
Citation: Gowda, K.M.V.; Madhavan,

S.; Rinaldi, S.; Divakarachari, P.B.;

Atmakur, A. FPGA-Based

Reconfigurable Convolutional Neural

Network Accelerator Using Sparse

and Convolutional Optimization.

Electronics 2022, 11, 1653. https://

doi.org/10.3390/electronics11101653

Academic Editors: Rui Pedro Lopes

and Konstantinos Masselos

Received: 31 March 2022

Accepted: 18 May 2022

Published: 22 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

FPGA-Based Reconfigurable Convolutional Neural Network
Accelerator Using Sparse and Convolutional Optimization
Kavitha Malali Vishveshwarappa Gowda 1, Sowmya Madhavan 2, Stefano Rinaldi 3,* ,
Parameshachari Bidare Divakarachari 4 and Anitha Atmakur 5

1 Department of Electronics and Communication Engineering, Gopalan College of Engineering and
Management, Bengaluru 560048, Karnataka, India; kavishanthagiri@gmail.com

2 Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology,
Bangalore 560064, Karnataka, India; sowmya.madhavan@nmit.ac.in

3 Department of Information Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy
4 Department of Telecommunication Engineering, GSSS Institute of Engineering and Technology for Women,

Mysuru 570016, Karnataka, India; paramesh@gsss.edu.in
5 Department of Electronics and Communication Engineering, CVR College of Engineering,

Hyderabad 501510, Andhra Pradesh, India; a.anitha@cvr.ac.in
* Correspondence: stefano.rinaldi@unibs.it

Abstract: Nowadays, the data flow architecture is considered as a general solution for the acceleration
of a deep neural network (DNN) because of its higher parallelism. However, the conventional DNN
accelerator offers only a restricted flexibility for diverse network models. In order to overcome this, a
reconfigurable convolutional neural network (RCNN) accelerator, i.e., one of the DNN, is required
to be developed over the field-programmable gate array (FPGA) platform. In this paper, the sparse
optimization of weight (SOW) and convolutional optimization (CO) are proposed to improve the
performances of the RCNN accelerator. The combination of SOW and CO is used to optimize the
feature map and weight sizes of the RCNN accelerator; therefore, the hardware resources consumed
by this RCNN are minimized in FPGA. The performances of RCNN-SOW-CO are analyzed by
means of feature map size, weight size, sparseness of the input feature map (IFM), weight parameter
proportion, block random access memory (BRAM), digital signal processing (DSP) elements, look-up
tables (LUTs), slices, delay, power, and accuracy. An existing architectures OIDSCNN, LP-CNN, and
DPR-NN are used to justify efficiency of the RCNN-SOW-CO. The LUT of RCNN-SOW-CO with
Alexnet designed in the Zynq-7020 is 5150, which is less than the OIDSCNN and DPR-NN.

Keywords: block random access memory; convolutional optimization; field-programmable gate
array; reconfigurable convolutional neural network; sparse optimization of weight

1. Introduction

Artificial intelligence (AI) is generally a primeval field of computer science and it is
extensive worldwide dealing with all the parts of imitating cognitive functions for real-
world issue resolving and creating systems which study and think like humans. Hence, it
is referred to as machine intelligence instead of human intelligence. This AI is utilized in
the integration of computer science and cognitive science. The practical accomplishments
in machine learning increases the interest in the field of AI [1]. Examination and applica-
tion directions of AI technology are learning intelligence, behavior intelligence, thinking
intelligence, perception intelligence, and so on [2]. In general, neural networks are used
in spacecraft control, vehicle control, pattern recognition, robotics, military equipment,
analysis and decision making in the Internet of Things systems, drone control, health
care, and so on [3–6]. Specifically, the CNN is one of the modern AI approaches which
generates a complex feature when it is processed with a huge model and sufficient training
dataset. Therefore, the features from the CNN provide better performance than the typical
handcrafted features [7].

Electronics 2022, 11, 1653. https://doi.org/10.3390/electronics11101653 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101653
https://doi.org/10.3390/electronics11101653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7300-1053
https://orcid.org/0000-0002-3997-5070
https://doi.org/10.3390/electronics11101653
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101653?type=check_update&version=2

Electronics 2022, 11, 1653 2 of 20

The specialized coprocessors comprising application-specific integrated circuits (ASICs),
graphics processing units (GPUs), and FPGA use the natural parallelization and offer higher
data throughput. The deep neural network is mainly considered in this computing revo-
lution because of the higher parallelizability and general computational requirements [8].
CNN generally includes the intensive multiplication and accumulation operations. These
operations are performed sequentially using general-purpose processors that result in low
efficiency. The GPU offers the Giga to Tera FLOPs per seconds, but it suffers a high energy
cost. FPGA generally uses one order of magnitude less power when compared to GPUs
and, also, it provides significant speed improvement compared to the CPUs [9–11]. An
effective way to implement the neural network is to utilize the FPGA, due to their effective
parallel computing, reconfigurability, and robust flexibility. However, the FPGA also has
some limitations, such as implementation complexity, circuit reprogramming, high cost,
lack of machine learning libraries, and implementation complexity [12–15]. The proposed
SOW and CO optimizations are utilized individually in some of the conventional FPGA
applications. However, this research applies SOW and CO techniques to attain advanced
quality of performances, which are explained briefly in the following sections.

The contribution of this paper is mentioned as follows:

• This research exploits SOW and CO to decrease the memory print by separating the
feature map into minor pieces and storing them in FPGA’s high-throughput on-chip
memory. This diminishes the weight sizes of RCNN accelerator and accomplishes
even higher performances.

• The RCNN accelerator is developed by the FPGA along with the SOW and CO for
minimizing the hardware resources.

• The data reuse approach used in the SOW helps to minimize the power consump-
tion. Moreover, a considerable amount of calculation is decreased using the sparse
matrix operations.

• Execution speed of the RCNN accelerator is improved by using the loop unrolling
approach of SOW, whereas this loop unrolling also minimizes the computing resources.

The remaining paper is arranged as follows: the related work about the existing CNN
architectures are described in Section 2. The problems from the related work are specified
along with the solutions given by the proposed research in Section 3. Section 4 provides
the detailed explanation about the RCNN-SOW-CO architecture. The performance and
comparative analysis of the RCNN-SOW-CO are given in Section 5. Lastly, the conclusion
is made in Section 6.

2. Related Work

The related work about the existing CNN architectures created over the FPGA are
given as follows:

Pang et al. [16] presented an end-to-end FPGA-based accelerator to perform an ef-
fective operation of fine-grained pruned CNNs. Here, the load imbalances were created
after the fine-grained pruning. The accelerator’s load imbalances and internal buffer mis-
alignments were resolved by developing a group pruning algorithm with group sparse
regularization (GSR). The sparse processing elements design and on and off chip buffers
scheduling are used to optimize the accelerator. However, the loss of accuracy was out of
control when there was an increment in the number of pruned weights.

Mo et al. [17] developed the deep neural network over the small-scale FPGA to perform
the odor identification. The odor identification with depthwise separable CNN (OIDSCNN)
was developed for minimizing the parameters and accelerating the hardware design.
According to the quantization method, namely the saturation-flooring KL divergence
approach was used to design the OI-DSCNN over a Zynq-7020 SoC chip. The optimization
in the parameters was used to achieve higher speed. However, the OIDSCNN required a
high amount of DSP resources.

Li et al. [18] implemented the AlphaGo policy network and, also, effective hardware
architectures were developed for accelerating the deep CNN (DCNNs). The policy network

Electronics 2022, 11, 1653 3 of 20

was implemented to perform the sample actions in the game of Go. The policy network was
adjusted to achieve the accurate goal of winning games by combining the reinforcement
learning with supervised learning. The designed accelerator was fit in various FPGAs
that provided the balance among the hardware resources and processing speed. Due to
full utilization of on-chip resources and the parallelism of FPGA, the developed DCNN
consumed a high amount of hardware resources.

Vestias [19] designed a hardware-oriented pruning of CNN over the FPGA. In general,
the pruning was a model optimization approach which prunes the links among the layers
for minimizing the number of weights and operations. The sparsity was introduced
in the weights to minimize the computational efficiency of the conventional pipelined
architectures. Subsequently, the block pruning was used on the pipelined data path to
eliminate the sparsity issue created by the pruning. However, the accuracy of CNN was
high only in low-density FPGAs.

Abd El-Maksoud et al. [20] developed the low-power dedicated CNN (LP-CNN)
hardware accelerator according to the GoogLeNet CNN. The size of the memory was
minimized by applying the weights pruning and quantization. The CNN was processed
layer by layer because of the timesharing/pipelined structure-based accelerator. The
developed CNN accelerator was used only in an on-chip memory to store the weights and
activations. Moreover, the shifting operations were used instead of the multiplications. The
accuracy of the LP-CNN was affected because of a huge number of spare weights.

