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Abstract: Perineural invasion (PNI), a sign of poor diagnosis and tumor metastasis, is common
in a variety of malignant tumors. The infiltrating patterns and morphologies of tumors vary by
organ and histological diversity, making PNI detection difficult in biopsy, which must be performed
manually by pathologists. As the diameters of PNI nerves are measured on a millimeter scale, the
PNI region is extremely small compared to the whole pathological image. In this study, an efficient
deep learning-based method is proposed for detecting PNI regions in multiple types of cancers using
only PNI annotations without detailed segmentation maps for each nerve and tumor cells obtained by
pathologists. The key idea of the proposed method is to train the adopted deep learning model, U-Net,
to capture the boundary regions where two features coexist. A boundary dilation method and a loss
combination technique are proposed to improve the detection performance of PNI without requiring
full segmentation maps. Experiments were conducted with various combinations of boundary
dilation widths and loss functions. It is confirmed that the proposed method effectively improves
PNI detection performance from 0.188 to 0.275. Additional experiments were also performed on
normal nerve detection to validate the applicability of the proposed method to the general boundary
detection tasks. The experimental results demonstrate that the proposed method is also effective for
general tasks, and it improved nerve detection performance from 0.511 to 0.693.

Keywords: deep learning; U-Net; boundary detection; perineural invasion detection; histopathological
image

1. Introduction

Perineural invasion (PNI), an important pathological feature of many malignancies,
is the attachment of tumor cells to nerves [1–3]. In many cancers, the detection of PNI
indicates a high risk of local recurrence and reduced survival [4,5]. The diagnostic criterion
for the pathological diagnosis of PNI is cancer surrounding at least 33% of the nerve, which
is detected by pathologists in microscopic examinations of tissue specimens [6,7]. The
detection of PNI in small nerves on glass slides is a labor-intensive task [8]. Moreover,
because tumor cells exhibit different morphologies depending on histological types and
organs, and the infiltrating patterns of tumor cells are highly variable, it is difficult to model
cancer in all organs [9,10].

Deep learning approaches have recently shown remarkable performance in various
medical imaging applications [11,12]. Previous studies applied deep learning methods
to histopathological images (whole slide images, WSIs). A detect-then-segment frame-
work [13] was proposed inspired by the Mask-R-convolutional neural network (CNN) [14]
for glomerular segmentation. A new framework for colonoscopy tissue segmentation
and classification was also proposed along with a two-stage pipeline with multi-instance
approach for gastric image segmentation [15]. Other advances include the design of a deep
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CNN to detect clinical heart failure [16], a transfer-learning-based framework [17], and a
weakly supervised learning method for lung cancer classification [18]. Because of the high
dimensionality of WSI, almost all previous studies utilizing deep learning on WSI have
extracted patches for benign and malignant lesions to train deep learning models. However,
to extract patches from a WSI, malignant and benign labels are required. This annotation
is usually performed by pathologists, which is labor-intensive and time-consuming, and
it is almost impossible to accurately annotate pixel-by-pixel. As a form of PNI is when
tumor cells invade or touch nerves, annotations for all tumor and nerve cells are required
for PNI detection.

In this study, an efficient approach is proposed for PNI detection in multiple organ
cancers of WSI using U-Net [19], a deep learning model for image segmentation. The
proposed method does not require tumor and nerve information and efficiently detects
PNI with only a small amount of PNI annotation. The deep learning model is trained
to model the patterns around the boundary between two different regions using patches
containing both tumor and nerve cells. To exploit the information near the PNI, a boundary
dilation method is proposed to expand the boundary area between the tumor and nerve
cells. Experiments were conducted with various combinations of boundary dilation widths
and loss functions to prove that our proposed method should effectively improve the PNI
detection performance. Experiments were also conducted in an additional study on nerve
detection, and the results show that our method can be utilized for general boundary
detection tasks. The contributions of this study are summarized as follows:

3 A deep learning-based method is proposed to efficiently detect PNI region with a
relatively small amount of data with various types of cancers. The proposed method
can learn a neural network model without detailed labels for the nerve and tumor
cells. Labeling cells requires intensive and time-consuming labor from well-trained
physicians. Instead, only the boundary lines between those cells are used to learn the
models.

