UCB, TS, optimal, conventional, and random HBS
schemes at different r values at three changeable blockage types (i.e., none, small, and large).
The attained reward, i.e., th average throughput, is reversely proportional to the blockage
value which is apparent in the downward transition of the average throughput values
due to blocked objects, i.e., no-blocking, small blocking, and large blocking, as illustrated
in Figure 3a–c, respectively. Compared to the traditional and random HBS schemes, the
envisioned CSUCB-HBS and CSTS-HBS techniques demonstrate promising performances
(near optimum). The attained average throughput throughout all distance range is fairly
close compared to the ideal case. The CSTS-HBS and CSUCB-HBS techniques deliver up
to 99% and 80% average throughputs, respectively, within all separation distances values
compared to the optimal case. Thus, CSTS-HBS arises as the best economic approach for
the HBS difficulty due to not only the TS’s Bayesian learning policy of TS but also its ability
to save energy consumption. The second best performance is the CSUCB-HBS due to
applying both upper-bound and cost subsidy policies. Nerveless, the random HBS attains
only 60% of the average throughput, offering the worst performance due to the randomized
selection policy without any considerations.
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Figure 3. Average throughput comparison of CSTS/CSUCB-HBS approaches vs. separation distances
at distinct blocking layouts. (a) No blockage. (b) Small blockage. (c) Large blockage.

Figure 4 presents the energy consumption of the HBS schemes at no blocking and
a = 0.7. Our proposed CSTS-HBS algorithm outperformed all the other schemes due to the
proper channel selection strategy while minimizing the consumed energy of the transmitter.
As r is incremented, the energy consumption of all traditional HBS methods are increased
relatively with an increase in distance, whereas CSTS-HBS/CSUCB-HBS methods persisted
with considerably superior low consumption performance. Still, the conventional HBS
technique offers the highest energy consumption due to attempting all the available bands
in every trial without energy awareness, opposite to our proposed MAB policies. Hence,
the promising practical results enhance the affordability of the proposed CSTS-HBS then
CSUCB-HBS schemes in HBS in B5G/6G systems.

The convergence curves of the proposed CSUCB-HBS and CSTS-HBS schemes are
drawn in Figure 5 at r = 10 m. The results show that the suggested CSTS-HBS method
exhibits a superior performance over all the trials t. As t approaches 400, the proposed
CSTS-HBS scheme converges to 99.5% of the optimal throughput due to Bayesian and
cost subsidy strategies. Furthermore, the CSUCB-HBS reaches 97.2% due to the upper
bound and cost subsidy conceptualizations. This result demonstrates the practicality of our
envisioned methods for HBS in B5G/6G systems with prolonging the battery life time.
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Figure 4. Energy consumption vs. r without considering blockage.
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Figure 5. Convergence Rate Evaluation.

Finally, Figure 6 exhibits the viability of our envisioned HBS schemes in terms of
energy efficiency (defined as the average payoff (throughput) over energy expenditure
per chosen band in bit/sec/joule [32,33]) in Gbps/mJ over distinct Tx-Rx distances. Here,
Figure 6a–c preview the energy efficiency performance for no-blocking, small blocking,
and large blocking layouts, respectively. For all approaches, the energy efficiency is in-
versely related to the separation distance because of the path loss effect. For all the plotted
blocking layouts, the CSTS-HBS method outperforms other approaches due to its better
performance and appropriate channel selection policy, reflecting the lowest energy con-
sumption. Meanwhile, TS-HBS, CSUCB-HBS, and UCB-HBS displayed encouraging energy
efficiency performances over all separation distances, respectively. However, due to the
traditional choice strategies, the random and conventional approaches show much worse
performances due to randomization and attempting whole available bands, respectively.
Therefore, these promising experimental results ensure that our suggested CSUCB/TS-
HBS approaches, especially CSTS-HBS, are the most feasible HBS methods for multi-band
wireless communication networks.
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Figure 6. Energy efficiency performance of CSTS/CSUCB-HBS approaches vs. separation distances
at distinct blocking layouts. (a) No blockage. (b) Small blockage. (c) Large blockage.