Zhao [21] presented the light music online system by designing the FPGA and CNN.
Important tasks performed by the cell neural organization architecture are initiation ca-
pacity, ordinariness, pooling, and convolution. However, a huge amount of hardware
resources were required to design the CNN-based light music online system.

You and Wu [22] developed a software/hardware co-optimized reconfigurable sparse
CNN (RSNN) over the FPGA. The sparse convolution data flow was developed with simple
control logic, which used the element-vector multiplication. Here, the software-based load-
balance-aware pruning approach was developed for balancing the computation load over
dissimilar processing units. The DSP utilization of RSNN was increased because of the
simultaneous execution of two 16-bit fixed-point MACs.

Irmak et al. [23] presented an architecture of a high-performance and flexible neural
network (NN) accelerator over the FPGA. In this work, dynamic partial reconfiguration
(DPR) was developed for realizing the various NN accelerators by updating only a portion
of FPGA design. A different processing element (PE) with identical interfaces was designed
for computing the layers in various NN. However, the developed NN failed to perform the
reconfiguration in FPGA, which resulted in high power consumption.

3. Problem Statement

The problems found from related work are provided along with the solutions given
by the proposed research.

The accuracy of the overall system is degraded because of the restricted pruning
space [16]. For an effective system, the amount of hardware resources is required to be less
to minimize the DSP consumption and to improve the speed. However, a high amount of
DSP resources is required in OIDSCNN [17]. Moreover, high power consumption is caused
because of the NN without any reconfiguration in FPGA [23].

Solution: In this research, the reconfigurable convolutional neural network is devel-
oped over the FPGA. The design of the RCNN accelerator with the SOW and CO is used to
minimize the feature map and weight sizes. Moreover, the RCNN-SOW-CO minimizes the
number of calculations according to the optimization approach. This helps to minimize the
amount of hardware resources and, accordingly, it increases the speed.

4. Overview of Architecture

Figure 1 shows the data-flow-based reconfigurable architecture. Different from the
existing structures, the configuration register is introduced, followed by all the accelerator’s

Electronics 2022, 11, 1653 4 of 20

hardware modules configured in the RCNN accelerator. The architecture is reconfigured
with the configuration register according to the configuration instructions saved in double
data rate (DDR). Next, the parameters of weight and image are transmitted to the buffer of
weight and image. The PE array streams calculate the outcomes into the special function
buffer because it comprises the static random-access memory (SRAM) banks, which are
connected in parallel. SRAM cell contains four NMOS transistors and two poly-load
resistors. Two NMOS transistors are referred to as pass-transistors. These two transistors
take their gates integrated with the word line and attach the cell to the columns. The other
two NMOS transistors are connected to pull-downs of the flip-flop inverters. Due to this
type of arrangement, integrated SRAM provides faster access to data and can be used for a
computer’s cache memory. Moreover, the special function buffer has the special functional
layers, such as pooling, batch normalization (BN), and activation. These special functional
layers minimize data access among the on-chip buffer and DDR. The suggested architecture
provides suitable transferability to diverse RCNN models because of its reconfigurable
PE array, which can be modified to adapt to numerous filter sizes of the systems. In the
meantime, a reconfigurable on-chip buffer procedure is improved while considering the
projected model, which completely depends on the restriction ratio property of diverse
layers. Furthermore, the RCNN accelerator improves its flexibility by manipulating the
sparsity features of the input feature map.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 22

Figure 1. Data-flow-based reconfigurable architecture.

4.1. Architecture of Reconfigurable PE Used for Convolution

A spatial 2D PE array is implemented to accomplish the tradeoff among the flexibil-

ity, throughput, and complexity, whereas the designed spatial 2D PE array is an essential

component of the accelerate solution. The spatial 2D structure works better with the com-

plex network structures that have various kernel sizes. Figure 2 displays the architecture

of reconfigurable PE.

Figure 1. Data-flow-based reconfigurable architecture.

Electronics 2022, 11, 1653 5 of 20

4.1. Architecture of Reconfigurable PE Used for Convolution

A spatial 2D PE array is implemented to accomplish the tradeoff among the flexibility,
throughput, and complexity, whereas the designed spatial 2D PE array is an essential com-
ponent of the accelerate solution. The spatial 2D structure works better with the complex
network structures that have various kernel sizes. Figure 2 displays the architecture of
reconfigurable PE.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 22

Figure 2. Architecture of reconfigurable PE.

The conventional PE design has one multiplier, but the reconfigurable PE has eight

multipliers for realizing the convolution operations of 1 × 1 or 3 × 3, which are the foremost

operations in the conventional DNN. Here, eight image registers and eight weight regis-

ters are connected to the multipliers. In this design, the image registers are utilized as shift

registers and send the image data among the PE. The work status of the PE is decided by

the enable signals connected to the multipliers, which helps to minimize the energy con-

sumption. For the inactivated multipliers, the outputs are fixed as zero. The designed re-

configurable PE is used to accomplish the 1 × 1 or 3 × 3 convolution operations. The accel-

erator deals with large filter sizes, such as 5 × 5 or 7 × 7, according to the designed PE

array. Moreover, the operation of 11 × 11 is also performed by using 16 PEs. The specific

configuration of 5 × 5 and 7 × 7 is shown in Figures 3 and 4, respectively. The usage of

multipliers for various kernel sizes is given in the Table 1.

Figure 3. Convolutional operation of 5 × 5.

Figure 2. Architecture of reconfigurable PE.

The conventional PE design has one multiplier, but the reconfigurable PE has eight
multipliers for realizing the convolution operations of 1 × 1 or 3 × 3, which are the foremost
operations in the conventional DNN. Here, eight image registers and eight weight registers
are connected to the multipliers. In this design, the image registers are utilized as shift
registers and send the image data among the PE. The work status of the PE is decided
by the enable signals connected to the multipliers, which helps to minimize the energy
consumption. For the inactivated multipliers, the outputs are fixed as zero. The designed
reconfigurable PE is used to accomplish the 1 × 1 or 3 × 3 convolution operations. The
accelerator deals with large filter sizes, such as 5 × 5 or 7 × 7, according to the designed PE
array. Moreover, the operation of 11 × 11 is also performed by using 16 PEs. The specific
configuration of 5 × 5 and 7 × 7 is shown in Figures 3 and 4, respectively. The usage of
multipliers for various kernel sizes is given in the Table 1.

Table 1. Peak multiplier utilization for various kernel sizes.

Kernel Size Peak Utilization

1 × 1 98.3%
3 × 3 98.1%
5 × 5 63.1%
7 × 7 69.12%

11 × 11 74.01%

Electronics 2022, 11, 1653 6 of 20

Electronics 2022, 11, x FOR PEER REVIEW 6 of 22

Figure 2. Architecture of reconfigurable PE.

The conventional PE design has one multiplier, but the reconfigurable PE has eight

multipliers for realizing the convolution operations of 1 × 1 or 3 × 3, which are the foremost

operations in the conventional DNN. Here, eight image registers and eight weight regis-

ters are connected to the multipliers. In this design, the image registers are utilized as shift

registers and send the image data among the PE. The work status of the PE is decided by

the enable signals connected to the multipliers, which helps to minimize the energy con-

sumption. For the inactivated multipliers, the outputs are fixed as zero. The designed re-

configurable PE is used to accomplish the 1 × 1 or 3 × 3 convolution operations. The accel-

erator deals with large filter sizes, such as 5 × 5 or 7 × 7, according to the designed PE

array. Moreover, the operation of 11 × 11 is also performed by using 16 PEs. The specific

configuration of 5 × 5 and 7 × 7 is shown in Figures 3 and 4, respectively. The usage of

multipliers for various kernel sizes is given in the Table 1.

Figure 3. Convolutional operation of 5 × 5. Figure 3. Convolutional operation of 5 × 5.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 22

Figure 4. Convolutional operation of 7 × 7.

Table 1. Peak multiplier utilization for various kernel sizes.

Kernel Size Peak Utilization

1 × 1 98.3%

3 × 3 98.1%

5 × 5 63.1%

7 × 7 69.12%

11 × 11 74.01%

The rows of the image are used again for reducing the on-chip data movement, which

lessens the power consumption. The reuse approach for the filter size of 3 × 3 and a stride

of 1 is shown in the Figure 5. Therefore, this reuse approach is used to decrease the usage

of SRAM banks.

Figure 5. Row data reuse strategy.

In this RCNN accelerator, the fully connected (FC) layers are used as the special con-

volutional layers by using the padding of 0, 1 × 1 filter, 1 × 1 IFM, and stride of 1. The FC

layer has a huge number of weight parameters where the technique used to calculate the

weight parameter is explained in the following section.