3 A boundary dilation method and a loss combination technique are proposed to
improve the detection performance of PNI. The expanded regions by the proposed
dilation method help model the visual transitional patterns from the nerve to the
tumor cells. A new loss function is also proposed to better learn the neural network
model. Experimental results confirm that the proposed method effectively improves
PNI detection performance from 0.188 to 0.275.

3 We validate that the proposed method can be utilized in many other medical problems
that are involved with boundary detection tasks. According to the experimental results
for nontumor and nerve cells boundary detection, the proposed method is effective
for general boundary detection, and it showed improved detection performance from
0.551 to 0.693.

2. Related Work

The detection of PNI in multiple cancer types was originally proposed by the pathol-
ogy AI platform (PAIP) 2021 challenge [20]. In this challenge, top 10 teams according to the
attained detection performances are selected, and their methods and results are presented
in the challenge website. The target tasks of the challenge are PNI classification and PNI
region segmentation, and most top 10 ranked methods adopt two-stage approaches: classi-
fication followed by segmentation. Patches containing PNI junctions are first extracted by a
classifier, and then the input image is partitioned into cancer and nerve cell regions using a
segmentation model. An alternate method is finding tumor and nerve areas independently
to identify their boundary as PNI. One of the top 10 teams proposed a feature pyramid net-
work (FPN) for PNI segmentation [21]. The multiscale feature maps from FPN layers were
aggregated to obtain more precise segmentation masks [21]. Another method is applying
PNI classification, tumor and nerve segmentation, and PNI detection using hand-crafted
features and a random forest classifier [22]. Because the PAIP challenge does not provide
the final evaluation set to rank the submitted codes, most of the methods reported their
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performance with the released training data only. Therefore, the performances reported in
those papers are different from the performance indices shown on the challenge website.
Both of the previous methods utilized all of the annotation information such as nerve
regions, tumor cell regions, nontumor cells, and the PNI boundary lines. However, annotat-
ing all of these kinds of information on the raw whole-slide images requires intensive labor
from well-trained pathologists. Hence, complete training data are not always available.
The proposed method is aimed at developing a method requiring only PNI junction lines.
Instead of using full annotation, the boundary areas are expanded to model the transitional
changes between nerve and tumor cells. The proposed model successfully detects the PNI
junctions.

3. Methods

We propose a deep learning-based method to efficiently detect PNI junctions using
PNI annotations only. A boundary dilation method and a loss combination technique are
proposed to improve the detection performance. As mentioned in Section 2, it is hard to
make a fair comparison because the input features and target information are different.
However, the proposed method is applicable to many other problems without sophisticated,
hand-drawn segmentation maps for the targets. The proposed method is also applicable to
non-PNI problems, such as normal nerve detection.

3.1. Proposed Boundary Dilation Method

The characteristic histopathological observation of PNI involves the nerve cells in-
filtrated or enclosed by tumor cells. The detection of PNI requires information on the
nerve cells, the tumor cells surrounding the nerve, and PNI. The annotation is a manual,
labor-intensive task that must be performed by pathologists. The proposed method does
not require tumor and nerve annotations for PNI detection. Only PNI junction annotation
is used to detect PNI. Therefore, less annotation labor is required, and the detection perfor-
mance is less affected by human errors. Nerve and tumor cells inevitably coexist around
the PNI. The main purpose of the proposed method is to automatically learn the boundary
patterns between the nerve and tumor cell regions, instead of the exact locations of those
cells. In other words, the model learns to capture the boundary between the nerves and
tumors using input patches that contain both types of cells. Raw annotations for PNI are
usually provided by one-pixel width lines that are hardly visible in the raw high-resolution
WSI. In Figure 1, the red box in the leftmost image is magnified, and the blue boxes in the
second left image are magnified again to clearly visualize the PNI. As shown in Figure 1,
the number of PNI pixels is too small compared to that of the whole image. Moreover, the
hand-labeled ground-truth PNI lines are often inaccurate because they can be biased by
individual pathologists. To overcome these limitations, a boundary dilation method that
expands the boundary between two different regions is proposed to exploit the information
near PNI and compensate for human error in PNI annotation.
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The proposed boundary dilation method is conceptually illustrated in Figure 2. The
raw one-pixel boundary line expands to the left and right by a variable width factor. For
example, if the width is set to 1, the one-pixel raw boundary will expand by 1 pixel in both
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the left and the right directions. Similarly, if the dilation width is set to 2, the one-pixel raw
boundary will expand two pixels to the left and two pixels to the right, on the basis of the
raw boundary pixel. We then split the whole WSI image into smaller patches for efficient
model training. Around the dilated PNI annotations, a sliding window scheme with 50%
overlap is used to extract patches for PNI and non-PNI of size (512 × 512). Consequently,
there are two classes of extracted patches: PNI containing both nerves and tumors, and the
remaining non-PNI.
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Figure 2. Proposed boundary dilation method and patch extraction procedure.