6. Conclusions and Outlook

As heterogeneous band wireless communication systems are being introduced, we
examined the significant problem of efficient, realistic online channel allocation in this paper.
Furthermore, we emphasize the necessity to design an online HBS technique. Hence, the
HBS problem is restructured as a stochastic cost subsidy MAB, where each band selection
consumes energy from the player/Tx. This paper investigated a realistic solution to the
optimal band decision problem in hybrid (RF/VLC) systems by introducing two cost
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subsidy MAB algorithms, i.e., CSUCB, and CSTS-HBS, which outperform the primary
UCB and TS implementations, respectively. Especially, CSTS-HBS confirmed not only
the near-optimal performance but also a faster convergence. The results of our extensive
simulation highlight the near-optimal performance of the advised CSTS-HBS algorithm.
Future work includes a multi-Tx-Rx scenario extension and further real data investigations
throughout hybrid network analysis.

Author Contributions: All authors contributed equally in this paper. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Numbers JP19H04174 and JP21K14162,
respectively.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was supported by JSPS KAKENHI Grant Numbers JP19H04174 and
JP21K14162.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abuella, H.; Elamassie, M.; Uysal, M.; Xu, Z.; Serpedin, E.; Qaraqe, K.A.; Ekin, S. Hybrid RF/VLC Systems: A Comprehensive

Survey on Network Topologies, Performance Analyses, Applications, and Future Directions. IEEE Access 2021, 9, 160402–160436.
[CrossRef]

2. Chen, Y.; Ai, B.; Niu, Y.; He, R.; Zhong, Z.; Han, Z. Resource Allocation for Device-to-Device Communications in Multi-Cell
Multi-Band Heterogeneous Cellular Networks. IEEE Trans. Veh. Technol. 2019, 68, 4760–4773. [CrossRef]

3. Mughal, B.; Fadlullah, Z.M.; Fouda, M.M.; Ikki, S. Allocation Schemes for Relay Communications: A Multiband Multichannel
Approach Using Game Theory. IEEE Sens. Lett. 2022, 6, 7500104. [CrossRef]

4. Najla, M.; Mach, P.; Becvar, Z. Deep Learning for Selection Between RF and VLC Bands in Device-to-Device Communication.
IEEE Wirel. Commun. Lett. 2020, 9, 1763–1767. [CrossRef]

5. Sakib, S.; Tazrin, T.; Fouda, M.M.; Fadlullah, Z.M.; Nasser, N. A Deep Learning Method for Predictive Channel Assignment in
Beyond 5G Networks. IEEE Netw. 2021, 35, 266–272. [CrossRef]

6. Shrivastava, S.; Chen, B.; Chen, C.; Wang, H.; Dai, M. Deep Q-Network Learning Based Downlink Resource Allocation for Hybrid
RF/VLC Systems. IEEE Access 2020, 8, 149412–149434. [CrossRef]

7. Sakib, S.; Tazrin, T.; Fouda, M.M.; Fadlullah, Z.M.; Nasser, N. An Efficient and Light-weight Predictive Channel Assignment
Scheme for Multi-Band B5G Enabled Massive IoT: A Deep Learning Approach. IEEE Internet Things J. 2021, 8, 5285–5297.
[CrossRef]

8. Bakri, S.; Brik, B.; Ksentini, A. On using reinforcement learning for network slice admission control in 5G: Offline vs. online. Int.
J. Commun. Syst. 2021, 34, 1987–2007. [CrossRef]

9. Nasir, Y.S.; Guo, D. Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks. IEEE J. Sel.
Areas Commun. 2019, 37, 2239–2250. [CrossRef]

10. Wang, S.; Lv, T. Dynamic Multichannel Access for 5G and Beyond with Fast Time-Varying Channel. In Proceedings of the ICC
2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]

11. Wang, Z.; Zhang, T.; Liu, Y.; Xu, W. Caching Placement and Resource Allocation for AR Application in UAV NOMA Networks.
In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020;
pp. 1–6. [CrossRef]

12. Hashima, S.; Fadlullah, Z.M.; Fouda, M.M.; Mohamed, E.M.; Hatano, K.; ElHalawany, B.M.; Guizani, M. On Softwarization
of Intelligence in 6G Networks for Ultra-Fast Optimal Policy Selection: Challenges and Opportunities. IEEE Netw. 2022, 1–9.
[CrossRef]

13. Yin, R.; Wu, Z.; Liu, S.; Wu, C.; Yuan, J.; Chen, X. Decentralized Radio Resource Adaptation in D2D-U Networks. IEEE Internet
Things J. 2021, 8, 6720–6732. [CrossRef]