Figure 4. Convolutional operation of 7 × 7.

The rows of the image are used again for reducing the on-chip data movement, which
lessens the power consumption. The reuse approach for the filter size of 3 × 3 and a stride
of 1 is shown in the Figure 5. Therefore, this reuse approach is used to decrease the usage
of SRAM banks.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 22

Figure 4. Convolutional operation of 7 × 7.

Table 1. Peak multiplier utilization for various kernel sizes.

Kernel Size Peak Utilization

1 × 1 98.3%

3 × 3 98.1%

5 × 5 63.1%

7 × 7 69.12%

11 × 11 74.01%

The rows of the image are used again for reducing the on-chip data movement, which

lessens the power consumption. The reuse approach for the filter size of 3 × 3 and a stride

of 1 is shown in the Figure 5. Therefore, this reuse approach is used to decrease the usage

of SRAM banks.

Figure 5. Row data reuse strategy.

In this RCNN accelerator, the fully connected (FC) layers are used as the special con-

volutional layers by using the padding of 0, 1 × 1 filter, 1 × 1 IFM, and stride of 1. The FC

layer has a huge number of weight parameters where the technique used to calculate the

weight parameter is explained in the following section.

Figure 5. Row data reuse strategy.

Electronics 2022, 11, 1653 7 of 20

In this RCNN accelerator, the fully connected (FC) layers are used as the special
convolutional layers by using the padding of 0, 1 × 1 filter, 1 × 1 IFM, and stride of 1. The
FC layer has a huge number of weight parameters where the technique used to calculate
the weight parameter is explained in the following section.

4.2. Sparseness Optimization for Weight

The resources of on-chip memory are inadequate embedded design. A huge amount
of energy is utilized for the data access among the on-chip and external memory. Therefore,
the data reuse approaches are used in the RCNN accelerator to minimize the power. There
are two ideal reuse approaches that are used in the certain layer, such as saving all IFM
data on chip and storing all weight parameters on chip. An amount of weight parameter
and image information highly differs between various convolutional layers. The approach
used to calculate the weight parameter is described as follows.

The spare weight RCNN accelerator is introduced that is considered as applicable for
the hardware implementation. Consider the sparse weight has −w,+w, and zero. The
sparse weight RCNN accelerator contains hidden weights w(hid) while training on the
GPU. From the hidden weight, the sparse weight w(t) is defined, which is expressed in
Equation (1):

w(t) =

{
0

∣∣∣w(hid)
∣∣∣ ≤ ρ

w(hid) Otherwise
(1)

where the threshold to differentiate the zero weight and a non-zero one is represented as ρ.
An example of sparse convolution operation is shown in Figure 6. Moreover, the

weight value is always taken as –w or +w for the baseline CNN. Therefore, there is no prob-
ability of disconnection between the neurons. The weight 0 state defines the disconnections
at the sparse weight RCNN accelerator. The sparse weight RCNN’s matrix representation
is a sparse one; hence, the operations of sparse matrix is applied for reducing the number
of calculations.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 22

4.2. Sparseness Optimization for Weight

The resources of on-chip memory are inadequate embedded design. A huge amount

of energy is utilized for the data access among the on-chip and external memory. There-

fore, the data reuse approaches are used in the RCNN accelerator to minimize the power.

There are two ideal reuse approaches that are used in the certain layer, such as saving all

IFM data on chip and storing all weight parameters on chip. An amount of weight param-

eter and image information highly differs between various convolutional layers. The ap-

proach used to calculate the weight parameter is described as follows.

The spare weight RCNN accelerator is introduced that is considered as applicable for

the hardware implementation. Consider the sparse weight has −𝑤, +𝑤, and zero. The

sparse weight RCNN accelerator contains hidden weights 𝑤(ℎ𝑖𝑑) while training on the

GPU. From the hidden weight, the sparse weight 𝑤(𝑡) is defined, which is expressed in

Equation (1):

𝑤(𝑡) = {
0 |𝑤(ℎ𝑖𝑑)| ≤ 𝜌

𝑤(ℎ𝑖𝑑) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

where the threshold to differentiate the zero weight and a non-zero one is represented as

𝜌.

An example of sparse convolution operation is shown in Figure 6. Moreover, the

weight value is always taken as – 𝑤 or +𝑤 for the baseline CNN. Therefore, there is no

probability of disconnection between the neurons. The weight 0 state defines the discon-

nections at the sparse weight RCNN accelerator. The sparse weight RCNN’s matrix rep-

resentation is a sparse one; hence, the operations of sparse matrix is applied for reducing

the number of calculations.

Figure 6. Example of sparse convolution operation.

The operation of sparse weight convolutional is realized using the zero-weight skip

calculation. Since the address in respect to the non-zero weight is stored, when the pre-

trained RCNN accelerator includes a zero-weight, consequently, the typical CNN with

zero-weight skip one is used to accomplish the sparse weight convolutional operation.

The developed convolutional execution needs 𝐿 words, where an amount of non-zero

weights is represented as 𝐿. Fewer memory accesses are required by the RCNN accelera-

tor with zero weights; however, this RCNN with sparse weight is faster than the 2D cal-

culation.

An indirect memory access is used to perform the zero-skip calculation, whereas the

indirect memory access for sparse convolution is shown in Figure 7. Initially, this memory

access simultaneously reads the non-zero weight and respective address. Next, this

memory access identifies the address for the respective input. Moreover, memory access

Figure 6. Example of sparse convolution operation.

The operation of sparse weight convolutional is realized using the zero-weight skip
calculation. Since the address in respect to the non-zero weight is stored, when the pre-
trained RCNN accelerator includes a zero-weight, consequently, the typical CNN with
zero-weight skip one is used to accomplish the sparse weight convolutional operation. The
developed convolutional execution needs L words, where an amount of non-zero weights
is represented as L. Fewer memory accesses are required by the RCNN accelerator with
zero weights; however, this RCNN with sparse weight is faster than the 2D calculation.

Electronics 2022, 11, 1653 8 of 20

An indirect memory access is used to perform the zero-skip calculation, whereas the
indirect memory access for sparse convolution is shown in Figure 7. Initially, this memory
access simultaneously reads the non-zero weight and respective address. Next, this memory
access identifies the address for the respective input. Moreover, memory access reads the
respective one, followed by it accomplishing the multiply accumulation (MAC) operation.
The activation function, i.e., ReLU, is applied by replicating the aforementioned operations
for all the non-zero weights in the kernel.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 22

reads the respective one, followed by it accomplishing the multiply accumulation (MAC)

operation. The activation function, i.e., ReLU, is applied by replicating the aforementioned

operations for all the non-zero weights in the kernel.

Figure 7. Indirect memory access operation.

4.3. Convolutional Optimization

The convolution optimization of the convolution (CONV) layer is used for enhancing

the performance density. From the Roofline model, the performance density of FPGA ac-

celerator is formulated under definite hardware resource conditions, as shown in Equa-

tion (2):

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑏𝑜𝑢𝑛𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

=
𝑓𝐶𝑂𝑁𝑉

𝑇𝑖𝑚𝑒 + 𝑓𝑃𝑜𝑜𝑙𝑖𝑛𝑔
𝑇𝑖𝑚𝑒 + 𝑓𝑜𝑡ℎ𝑒𝑟𝑠

𝑇𝑖𝑚𝑒

𝑀
𝑇𝑚

×
𝑁
𝑇𝑛

×
𝑅
𝑇𝑟

×
𝐶
𝑇𝑐

× (𝑇𝑟 × 𝑇𝑐 × 𝐾2 + 𝑝)

≈
𝑓𝐶𝑂𝑁𝑉

𝑇𝑖𝑚𝑒

𝑀
𝑇𝑚

×
𝑁
𝑇𝑛

× 𝑅 × 𝐶 × 𝐾2

≈
𝑔(𝑅 × 𝐶 × 𝐾2 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡)

𝑀
𝑇𝑚

×
𝑁
𝑇𝑛

× 𝑅 × 𝐶 × 𝐾2

0 < 𝑇𝑚 × 𝑇𝑛 × (𝐷𝑆𝑃𝑀𝑢𝑙 + 𝐷𝑆𝑃𝐴𝑑𝑑) < (#𝑜𝑓 𝐷𝑆𝑃)

(2)

where 𝑁, 𝑀, 𝑅 and 𝐶 denote the layer of input, output, row and column feature maps,

respectively; 𝐾 represents the kernel; tile sizes of the input, output, row and column are

𝑇𝑚, 𝑇𝑛, 𝑇𝑟 and 𝑇𝑐, and 𝑝 = 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ − 1; the time complexities of the convolutional

and pooling layer are 𝑓𝐶𝑂𝑁𝑉
𝑇𝑖𝑚𝑒 and 𝑓𝑃𝑜𝑜𝑙𝑖𝑛𝑔

𝑇𝑖𝑚𝑒 , respectively. A number of multiply–add opera-

tions are used to estimate the time complexity of a certain layer at the RCNN accelerator.