Figure 3 compares two different dilation widths for the same PNI annotations with the
widths set to 1 (top row) and 2 (bottom row). The green lines represent PNI annotations with
expansions to the left and right. As mentioned in Section 1, each PNI is characterized by
different morphology, scale, and infiltrating patterns. In some cases, a nerve is completely
surrounded by tumor cells, whereas, in other cases, tumor cells partially touch the nerve.
From the data provided for challenge, it can be shown that the raw PNI annotations are
usually generated with bias toward tumor cells. By expanding the PNI boundary, more
information becomes available on the area near the PNI, thus avoiding the inaccuracies
incurred by human error or biases.
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3.2. End-to-End PNI Detection and Segmentation with Combined Loss

The segmentation model can be trained with only segmentation loss. In this task, the
segmentation loss that is calculated from true PNI mask and predicted PNI mask used to
train the PNI segmentation model. We use only the PNI boundary labels of the training
data. The model trained with such a small area of the dataset may not be robust for other,
non-boundary areas. The existence of the PNI boundary in a patch is determined by the
value of 2D global max pooling. We propose combined loss for the segmentation and
classification targets. The combined loss functions can be expressed as follows:

Lseg = D(M(x), y), Lcls = D(P(M(x)), P(y)), Lacc = Lseg + Lcls, (1)

where x, y, M, P, and D are the input patch, ground-truth patch, PNI segmentation model,
2D global max pooling operator, and loss function, respectively.

The segmentation masks for the PNI regions were obtained by U-Net [19]. U-Net is a
U-shaped architecture consisting of a contracting path as the encoder and an expansive path
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as the decoder. EfficientNet-b2 [23] was adopted as the encoder of U-Net with pretrained
ImageNet [24] weights for faster and better convergence. The contracting path maps the
input to a context vector, and the expansive path yields a high-resolution segmentation
map from the context vector. The output segmentation map represents the location of the
PNI on a given input patch and indicates whether the input patch contains PNI. Because
the segmentation map consists of binarized PNI pixels of 1 and non-PNI pixels of 0, the
existence of PNI in the input patch can be determined by the maximum value of the
segmentation map. That is, if the segmentation map contains a pixel value of 1, this patch
includes PNI, and this patch is classified as a PNI class. If the segmentation map does
not have a pixel value of 1, the patch does not contain PNI. To improve PNI detection
performance, the combined loss function proposed in this study is expressed as the sum of
Dice and cross-entropy losses. The Dice coefficient, a loss function of PNI segmentation,
measures the similarity between the predicted segmentation map and the ground-truth
boundary region map. By applying the global max pooling layer to the output segmentation
map, the cross-entropy loss between the maximum value of the predicted segmentation
map and the ground truth is calculated such that the cross-entropy measures the difference
between the predicted class and the ground-truth class. This combined loss allows our
method to simultaneously perform PNI detection and segmentation, which helps improve
individual performances by providing more information between the segmentation and
ground-truth maps (Figure 4).
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Figure 4. Main framework for PNI detection and segmentation with combined loss.

Specifically, the input patches are labeled with either 0 or 1 by the global max pooling
of the pixel labels. If there exists at least one pixel labeled as boundary pixel, the patch is
labeled with 1. Otherwise, it is labeled with 0. This can be achieved by two-dimensional
global max pooling. The pixel values are 0 or 1; thus, the global max pooling value of
all patch pixels is 1 if there exists at least one boundary pixel, as shown in Figure 5. The
boundary lines are dilated by a given factor. As shown in Figure 6, the original ground-
truth lines are expanded in four directions (up/down/left/right), and the boundary area is
expanded. The dilated region is then used as segmentation maps for the U-Net in Figure 4.
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4. Experimental Results
4.1. Dataset