14. Du, Z.; Wang, C.; Sun, Y.; Wu, G. Context-Aware Indoor VLC/RF Heterogeneous Network Selection: Reinforcement Learning
With Knowledge Transfer. IEEE Access 2018, 6, 33275–33284. [CrossRef]

15. Wang, C.; Wu, G.; Du, Z.; Jiang, B. Reinforcement learning based network selection for hybrid VLC and RF systems. In MATEC
Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 173, p. 03014. [CrossRef]

16. Lattimore, T. Bandit Algorithms; Cambridge University Press: Cambridge, UK, 2020.
17. Hashima, S.; ElHalawany, B.M.; Hatano, K.; Wu, K.; Mohamed, E.M. Leveraging Machine-Learning for D2D Communications in

5G/Beyond 5G Networks. Electronics 2021, 10, 169. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3129154
http://dx.doi.org/10.1109/TVT.2019.2903858
http://dx.doi.org/10.1109/LSENS.2021.3137152
http://dx.doi.org/10.1109/LWC.2020.3003786
http://dx.doi.org/10.1109/MNET.011.2000301
http://dx.doi.org/10.1109/ACCESS.2020.3014427
http://dx.doi.org/10.1109/JIOT.2020.3032516
http://dx.doi.org/10.1002/dac.4757
http://dx.doi.org/10.1109/JSAC.2019.2933973
http://dx.doi.org/10.1109/ICC40277.2020.9149397
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322556
http://dx.doi.org/10.1109/MNET.103.2100587
http://dx.doi.org/10.1109/JIOT.2020.3016019
http://dx.doi.org/10.1109/ACCESS.2018.2844882
http://dx.doi.org/10.1051/matecconf/201817303014
http://dx.doi.org/10.3390/electronics10020169


Electronics 2022, 11, 1782 13 of 13

18. Hashima, S.; Hatano, K.; Takimoto, E.; Mohamed, E.M. Neighbor Discovery and Selection in Millimeter Wave D2D Networks
Using Stochastic MAB. IEEE Commun. Lett. 2020, 24, 1840–1844. [CrossRef]

19. Hashima, S.; Hatano, K.; Kasban, H.; Mohamed, E.M. Wi-Fi Assisted Contextual Multi-Armed Bandit for Neighbor Discovery
and Selection in Millimeter Wave Device to Device Communications. Sensors 2021, 21, 2835. [CrossRef]

20. Hashima, S.; Hatano, K.; Takimoto, E.; Mohamed, E.M. Minimax Optimal Stochastic Strategy (MOSS) For Neighbor Discovery
and Selection In Millimeter Wave D2D Networks. In Proceedings of the 2020 23rd International Symposium on Wireless Personal
Multimedia Communications (WPMC), Okayama, Japan, 19–26 October 2020; pp. 1–6. [CrossRef]

21. Mohamed, E.M.; Hashima, S.; Hatano, K.; Aldossari, S.A.; Zareei, M.; Rihan, M. Two-Hop Relay Probing in WiGig Device-to-
Device Networks Using Sleeping Contextual Bandits. IEEE Wirel. Commun. Lett. 2021, 10, 1581–1585. [CrossRef]

22. Mohamed, E.M.; Hashima, S.; Aldosary, A.; Hatano, K.; Abdelghany, M.A. Gateway Selection in Millimeter Wave UAV Wireless
Networks Using Multi-Player Multi-Armed Bandit. Sensors 2020, 20, 3947. [CrossRef]

23. Hashima, S.; Mohamed, E.M.; Hatano, K.; Takimoto, E. WiGig Wireless Sensor Selection Using Sophisticated Multi Armed
Bandit Schemes. In Proceedings of the 2021 Thirteenth International Conference on Mobile Computing and Ubiquitous Network
(ICMU), Tokyo, Japan, 17–19 November 2021; pp. 1–6. [CrossRef]

24. Barrachina-Muñoz, S.; Chiumento, A.; Bellalta, B. Multi-Armed Bandits for Spectrum Allocation in Multi-Agent Channel Bonding
WLANs. IEEE Access 2021, 9, 133472–133490. [CrossRef]

25. Zuo, J.; Joe-Wong, C. Combinatorial Multi-armed Bandits for Resource Allocation. In Proceedings of the 2021 55th Annual Conference on
Information Sciences and Systems (CISS), Baltimore, MD, USA, 24–26 March 2021. [CrossRef]

26. Mohamed, E.M.; Hashima, S.; Hatano, K. Energy Aware Multi-Armed Bandit for Millimeter Wave Based UAV Mounted RIS
Networks. IEEE Wirel. Commun. Lett. 2022. [CrossRef]