Moreover, a number of input channels and convolution kernels in the CONV layer are

denoted as 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡.

More than 90% of operation in the RCNN accelerator is occupied by the convolution

operations; therefore, 𝑓𝐶𝑂𝑁𝑉
𝑇𝑖𝑚𝑒 is higher than the sum of 𝑓𝑃𝑜𝑜𝑙𝑖𝑛𝑔

𝑇𝑖𝑚𝑒 and 𝑓𝑜𝑡ℎ𝑒𝑟𝑠
𝑇𝑖𝑚𝑒 . Moreover, the

tile sizes 𝑇𝑟 = 𝑇𝑐 = 1, whereas the tile sizes of 𝑇𝑚 and 𝑇𝑛 are variable. Equation (1) shows

that the bottleneck of performance is defined only by 𝑇𝑚 and 𝑇𝑛, which are highly limited

by resources of on-chip DSP. The methods used in this convolutional optimization are

defined below.

Figure 7. Indirect memory access operation.

4.3. Convolutional Optimization

The convolution optimization of the convolution (CONV) layer is used for enhancing
the performance density. From the Roofline model, the performance density of FPGA accel-
erator is formulated under definite hardware resource conditions, as shown in Equation (2):

Per f ormance bound = Total number o f operations
Execution cycles

=
f Time
CONV+ f Time

Pooling+ f Time
others

M
Tm × N

Tn ×
R
Tr ×

C
Tc ×(Tr×Tc×K2+p)

≈ f Time
CONV

M
Tm × N

Tn ×R×C×K2

≈ g(R×C×K2×Cin×Cout)
M

Tm × N
Tn ×R×C×K2

0 < Tm × Tn × (DSPMul + DSPAdd) < (#o f DSP)

(2)

where N, M, R and C denote the layer of input, output, row and column feature maps,
respectively; K represents the kernel; tile sizes of the input, output, row and column are
Tm, Tn, Tr and Tc, and p = Pipeline depth− 1; the time complexities of the convolutional and
pooling layer are f Time

CONV and f Time
Pooling, respectively. A number of multiply–add operations are

used to estimate the time complexity of a certain layer at the RCNN accelerator. Moreover,
a number of input channels and convolution kernels in the CONV layer are denoted as Cin
and Cout.

More than 90% of operation in the RCNN accelerator is occupied by the convolution
operations; therefore, f Time

CONV is higher than the sum of f Time
Pooling and f Time

others. Moreover, the
tile sizes Tr = Tc = 1, whereas the tile sizes of Tm and Tn are variable. Equation (1) shows
that the bottleneck of performance is defined only by Tm and Tn, which are highly limited
by resources of on-chip DSP. The methods used in this convolutional optimization are
defined below.

Electronics 2022, 11, 1653 9 of 20

4.3.1. Loop Unrolling

The parallelism among CONV kernels is used in the loop unrolling approach to ac-
complish the parallel execution of many CONV executions. In CONV, the parallel pipeline
multiplication and addition are accomplished by partially expanding the two dimensions
M and N. Here, each layer consists of N IFMs. The pixel blocks (Tn) in the identical
location and related Tn weights are acquired from autonomous IFMs. Hence, the IFMs
require a time of N/Tn to read and compute. The calculation of loop unrolling according
to the N/Tn is used to mitigate the resource wastage. The parallel multiplication units
Tm × Tn are used to multiply the input pixel blocks of Tn for performing the multiplication
operations, and addition trees of Tm return the product addition output in the output buffer.
The local parallel structure is realized by the loop unrolling, as shown in Figure 8. This
loop unrolling is used to maximize the speed and concurrently increases the performance
for each calculating resource.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 22

4.3.1. Loop Unrolling

The parallelism among CONV kernels is used in the loop unrolling approach to ac-

complish the parallel execution of many CONV executions. In CONV, the parallel pipeline

multiplication and addition are accomplished by partially expanding the two dimensions

𝑀 and 𝑁. Here, each layer consists of 𝑁 IFMs. The pixel blocks (𝑇𝑛) in the identical lo-

cation and related 𝑇𝑛 weights are acquired from autonomous IFMs. Hence, the IFMs re-

quire a time of 𝑁/𝑇𝑛 to read and compute. The calculation of loop unrolling according to

the 𝑁/𝑇𝑛 is used to mitigate the resource wastage. The parallel multiplication units

𝑇𝑚 × 𝑇𝑛 are used to multiply the input pixel blocks of 𝑇𝑛 for performing the multiplica-

tion operations, and addition trees of 𝑇𝑚 return the product addition output in the output

buffer. The local parallel structure is realized by the loop unrolling, as shown in Figure 8.

This loop unrolling is used to maximize the speed and concurrently increases the perfor-

mance for each calculating resource.

Figure 8. Calculation of parallel block.

4.3.2. Loop Tiling

The data locality computed by the convolution is used in the loop tiling. In data lo-

cality, entire data are divided as multiple smaller blocks, which are preserved in the on-

chip buffers. The designed blocks are shown in Figure 8. From the DRAM, the pixel blocks

of 𝑇𝑟𝑜𝑤 × 𝑇𝑐𝑜𝑤 and respective 𝑇𝑚 × 𝑇𝑛 × 𝐾2 weights of IFMs are acquired in this tiling

process. Next, the weight parameters and pixel blocks of the feature map are used again

on the chip. An external memory access is minimized, latency is reduced, and perfor-

mance is improved by preserving the intermediate results in the on-chip cache. After ob-

taining the final output pixel blocks, the 𝑇𝑟 × 𝑇𝑐 pixel blocks of output feature maps are

taken as output in this tiling process.

5. Results and Discussion

This section provides the performance and comparative analysis of the RCNN-SOW-

CO architecture. The design of RCNN-SOW-CO is evaluated with three well-known

CNNs, such as AlexNet, VGG16, and VGG19. The implemented design is evaluated in the

Xilinx Zynq 7020 FPGA device. Here, the fixed-point data are utilized with 16-bit for input

and output feature maps, 8-bits for CONV layer weight, 4-bits for fully connected (FC)

Figure 8. Calculation of parallel block.

4.3.2. Loop Tiling

The data locality computed by the convolution is used in the loop tiling. In data
locality, entire data are divided as multiple smaller blocks, which are preserved in the
on-chip buffers. The designed blocks are shown in Figure 8. From the DRAM, the pixel
blocks of Trow × Tcow and respective Tm × Tn ×K2 weights of IFMs are acquired in this tiling
process. Next, the weight parameters and pixel blocks of the feature map are used again on
the chip. An external memory access is minimized, latency is reduced, and performance
is improved by preserving the intermediate results in the on-chip cache. After obtaining
the final output pixel blocks, the Tr × Tc pixel blocks of output feature maps are taken as
output in this tiling process.

5. Results and Discussion

This section provides the performance and comparative analysis of the RCNN-SOW-
CO architecture. The design of RCNN-SOW-CO is evaluated with three well-known CNNs,
such as AlexNet, VGG16, and VGG19. The implemented design is evaluated in the Xilinx
Zynq 7020 FPGA device. Here, the fixed-point data are utilized with 16-bit for input
and output feature maps, 8-bits for CONV layer weight, 4-bits for fully connected (FC)
layer weight, and 32-bits for partial addition. Here, the Vivado HLS 2019.1 is utilized for
synthesizing the accelerator written in C++ into the register transfer level (RTL) design.

Electronics 2022, 11, 1653 10 of 20

Subsequently, Vivado 2019.1 is used for compiling the RTL code into a bitstream. Moreover,
the MNIST dataset [24] is used for testing the proposed RCNN-SOW-CO architecture.

5.1. Performance Analysis of RCNN-SOW-CO Architecture

The performance analysis of RCNN-SOW-CO architecture is analyzed by means of
feature map size, weight size, sparseness of the IFM, weight parameter proportion, and
FPGA performances. Here, the performances are analyzed for the CNN accelerator with
SOW-CO and without SOW-CO.

The investigation of feature map size and weight size for RCNN-Alexnet with and
without SOW-CO is shown in Table 2. Figures 9 and 10 show the graphical illustration of
feature map size and weight size, respectively. From the table and figures, it is known that
the feature map and weight sizes of RCNN-Alexnet with SOW-CO are less when compared
to the RCNN without SOW-CO. The sizes of the feature map and weight are reduced in the
RCNN with SOW-CO due to the parameter reduction achieved by using sparse matrix.

Table 2. Analysis of feature map and weight sizes for Alexnet.