The experimental dataset consisted of 150 WSIs scanned at 20×magnification with
the Leica Aperio AT2 scanner from patients histologically diagnosed with ductal adeno-
carcinoma or adenocarcinoma of the colorectum, prostate, and pancreatobiliary tract. All
scanned images of the colon, prostate, and pancreas were stained with hematoxylin and
eosin, and 50 WSIs were used per cancer type. Expert pathologists with more than 10 years
of experience annotated the boundary line of the nerve and tumor cells for pixel-level PNI.
For each cancer type, 50 WSIs were randomly split into 30/10/10 sets for training, valida-
tion, and testing, respectively. The raw resolution of WSI is approximately 50,000 × 60,000
for height × width. To train the deep learning model, smaller patches were extracted
through a sliding window with an overlap between nearby patches. As mentioned in
Section 3.1, the extracted PNI and non-PNI patches corresponded to with and without PNI,
respectively. The network was trained using all patches from three different organs, and
the numbers of PNI and non-PNI patches used in training the model were approximately
14,000 and 12,000, respectively.

4.2. Implementation Details

The experiments were conducted on an NVIDIA TITAN V GPU with CUDA 11.04
and cuDNN 8.0.5. The network was implemented using PyTorch [25] and a Python
library for image segmentation [26]. All input patches were normalized by dividing the
maximum pixel values. Random rotation augmentation was applied only to the training
set, and the hyperparameters for model training were selected on the basis of the validation
performance. U-Net was trained with EfficientNet-b2 as the backbone, the network was
optimized with the Adam optimizer with a learning rate of 1 × 10−4, and the maximum
number of iterations was set to 10,000.

4.3. Evaluation Metric

The PNI detection performance dist_score was evaluated using the F1-score based
on a specific distance metric determined by the pathologists. First, bounding boxes were
drawn around the ground-truth and predicted lines using an enlargement scale factor of
150%. When the bounding boxes of predicted lines overlapped the bounding box of the
ground-truth line, those particular lines were considered to be candidates for matched
ground truth lines (true positive, TP). The distance score was then calculated for each
ground-truth line and candidate line pairs. For each pixel along the source line A, the
minimum distance to target line B was calculated, and these minimum distances were
averaged and normalized based on the length of source line A.

avg_min_distab = avg_min_distab ∗ e
lengtha

γ , γ = 200, (2)
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where e
lengtha

γ is the normalization term. Similarly, avg_min_distba can be computed with
the source line as B and the target line as A, whereby the bidirectional_avg_min_dist is
calculated as follows:

bidirectional_avg_min_dist =
avg_min_distab + avg_min_distba

2
. (3)

Then, the line_iou_penalty was computed on the basis of the intersection-over-union
(IoU) for the ground-truth and candidate line after dilation.

line_iou_penaltyab = 1− {iou(dilation(a), dilation(b))}a, a = 8, (4)

where the dilation disc radius is 1. The final distance score is the bidirectional average of
the minimum distance with line overlap penalty.

dist_score = bidirectional_avg_min_dist ∗ line_iou_penaltyab. (5)

The predicted line with the lowest dist_score among the candidate lines, having
dist_score less than the maximum tolerated distance score of 10, was determined to be
clinically significant and considered as true positive (TP). The remaining candidate lines
with a dist_score of less than 10 were excluded from the false positive (FP) count. In cases
where the dist_score of a candidate line was larger than the tolerated value, the predicted
line was discarded, and the ground-truth line was left unmatched (false negative, FN).
Finally, the F1-score was computed based on the matching information, i.e., matched
ground-truth lines (TP), unmatched ground-truth lines (FN), and unmatched predicted
lines (FP). Figure 7 shows how the matching information is calculated from the evaluation
metric. One WSI has multiple PNI lines, and, at the WSI level, the F1-score is calculated
using matching information for each WSI.
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The F1-score is the harmonic mean of precision and recall. Precision is the number of
true positives divided by the number of predicted positives, and recall is the number of
true positives divided by the number of real positives.

F1-score = 2× precision× recall
precision + recall

, (6)

where Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(7)
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4.4. Qualitative and Quantitative Results

For the inference phase using the test sets, Otsu thresholding was used to eliminate
non-object regions, and 512 × 512 patches without overlaps were extracted [27]. The
predicted line masks for patches after Otsu thresholding were obtained and then combined
to obtain the PNI junction masks for the whole WSI. At the WSI level, simple postprocessing
was performed to remove noisy prediction lines and to link partially disconnected lines [28].
Lines with short length and low average pixel probability were removed, and the remaining
lines were dilated once and then eroded. Finally, another thresholding was applied on the
basis of the line length, and, as a result of our method, we acquired the PNI prediction
mask at the WSI level.