27. Mohamed, E.M.; Hashima, S.; Hatano, K.; Aldossari, S.A. Two-Stage Multiarmed Bandit for Reconfigurable Intelligent Surface
Aided Millimeter Wave Communications. Sensors 2022, 22, 2179. [CrossRef]

28. Mohamed, E.M.; Hashima, S.; Hatano, K.; Kasban, H.; Rihan, M. Millimeter-Wave Concurrent Beamforming: A Multi-Player
Multi-Armed Bandit Approach. Comput. Mater. Contin. 2020, 65, 1987–2007. [CrossRef]

29. ElHalawany, B.M.; Hashima, S.; Hatano, K.; Wu, K.; Mohamed, E.M. Leveraging Machine Learning for Millimeter Wave
Beamforming in Beyond 5G Networks. IEEE Syst. J. 2021, 1–12. [CrossRef]

30. Hashima, S.; Hatano, K.; Kasban, H.; Rihan, M.; Mohamed, E.M. Multiagent Multi-Armed Bandit Techniques for Millimeter Wave
Concurrent Beamforming. In Proceedings of the 2020 8th International Japan-Africa Conference on Electronics, Communications,
and Computations (JAC-ECC), Virtual, 14–15 December 2020; pp. 56–59. [CrossRef]

31. Fouda, M.; Hashima, S.; Sakib, S.; Fadlullah, Z.; Hatano, K.; Shen, X. Optimal Channel Selection in Hybrid RF/VLC Networks: A
Multi-Armed Bandit Approach. IEEE Trans. Veh. Technol. 2022. [CrossRef]

32. Hashima, S.; Fouda, M.M.; Sakib, S.; Fadlullah, Z.M.; Hatano, K.; Mohamed, E.M.; Shen, X. Energy-Aware Hybrid RF-VLC
Multi-Band Selection in D2D Communication: A Stochastic Multi-Armed Bandit Approach. IEEE Internet Things J. 2022.
[CrossRef]

33. Hashima, S.; Fouda, M.M.; Fadlullah, Z.M.; Mohamed, E.M.; Hatano, K. Improved UCB-based Energy-Efficient Channel Selection
in Hybrid-Band Wireless Communication. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM),
Madrid, Spain, 7–11 December 2021; pp. 1–6. [CrossRef]

34. Wei, N.; Lin, X.; Zhang, Z. Optimal Relay Probing in Millimeter-Wave Cellular Systems with Device-to-Device Relaying. IEEE
Trans. Veh. Technol. 2016, 65, 10218–10222. [CrossRef]

35. Boban, M.; Dupleich, D.; Iqbal, N.; Luo, J.; Schneider, C.; Müller, R.; Yu, Z.; Steer, D.; Jämsä, T.; Li, J.; et al. Multi-Band
Vehicle-to-Vehicle Channel Characterization in the Presence of Vehicle Blockage. IEEE Access 2019, 7, 9724–9735. [CrossRef]

http://dx.doi.org/10.1109/LCOMM.2020.2991535
http://dx.doi.org/10.3390/s21082835
http://dx.doi.org/10.1109/WPMC50192.2020.9309495
http://dx.doi.org/10.1109/LWC.2021.3074972
http://dx.doi.org/10.3390/s20143947
http://dx.doi.org/10.23919/ICMU50196.2021.9638849
http://dx.doi.org/10.1109/ACCESS.2021.3114430
http://dx.doi.org/10.48550/ARXIV.2105.04373
http://dx.doi.org/10.1109/LWC.2022.3164939
http://dx.doi.org/10.3390/s22062179
http://dx.doi.org/10.32604/cmc.2020.011816
http://dx.doi.org/10.1109/JSYST.2021.3089536
http://dx.doi.org/10.1109/JAC-ECC51597.2020.9355899
http://dx.doi.org/10.1109/TVT.2022.3163078
http://dx.doi.org/10.1109/JIOT.2022.3162135
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685996
http://dx.doi.org/10.1109/TVT.2016.2552239
http://dx.doi.org/10.1109/ACCESS.2019.2892238

	Introduction
	Related Work
	Paper Contributions

	System Model
	Problem Formulation
	Envisioned CS-HBS Methods
	CSUCB-HBS Algorithm
	CSTS-HBS Algorithm

	Results
	Conclusions and Outlook
	References