Alexnet Layers
Feature Map Size (Mb) Weight Size (Mb)

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 16 14 3 2
conv 2 13 10 5 5
conv 3 11 9 8 7
conv 4 9 7 12 9
conv 5 7 6 14 12

Electronics 2022, 11, x FOR PEER REVIEW 11 of 22

layer weight, and 32-bits for partial addition. Here, the Vivado HLS 2019.1 is utilized for

synthesizing the accelerator written in C++ into the register transfer level (RTL) design.

Subsequently, Vivado 2019.1 is used for compiling the RTL code into a bitstream. Moreo-

ver, the MNIST dataset [24] is used for testing the proposed RCNN-SOW-CO architecture.

5.1. Performance Analysis of RCNN-SOW-CO Architecture

The performance analysis of RCNN-SOW-CO architecture is analyzed by means of

feature map size, weight size, sparseness of the IFM, weight parameter proportion, and

FPGA performances. Here, the performances are analyzed for the CNN accelerator with

SOW-CO and without SOW-CO.
The investigation of feature map size and weight size for RCNN-Alexnet with and

without SOW-CO is shown in Table 2. Figures 9 and 10 show the graphical illustration of

feature map size and weight size, respectively. From the table and figures, it is known that

the feature map and weight sizes of RCNN-Alexnet with SOW-CO are less when com-

pared to the RCNN without SOW-CO. The sizes of the feature map and weight are re-

duced in the RCNN with SOW-CO due to the parameter reduction achieved by using

sparse matrix.

Table 2. Analysis of feature map and weight sizes for Alexnet.

Alexnet Layers
Feature Map Size (Mb) Weight Size (Mb)

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 16 14 3 2

conv 2 13 10 5 5

conv 3 11 9 8 7

conv 4 9 7 12 9

conv 5 7 6 14 12

Figure 9. Graphical illustration of feature map size for Alexnet. Figure 9. Graphical illustration of feature map size for Alexnet.

Table 3 shows the analysis of feature map and weight sizes for RCNN-VGG16 with and
without SOW-CO. Additionally, the comparison of feature map and weight sizes for feature
map size and weight size are shown in Figures 11 and 12, respectively. This analysis shows
that the feature map and weight sizes of the RCNN with SOW-CO are less when compared
to the RCNN without SOW-CO. The architecture without SOW-CO causes higher feature
map and weight sizes, because it does not have optimized architecture for convolution, as
well as the weight value not being optimized during the computation process.

Electronics 2022, 11, 1653 11 of 20Electronics 2022, 11, x FOR PEER REVIEW 12 of 22

Figure 10. Graphical illustration of weight size for Alexnet.

Table 3 shows the analysis of feature map and weight sizes for RCNN-VGG16 with

and without SOW-CO. Additionally, the comparison of feature map and weight sizes for

feature map size and weight size are shown in Figures 11 and 12, respectively. This anal-

ysis shows that the feature map and weight sizes of the RCNN with SOW-CO are less

when compared to the RCNN without SOW-CO. The architecture without SOW-CO

causes higher feature map and weight sizes, because it does not have optimized architec-

ture for convolution, as well as the weight value not being optimized during the compu-

tation process.

Table 3. Analysis of feature map and weight sizes for VGG16.

VGG16

Layers

Feature Map Size (Mb) Weight Size (Mb)

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 21 19 4 2

conv 2 18 17 4 3

conv 3 18 16 7 5

conv 4 15 14 8 6

conv 5 12 10 10 8

conv 6 14 10 13 10

conv 7 12 9 14 12

conv 8 10 7 16 15

conv 9 8 7 20 17

conv 10 6 5 21 18

conv 11 5 3 21 20

conv 12 4 2 24 23

conv 13 3 2 25 23

Figure 10. Graphical illustration of weight size for Alexnet.

Table 3. Analysis of feature map and weight sizes for VGG16.

VGG16 Layers
Feature Map Size (Mb) Weight Size (Mb)

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 21 19 4 2
conv 2 18 17 4 3
conv 3 18 16 7 5
conv 4 15 14 8 6
conv 5 12 10 10 8
conv 6 14 10 13 10
conv 7 12 9 14 12
conv 8 10 7 16 15
conv 9 8 7 20 17

conv 10 6 5 21 18
conv 11 5 3 21 20
conv 12 4 2 24 23
conv 13 3 2 25 23

Electronics 2022, 11, x FOR PEER REVIEW 13 of 22

Figure 11. Graphical illustration of feature map size for VGG16.

Figure 12. Graphical illustration of weight size for VGG16.

The investigation of feature map and weight sizes for RCNN-VGG19 with and with-

out SOW-CO is shown in Table 4. Figures 13 and 14 show the graphical illustrations of

feature map and weight sizes, respectively. From the analysis, it is known that the feature

map and weight sizes of RCNN-VGG19 with SOW-CO are less than the RCNN without

SOW-CO. The utilization of sparse matrix in weight and convolutional optimization re-

duces the sizes of the feature map and weight.

Table 4. Analysis of feature map and weight sizes for VGG19.

VGG19

Layers

Feature Map Size (Mb) Weight Size (Mb)

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 19 18 4 2

conv 2 18 16 5 3

conv 3 17 18 7 3

conv 4 17 14 10 5

conv 5 14 13 8 8

conv 6 12 10 13 10

conv 7 10 8 13 11

conv 8 9 8 17 14

conv 9 9 6 19 17

Figure 11. Graphical illustration of feature map size for VGG16.

Electronics 2022, 11, 1653 12 of 20

Electronics 2022, 11, x FOR PEER REVIEW 13 of 22

Figure 11. Graphical illustration of feature map size for VGG16.

Figure 12. Graphical illustration of weight size for VGG16.

The investigation of feature map and weight sizes for RCNN-VGG19 with and with-

out SOW-CO is shown in Table 4. Figures 13 and 14 show the graphical illustrations of

feature map and weight sizes, respectively. From the analysis, it is known that the feature

map and weight sizes of RCNN-VGG19 with SOW-CO are less than the RCNN without

SOW-CO. The utilization of sparse matrix in weight and convolutional optimization re-

duces the sizes of the feature map and weight.

Table 4. Analysis of feature map and weight sizes for VGG19.

VGG19

Layers

Feature Map Size (Mb) Weight Size (Mb)

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 19 18 4 2

conv 2 18 16 5 3

conv 3 17 18 7 3

conv 4 17 14 10 5

conv 5 14 13 8 8

conv 6 12 10 13 10

conv 7 10 8 13 11

conv 8 9 8 17 14

conv 9 9 6 19 17

Figure 12. Graphical illustration of weight size for VGG16.

The investigation of feature map and weight sizes for RCNN-VGG19 with and without
SOW-CO is shown in Table 4. Figures 13 and 14 show the graphical illustrations of feature
map and weight sizes, respectively. From the analysis, it is known that the feature map and
weight sizes of RCNN-VGG19 with SOW-CO are less than the RCNN without SOW-CO.
The utilization of sparse matrix in weight and convolutional optimization reduces the sizes
of the feature map and weight.

Table 4. Analysis of feature map and weight sizes for VGG19.

VGG19 Layers
Feature Map Size (Mb) Weight Size (Mb)

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 19 18 4 2
conv 2 18 16 5 3
conv 3 17 18 7 3
conv 4 17 14 10 5
conv 5 14 13 8 8
conv 6 12 10 13 10
conv 7 10 8 13 11
conv 8 9 8 17 14
conv 9 9 6 19 17

conv 10 8 4 20 17
conv 11 6 3 22 19
conv 12 5 2 25 20
conv 13 2 2 27 22

Electronics 2022, 11, x FOR PEER REVIEW 14 of 22

conv 10 8 4 20 17

conv 11 6 3 22 19

conv 12 5 2 25 20

conv 13 2 2 27 22

Figure 13. Graphical illustration of feature map size for VGG19.

Figure 14. Graphical illustration of weight size for VGG19.

An evaluation of sparseness of the IFM and weight parameter proportion for RCNN-

Alexnet with and without SOW-CO is shown in Table 5. The graphical illustrations of the

IFM’s sparseness and weight parameter proportion for RCNN-Alexnet are shown in Fig-

ures 15 and 16, respectively. This analysis shows that the IFM’s sparseness and weight

parameter proportion of RCNN-Alexnet with SOW-CO are less when compared to the

RCNN-Alexnet without SOW-CO. The optimization of weight using the sparsity is used

to optimize the IFM’s sparseness and weight parameter.

Figure 13. Graphical illustration of feature map size for VGG19.

Electronics 2022, 11, 1653 13 of 20

Electronics 2022, 11, x FOR PEER REVIEW 14 of 22

conv 10 8 4 20 17

conv 11 6 3 22 19

conv 12 5 2 25 20

conv 13 2 2 27 22

Figure 13. Graphical illustration of feature map size for VGG19.