To evaluate the effectiveness of the proposed method for PNI detection, experiments
with various combinations of boundary dilation widths and loss functions were performed.
The F1-score measures the generalization ability of the PNI detection across three different
organs. Table 1 summarizes the average F1-scores on the test set. In PNI detection, the
combined loss improved the performance more than the boundary dilation. When using
combined loss with a line width of 1 for classification loss, the PNI detection performance
roughly improved from 0.18 to 0.25 for both segmentation losses of line widths of 1 and 2
(Table 1). The combined loss, which uses classification loss and segmentation loss together,
improves the performance by reducing the predicted mismatches (FP). Furthermore, the
results show that the combined loss with a line width of 2 for classification loss achieved
0.2566 and 0.2747 detection performance (a 50% improvement) for segmentation loss with
line widths of 1 and 2, respectively, significantly better than the model trained using only
segmentation loss. The combined loss with a line width of 2 for both segmentation and
classification achieved the best detection score, and these results validated the effectiveness
of our method for boundary dilation and combined loss.

Table 1. Average F1-score on test sets for PNI detection.

PNI Detection

F1-Score

Segmentation Loss
Only

Combined Loss
(Width = 1)

Combined Loss
(Width = 2)

Segmentation loss
(width = 1) 0.1877 0.2509 0.2566

Segmentation loss
(width = 2) 0.1878 0.2489 0.2747

Examples of PNI predictions for different cancer types are shown in Figure 8. The
lines colored in green are annotations made by pathologists, and the lines colored in red
are the prediction results from our method that achieved the best F1-score. Overlap of
the green and red lines indicates that the PNI was found correctly (matched ground truth;
TP). The presence of only a green line indicates that the PNI was not found (unmatched
ground truth; FN), and the presence of only a red line indicates that the PNI was predicted
incorrectly (unmatched prediction; FP). We also identified different morphologies of tumor
cells in different organs. These F1-scores may appear underwhelming in comparison to
those for other detection tasks. However, given the difficulty of the PNI detection task, our
result is comparable to that of ranked teams in the 2021 competition [20], even using only
PNI annotations.
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4.5. Additional Experiments: Normal Nerve Detection

To confirm that our method can be utilized for boundary detection tasks in general, a
supplementary study was conducted on nerve detection. In addition to PNI annotations,
nerve annotations were also provided as a closed curve. Because it is impractical to
annotate all nerves, annotated information is provided only for some nerves. On the basis
of the nerve boundary, input patches were extracted such that each patch simultaneously
contained two different regions inside and outside the nerve boundary. As in the previous
procedure, patches for three different organs were extracted using a sliding window scheme,
and approximately 10,500 patches were used both for nerve and for non-nerve patches to
train the model. The nerve patch represents a patch that contains a nerve boundary, as well
as both its inside and its outside areas, whereas the non-nerve patch represents a patch that
does not contain a nerve boundary.

The results show that our method can be efficiently applied for nerve detection
(Table 2). The configuration with width = 1 and segmentation loss was plain U-Net; thus, it
was taken as a baseline for the conventional methods. A significant performance improve-
ment was observed when boundary dilation was applied, achieving an approximately
20% performance improvement compared with using only segmentation loss. As with
PNI detection, the performance of combined loss with a line width of 2 achieved the best
detection score. Figure 9 shows examples of the predicted nerve boundaries for colon,
prostate, and pancreas cancers. The green lines are annotations made by pathologists, and
the red lines are the predicted results of our method, which achieved the best F1-score.
The morphology of nerves is simpler and similar to that of PNI; hence, better performance
was achieved.
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Table 2. Average F1-score on test sets for nerve detection.