Figure 14. Graphical illustration of weight size for VGG19.

An evaluation of sparseness of the IFM and weight parameter proportion for RCNN-

Alexnet with and without SOW-CO is shown in Table 5. The graphical illustrations of the

IFM’s sparseness and weight parameter proportion for RCNN-Alexnet are shown in Fig-

ures 15 and 16, respectively. This analysis shows that the IFM’s sparseness and weight

parameter proportion of RCNN-Alexnet with SOW-CO are less when compared to the

RCNN-Alexnet without SOW-CO. The optimization of weight using the sparsity is used

to optimize the IFM’s sparseness and weight parameter.

Figure 14. Graphical illustration of weight size for VGG19.

An evaluation of sparseness of the IFM and weight parameter proportion for RCNN-
Alexnet with and without SOW-CO is shown in Table 5. The graphical illustrations of
the IFM’s sparseness and weight parameter proportion for RCNN-Alexnet are shown in
Figures 15 and 16, respectively. This analysis shows that the IFM’s sparseness and weight
parameter proportion of RCNN-Alexnet with SOW-CO are less when compared to the
RCNN-Alexnet without SOW-CO. The optimization of weight using the sparsity is used to
optimize the IFM’s sparseness and weight parameter.

Table 5. Analysis of sparseness of the IFM and weight parameter proportion for Alexnet.

Alexnet Layers
Sparseness of the IFM Weight Parameter Proportion

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 0.11 0.05 0.21 0.14
conv 2 0.19 0.10 0.37 0.23
conv 3 0.37 0.18 0.44 0.30
conv 4 0.41 0.33 0.58 0.39
conv 5 0.59 0.47 0.60 0.47

fc1 0.65 0.51 0.83 0.61
fc2 0.77 0.69 0.89 0.78
fc3 0.90 0.82 0.93 0.88

Electronics 2022, 11, x FOR PEER REVIEW 15 of 22

Table 5. Analysis of sparseness of the IFM and weight parameter proportion for Alexnet.

Alexnet

Layers

Sparseness of the IFM Weight Parameter Proportion

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 0.11 0.05 0.21 0.14

conv 2 0.19 0.10 0.37 0.23

conv 3 0.37 0.18 0.44 0.30

conv 4 0.41 0.33 0.58 0.39

conv 5 0.59 0.47 0.60 0.47

fc1 0.65 0.51 0.83 0.61

fc2 0.77 0.69 0.89 0.78

fc3 0.90 0.82 0.93 0.88

Figure 15. Graphical illustration of IFM’s sparseness for Alexnet.

Figure 16. Graphical illustration of weight parameter proportion for Alexnet.

Table 6 shows the analysis of sparseness of the IFM and weight parameter proportion

for RCNN-VGG16 with and without SOW-CO. Additionally, the comparison of feature

map size and weight size for IFM’s sparseness and weight parameter proportion are

shown in Figures 17 and 18, respectively. This analysis shows that the IFM’s sparseness

and weight parameter proportion of the RCNN with SOW-CO are less when compared to

the RCNN without SOW-CO. The IFM’s sparseness and weight parameter proportion are

increased because of the CNN without any convolutional and weight optimization.

Figure 15. Graphical illustration of IFM’s sparseness for Alexnet.

Electronics 2022, 11, 1653 14 of 20

Electronics 2022, 11, x FOR PEER REVIEW 15 of 22

Table 5. Analysis of sparseness of the IFM and weight parameter proportion for Alexnet.

Alexnet

Layers

Sparseness of the IFM Weight Parameter Proportion

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 0.11 0.05 0.21 0.14

conv 2 0.19 0.10 0.37 0.23

conv 3 0.37 0.18 0.44 0.30

conv 4 0.41 0.33 0.58 0.39

conv 5 0.59 0.47 0.60 0.47

fc1 0.65 0.51 0.83 0.61

fc2 0.77 0.69 0.89 0.78

fc3 0.90 0.82 0.93 0.88

Figure 15. Graphical illustration of IFM’s sparseness for Alexnet.

Figure 16. Graphical illustration of weight parameter proportion for Alexnet.

Table 6 shows the analysis of sparseness of the IFM and weight parameter proportion

for RCNN-VGG16 with and without SOW-CO. Additionally, the comparison of feature

map size and weight size for IFM’s sparseness and weight parameter proportion are

shown in Figures 17 and 18, respectively. This analysis shows that the IFM’s sparseness

and weight parameter proportion of the RCNN with SOW-CO are less when compared to

the RCNN without SOW-CO. The IFM’s sparseness and weight parameter proportion are

increased because of the CNN without any convolutional and weight optimization.

Figure 16. Graphical illustration of weight parameter proportion for Alexnet.

Table 6 shows the analysis of sparseness of the IFM and weight parameter proportion
for RCNN-VGG16 with and without SOW-CO. Additionally, the comparison of feature
map size and weight size for IFM’s sparseness and weight parameter proportion are shown
in Figures 17 and 18, respectively. This analysis shows that the IFM’s sparseness and weight
parameter proportion of the RCNN with SOW-CO are less when compared to the RCNN
without SOW-CO. The IFM’s sparseness and weight parameter proportion are increased
because of the CNN without any convolutional and weight optimization.

Table 6. Analysis of sparseness of the IFM and weight parameter proportion for VGG16.

VGG16 Layers
Sparseness of the IFM Weight Parameter Proportion

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 0.09 0.04 0.11 0.08
conv 2 0.12 0.10 0.18 0.12
conv 3 0.15 0.12 0.27 0.19
conv 4 0.24 0.19 0.33 0.27
conv 5 0.29 0.24 0.39 0.31
conv 6 0.31 0.25 0.46 0.38
conv 7 0.33 0.29 0.50 0.44
conv 8 0.41 0.37 0.51 0.46
conv 9 0.47 0.40 0.59 0.52

conv 10 0.54 0.44 0.67 0.55
conv 11 0.61 0.53 0.72 0.67
conv 12 0.66 0.60 0.75 0.70
conv 13 0.72 0.67 0.77 0.70

fc1 0.89 0.77 0.85 0.76
fc2 0.93 0.80 0.90 0.83
fc3 0.97 0.81 0.96 0.85

An evaluation of sparseness of the IFM and weight parameter proportion for RCNN-
VGG19 with and without SOW-CO is shown in Table 7. The graphical illustrations of
the IFM’s sparseness and weight parameter proportion for RCNN-VGG19 are shown in
Figures 19 and 20, respectively. This analysis shows that the IFM’s sparseness and weight
parameter proportion of RCNN-VGG19 with SOW-CO are less when compared to the
RCNN-VGG19 without SOW-CO.

Electronics 2022, 11, 1653 15 of 20

Electronics 2022, 11, x FOR PEER REVIEW 16 of 22

Table 6. Analysis of sparseness of the IFM and weight parameter proportion for VGG16.

VGG16

Layers

Sparseness of the IFM Weight Parameter Proportion

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 0.09 0.04 0.11 0.08

conv 2 0.12 0.10 0.18 0.12

conv 3 0.15 0.12 0.27 0.19

conv 4 0.24 0.19 0.33 0.27

conv 5 0.29 0.24 0.39 0.31

conv 6 0.31 0.25 0.46 0.38

conv 7 0.33 0.29 0.50 0.44

conv 8 0.41 0.37 0.51 0.46

conv 9 0.47 0.40 0.59 0.52

conv 10 0.54 0.44 0.67 0.55

conv 11 0.61 0.53 0.72 0.67

conv 12 0.66 0.60 0.75 0.70

conv 13 0.72 0.67 0.77 0.70

fc1 0.89 0.77 0.85 0.76

fc2 0.93 0.80 0.90 0.83

fc3 0.97 0.81 0.96 0.85

Figure 17. Graphical illustration of IFM’s sparseness for VGG16. Figure 17. Graphical illustration of IFM’s sparseness for VGG16.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 22

Figure 18. Graphical illustration of weight parameter proportion for VGG16.

An evaluation of sparseness of the IFM and weight parameter proportion for RCNN-

VGG19 with and without SOW-CO is shown in Table 7. The graphical illustrations of the

IFM’s sparseness and weight parameter proportion for RCNN-VGG19 are shown in Fig-

ures 19 and 20, respectively. This analysis shows that the IFM’s sparseness and weight

parameter proportion of RCNN-VGG19 with SOW-CO are less when compared to the

RCNN-VGG19 without SOW-CO.

Table 7. Analysis of sparseness of the IFM and weight parameter proportion for VGG19.

VGG19

Layers

Sparseness of the IFM Weight Parameter Proportion

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 0.12 0.08 0.10 0.07

conv 2 0.17 0.11 0.14 0.09

conv 3 0.20 0.17 0.16 0.10

conv 4 0.24 0.21 0.24 0.16

conv 5 0.29 0.24 0.29 0.21

conv 6 0.33 0.28 0.35 0.27

conv 7 0.38 0.33 0.39 0.33

conv 8 0.47 0.39 0.43 0.38

conv 9 0.55 0.46 0.48 0.41

conv 10 0.64 0.58 0.51 0.47

conv 11 0.68 0.61 0.55 0.49

conv 12 0.85 0.67 0.64 0.59

conv 13 0.89 0.74 0.77 0.63

fc1 0.92 0.80 0.82 0.67

fc2 0.94 0.81 0.89 0.72

fc3 0.97 0.83 0.94 0.77

Figure 18. Graphical illustration of weight parameter proportion for VGG16.

Table 7. Analysis of sparseness of the IFM and weight parameter proportion for VGG19.

VGG19 Layers
Sparseness of the IFM Weight Parameter Proportion

without SOW-CO with SOW-CO without SOW-CO with SOW-CO

conv 1 0.12 0.08 0.10 0.07
conv 2 0.17 0.11 0.14 0.09
conv 3 0.20 0.17 0.16 0.10
conv 4 0.24 0.21 0.24 0.16
conv 5 0.29 0.24 0.29 0.21
conv 6 0.33 0.28 0.35 0.27
conv 7 0.38 0.33 0.39 0.33
conv 8 0.47 0.39 0.43 0.38
conv 9 0.55 0.46 0.48 0.41

conv 10 0.64 0.58 0.51 0.47
conv 11 0.68 0.61 0.55 0.49
conv 12 0.85 0.67 0.64 0.59
conv 13 0.89 0.74 0.77 0.63

fc1 0.92 0.80 0.82 0.67
fc2 0.94 0.81 0.89 0.72
fc3 0.97 0.83 0.94 0.77

Electronics 2022, 11, 1653 16 of 20Electronics 2022, 11, x FOR PEER REVIEW 18 of 22

Figure 19. Graphical illustration of IFM’s sparseness for VGG19.

Figure 20. Graphical illustration of weight parameter proportion for VGG19.

The FPGA performances of RCNN are analyzed in terms of BRAM, DSP, LUT, slices,

delay, power, and accuracy. Here, the performances are analyzed for the RCNN with and

without SOW-CO architecture. Tables 8–10 show the analysis of FPGA performances for

the AlexNet, VGG16, and VGG19, respectively. From the analysis, it is clear that the

RCNN with SOW-CO architecture provides better performance than the RCNN without

SOW-CO in terms of accuracy and execution time. The power consumption is minimized

by using the data reuse accomplished in the RCNN with SOW-CO. Moreover, the loop

unrolling used in the convolutional optimization helps to minimize the delay for the

RCNN with SOW-CO.

Figure 19. Graphical illustration of IFM’s sparseness for VGG19.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 22

Figure 19. Graphical illustration of IFM’s sparseness for VGG19.

Figure 20. Graphical illustration of weight parameter proportion for VGG19.

The FPGA performances of RCNN are analyzed in terms of BRAM, DSP, LUT, slices,

delay, power, and accuracy. Here, the performances are analyzed for the RCNN with and

without SOW-CO architecture. Tables 8–10 show the analysis of FPGA performances for

the AlexNet, VGG16, and VGG19, respectively. From the analysis, it is clear that the

RCNN with SOW-CO architecture provides better performance than the RCNN without

SOW-CO in terms of accuracy and execution time. The power consumption is minimized

by using the data reuse accomplished in the RCNN with SOW-CO. Moreover, the loop

unrolling used in the convolutional optimization helps to minimize the delay for the

RCNN with SOW-CO.

Figure 20. Graphical illustration of weight parameter proportion for VGG19.

The FPGA performances of RCNN are analyzed in terms of BRAM, DSP, LUT, slices,
delay, power, and accuracy. Here, the performances are analyzed for the RCNN with
and without SOW-CO architecture. Tables 8–10 show the analysis of FPGA performances
for the AlexNet, VGG16, and VGG19, respectively. From the analysis, it is clear that the
RCNN with SOW-CO architecture provides better performance than the RCNN without
SOW-CO in terms of accuracy and execution time. The power consumption is minimized
by using the data reuse accomplished in the RCNN with SOW-CO. Moreover, the loop
unrolling used in the convolutional optimization helps to minimize the delay for the RCNN
with SOW-CO.

Table 8. Analysis of FPGA performances for AlexNet.

FPGA Performances
AlexNet

without SOW-CO with SOW-CO

BRAM 54.3 40.1
DSP 210 157
LUT 6500 5150
Slices 450 300

Delay(µs) 90 50
Power (W) 5.67 1.01

Accuracy (%) 93.14 99.52
Execution Time (ms) 1.382 0.948

Electronics 2022, 11, 1653 17 of 20

Table 9. Analysis of FPGA performances for VGG16.

FPGA Performances
VGG16

without SOW-CO with SOW-CO

BRAM 57.01 43.14
DSP 220 160
LUT 6590 5180
Slices 500 310

Delay(µs) 94 53
Power (W) 6.1 1.03

Accuracy (%) 92.11 99.41
Execution Time (ms) 0.927 0.756

Table 10. Analysis of FPGA performances for VGG19.

FPGA Performances
VGG19

without SOW-CO with SOW-CO

BRAM 54.22 42.02
DSP 210 140
LUT 6410 5120
Slices 450 320

Delay(µs) 85 49
Power (W) 5.94 1.00

Accuracy (%) 93.94 99.5
Execution Time (ms) 0.835 0.698

5.2. Comparative Analysis

The efficiency of the RCNN-SOW-CO architecture is evaluated by comparing it with
recent CNN architectures. Existing architectures used to evaluate the RCNN-SOW-CO are
OIDSCNN [17] and DPR-NN [23]. Here, the comparison is made with different FPGA devices,
such as Zynq-7020 and Virtex-7. The comparative analyses of the Zynq-7020 and Virtex-7 for
RCNN-SOW-CO architecture are shown in Tables 11 and 12, respectively. Figure 21 shows
the comparison of BRAM for Zynq-7020. The proposed RCNN-SOW-CO is analyzed under
various architecture layers, which are: AlexNet, VGG16, and VGG19. While considering the
AlexNet layer, it attains BRAM performance of 40.1, 157 DSP, and 5150 LUTs. Meanwhile, the
VGG16 layer achieves the BRAM performance of 43.14, 160 DSP, and 5180 LUTs. Then, finally,
VGG19 attains 42.02 BRAM, 140 DSP, and 5120 LUTs. These details are clearly tabulated below
in Table 11. This comparative analysis shows that the RCNN-SOW-CO architecture achieves a
better performance than LP-CNN [20] under GoogLeNet case study for Virtex-7. A number
of calculations in the RCNN are decreased by using the sparse matrix and convolutional
optimization, which resulted in less hardware resources than the LP-CNN [20] for Virtex-7,
which are tabulated in Table 12. Figure 22 shows the comparative analysis of power for
Virtex-7. For the analysis, both the proposed RCNN-SOW-CO and existing LP-CNN [20]
are processed with NVIDIA GPU. Alternatively, the spiking PE does not employ any DSPs,
since there is no increase in spiking layers. Although, it takes additional hardware resources,
such as LUTs. From the analysis, it is concluded that the proposed RCNN-SOW-CO with
NVIDIA GPU achieves lower power consumption of 1.15 W when compared with the existing
LP-CNN [20], which consumes 3.92 W.

Table 11. Comparative analysis of RCNN-SOW-CO architecture for Zynq-7020.

Performances OIDSCNN [17] DPR-NN [23]
RCNN-SOW-CO

AlexNet VGG16 VGG19

BRAM 25.5 58.5 40.1 43.14 42.02
DSP 219 167 157 160 140
LUT 7986 24980 5150 5180 5120

Electronics 2022, 11, 1653 18 of 20

Table 12. Comparative analysis of RCNN-SOW-CO architecture for Virtex-7.

Performances LP-CNN [20] RCNN-SOW-CO

BRAM 1134 938.43
LUT 407,290 406,690

Power (W) 3.92 1.15

1

Figure 21. Comparison of BRAM. OIDSCNN [17], DPR-NN [23].

1

Figure 22. Comparison of power for Virtex-7. LP-CNN [20].

Electronics 2022, 11, 1653 19 of 20

6. Conclusions

In this paper, the RCNN accelerator is proposed over the FPGA, along with weight
optimization and convolutional optimization. The configuration instructions saved in
the DDR are used to reconfigure the RCNN with the configuration register. Data access
among the on-chip buffer and DDR are minimized by using the special functional layer,
which includes a pooling, BN, and activation. The power utilized by this RCNN-SOW-
CO is minimized in two ways; one is the reduction in on-chip data movement and the
other one is a data reuse approach accomplished in the RCNN accelerator. Here, an
number of computations used in the RCNN accelerator are minimized based on the matrix
representation of sparse weight. Moreover, the loop unrolling used in the convolutional
optimization is used to increase the RCNN accelerator’s speed. From the results, it is
concluded that the RCNN-SOW-CO provides the improved performances compared to the
OIDSCNN, LP-CNN, and DPR-NN. The LUT of RCNN-SOW-CO with AlexNet designed
in the Zynq-7020 is 5150, which is less than the OIDSCNN and DPR-NN. In the future, the
proposed RCNN accelerator can be utilized to perform faster real-time object detection.

Author Contributions: The paper investigation, resources, data curation, writing—original draft
preparation, writing—review and editing, and visualization were conducted by K.M.V.G. and S.M.
The paper conceptualization and software were conducted by A.A. The validation, formal analysis,
methodology, supervision, project administration, and funding acquisition of the version to be
published were conducted by S.R. and P.B.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in MNIST dataset
at doi: 10.1109/MSP.2012.2211477, reference number [24].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and Explainability of Artificial Intelligence in Medicine.

WIREs Data Min. Knowl. Discov. 2019, 9, e1312. [CrossRef] [PubMed]
2. Zhang, X.; Dahu, W. Application of Artificial Intelligence Algorithms in Image Processing. J. Vis. Commun. Image Represent. 2019,

61, 42–49. [CrossRef]
3. Shymkovych, V.; Telenyk, S.; Kravets, P. Hardware Implementation of Radial-Basis Neural Networks with Gaussian Activation

Functions on FPGA. Neural Comput. Appl. 2021, 33, 9467–9479. [CrossRef]
4. Subashini, M.M.; Sahoo, S.K.; Sunil, V.; Easwaran, S. A Non-Invasive Methodology for the Grade Identification of Astrocytoma

Using Image Processing and Artificial Intelligence Techniques. Expert Syst. Appl. 2016, 43, 186–196. [CrossRef]
5. Levi, T.; Nanami, T.; Tange, A.; Aihara, K.; Kohno, T. Development and Applications of Biomimetic Neuronal Networks Toward

BrainMorphic Artificial Intelligence. IEEE Trans. Circuits Syst. II 2018, 65, 577–581. [CrossRef]
6. Ghani, A.; See, C.H.; Sudhakaran, V.; Ahmad, J.; Abd-Alhameed, R. Accelerating Retinal Fundus Image Classification Using

Artificial Neural Networks (ANNs) and Reconfigurable Hardware (FPGA). Electronics 2019, 8, 1522. [CrossRef]
7. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A Complete Design Flow for Mapping

CNN Onto Embedded FPGA. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 35–47. [CrossRef]
8. Duarte, J.; Harris, P.; Hauck, S.; Holzman, B.; Hsu, S.-C.; Jindariani, S.; Khan, S.; Kreis, B.; Lee, B.; Liu, M.; et al. FPGA-Accelerated

Machine Learning Inference as a Service for Particle Physics Computing. Comput. Softw. Big Sci. 2019, 3, 1–15. [CrossRef]
9. Liang, S.; Yin, S.; Liu, L.; Luk, W.; Wei, S. FP-BNN: Binarized Neural Network on FPGA. Neurocomputing 2018, 275, 1072–1086.

[CrossRef]
10. Wang, X.; Li, C.; Song, J. Motion Image Processing System Based on Multi Core FPGA Processor and Convolutional Neural

Network. Microprocess. Microsyst. 2021, 82, 103923. [CrossRef]
11. Teodoro, A.A.M.; Gomes, O.S.M.; Saadi, M.; Silva, B.A.; Rosa, R.L.; Rodríguez, D.Z. An FPGA-Based Performance Evaluation of

Artificial Neural Network Architecture Algorithm for IoT. Wireless Pers. Commun. 2021, 1–32. [CrossRef]
12. Sarić, R.; Jokić, D.; Beganović, N.; Pokvić, L.G.; Badnjević, A. FPGA-Based Real-Time Epileptic Seizure Classification Using

Artificial Neural Network. Biomed. Signal Process. Control 2020, 62, 102106. [CrossRef]
13. Liu, Q.; Liu, J.; Sang, R.; Li, J.; Zhang, T.; Zhang, Q. Fast Neural Network Training on FPGA Using Quasi-Newton Optimization

Method. IEEE Trans. VLSI Syst. 2018, 26, 1575–1579. [CrossRef]
14. Novickis, R.; Justs, D.J.; Ozols, K.; Greitāns, M. An Approach of Feed-Forward Neural Network Throughput-Optimized

Implementation in FPGA. Electronics 2020, 9, 2193. [CrossRef]

http://doi.org/10.1002/widm.1312
http://www.ncbi.nlm.nih.gov/pubmed/32089788
http://doi.org/10.1016/j.jvcir.2019.03.004
http://doi.org/10.1007/s00521-021-05706-3
http://doi.org/10.1016/j.eswa.2015.08.036
http://doi.org/10.1109/TCSII.2018.2824827
http://doi.org/10.3390/electronics8121522
http://doi.org/10.1109/TCAD.2017.2705069
http://doi.org/10.1007/s41781-019-0027-2
http://doi.org/10.1016/j.neucom.2017.09.046
http://doi.org/10.1016/j.micpro.2021.103923
http://doi.org/10.1007/s11277-021-08566-1
http://doi.org/10.1016/j.bspc.2020.102106
http://doi.org/10.1109/TVLSI.2018.2820016
http://doi.org/10.3390/electronics9122193

Electronics 2022, 11, 1653 20 of 20

15. Zairi, H.; Kedir Talha, M.; Meddah, K.; Ould Slimane, S. FPGA-Based System for Artificial Neural Network Arrhythmia
Classification. Neural Comput. Appl. 2020, 32, 4105–4120. [CrossRef]

16. Pang, W.; Wu, C.; Lu, S. An Energy-Efficient Implementation of Group Pruned CNNs on FPGA. IEEE Access 2020, 8, 217033–217044.
[CrossRef]

17. Mo, Z.; Luo, D.; Wen, T.; Cheng, Y.; Li, X. FPGA Implementation for Odor Identification with Depthwise Separable Convolutional
Neural Network. Sensors 2021, 21, 832. [CrossRef]

18. Li, Z.; Zhu, C.; Gao, Y.-L.; Wang, Z.-K.; Wang, J. AlphaGo Policy Network: A DCNN Accelerator on FPGA. IEEE Access 2020, 8,
203039–203047. [CrossRef]

19. Véstias, M. Efficient Design of Pruned Convolutional Neural Networks on FPGA. J. Signal Process. Syst. 2021, 93, 531–544.
[CrossRef]

20. El-Maksoud, A.J.A.; Ebbed, M.; Khalil, A.H.; Mostafa, H. Power Efficient Design of High-Performance Convolutional Neural
Networks Hardware Accelerator on FPGA: A Case Study with GoogLeNet. IEEE Access 2021, 9, 151897–151911. [CrossRef]

21. Zhao, L. Light Music Online System Based on FPGA and Convolutional Neural Network. Microprocess. Microsyst. 2021, 80, 103556.
[CrossRef]

22. You, W.; Wu, C. RSNN: A Software/Hardware Co-Optimized Framework for Sparse Convolutional Neural Networks on FPGAs.
IEEE Access 2021, 9, 949–960. [CrossRef]

23. Irmak, H.; Corradi, F.; Detterer, P.; Alachiotis, N.; Ziener, D. A Dynamic Reconfigurable Architecture for Hybrid Spiking and
Convolutional FPGA-Based Neural Network Designs. JLPEA 2021, 11, 32. [CrossRef]

24. Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal Process.
Mag. 2012, 29, 141–142. [CrossRef]

http://doi.org/10.1007/s00521-019-04081-4
http://doi.org/10.1109/ACCESS.2020.3041464
http://doi.org/10.3390/s21030832
http://doi.org/10.1109/ACCESS.2020.3023739
http://doi.org/10.1007/s11265-020-01606-2
http://doi.org/10.1109/ACCESS.2021.3126838
http://doi.org/10.1016/j.micpro.2020.103556
http://doi.org/10.1109/ACCESS.2020.3047144
http://doi.org/10.3390/jlpea11030032
http://doi.org/10.1109/MSP.2012.2211477

	Introduction
	Related Work
	Problem Statement
	Overview of Architecture
	Architecture of Reconfigurable PE Used for Convolution
	Sparseness Optimization for Weight
	Convolutional Optimization
	Loop Unrolling
	Loop Tiling

	Results and Discussion
	Performance Analysis of RCNN-SOW-CO Architecture
	Comparative Analysis

	Conclusions
	References