PNI Detection

F1-Score

Segmentation Loss
Only

Combined Loss
(Width = 1)

Combined Loss
(Width = 2)

Segmentation loss
(width = 1) 0.5511 0.5299 0.5752

Segmentation loss
(width = 2) 0.6571 0.5602 0.6930
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5. Discussion and Conclusions

In this study, an efficient approach was proposed for perinueral invasion (PNI) de-
tection of three different types of cancers in whole-slide images (WSI). With a relatively
small amount of information, the proposed method efficiently detects PNI junctions when
compared to the conventional methods. The different morphologies and infiltrating pat-
terns of tumor cells depending on the organ and histological diversity make PNI detection
challenging in biopsy, which must be performed manually by pathologists. According to
the histopathological properties of PNI, most relevant studies have proposed a two-stage
approach in which PNI patches are first classified, and then PNI junctions are segmented.
This approach requires complete, low-level annotation on nerves, tumors, and PNI, leading
to a labor-intensive and time-consuming annotation task by well-trained pathologists.
However, our method can detect PNI efficiently using only labels for PNI boundary areas.
At the cost of performance, the human labor from well-trained professionals is significantly
reduced. However, the proposed method still requires human labeling for the boundary
area; hence, it is weakly supervised.

A U-Net was trained to find the boundary regions between two different cell types,
tumor, and nerve cells. Because the boundary regions in the WSIs are relatively small,
the information available for the PNI is very limited. To better exploit the information
near the boundary, a boundary dilation method and a loss combination technique were
proposed to improve PNI detection performance. By expanding the PNI boundary, more
information becomes available for the transition between nerve and tumor cells, thus
avoiding the inaccuracies incurred by human error or biases. In addition, the combined
loss allows the proposed deep neural networks to simultaneously perform PNI detection
and segmentation. The individual loss functions help to improve individual performances.

The experimental results show that the proposed method can efficiently extract the
PNI junctions without requiring complete annotations of tumor and nerve cells in the
original high-resolution image. The combined loss function improved the PNI detection
performance from approximately 0.18 to 0.25. In addition, the proposed boundary dilation
with the combined loss function showed the best detection performance of 0.2747. The
conventional methods showed much higher detection performances, but they used com-
plete labels for WSIs as training data. Because of the different configurations of test set, a
fair comparison with other studies was not possible; in fact, the final ranking score of the
challenge also includes the score of the pathologist’s qualitative evaluation. Consequently,
to verify that the proposed method is effective and can be utilized in general boundary
detection tasks, further experiments were performed on nerve detection tasks.
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The proposed boundary dilation and combined loss function also achieved significant
performance improvement in nerve detection tasks. A 20% performance improvement was
observed when boundary dilation was applied compared with using segmentation loss
only. Similar to PNI detection, the performance of combined loss with boundary dilation
achieved the best detection performance of 0.693, a 25% performance improvement over
only segmentation loss. In particular, using a combined loss function was more effective
for PNI detection, and using boundary dilation was more effective for nerve detection
tasks. According to the experimental results, there were more missed boundary lines when
compared to the conventional methods. This is because the ratio of positive (boundary
lines) to negative (non-boundary area) training samples was very high.

It was confirmed that our proposed method can efficiently detect the boundary even
with a small amount of information. However, even this small amount information still has
to be obtained manually by the pathologist. The proposed method tends to miss unmatched
ground-truth lines (FN; false negative) because it lacks the information needed to train a
deep learning model and, thus, has less of a chance to learn various patterns. Nevertheless,
experimental results validated that our method can efficiently detect boundary such as PNI
and nerve boundary with a small amount of information. The experimental results confirm
that the PNI detection performance was significantly improved when boundary dilation
was performed with a line width of 2 together with combined loss, compared to when
only the segmentation loss was used. The same observation was made for normal nerve
detection tasks. Therefore, the proposed method is also applicable to general boundary
detection tasks in WSIs.

Author Contributions: Conceptualization, Y.P., J.P. and G.-J.J.; methodology, Y.P. and J.P.; software,
Y.P.; writing—review and editing, J.P. and G.-J.J.; supervision, project administration, and funding
acquisition, G.-J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Government-wide R&D Fund for Infections Disease
Research (GFID), funded by the Ministry of the Interior and Safety, Republic of Korea (grant number:
20016180, 100%). De-identified pathology images and annotations used in this research were prepared
and provided by the Seoul National University Hospital by a grant of the Korea Health Technology
R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the
Ministry of Health and Welfare, Republic of Korea (grant number: HI18C0316).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural Invasion in Cancer: A Review of the Literature. Cancer 2009,

115, 3379–3391. [CrossRef] [PubMed]
2. Brown, I.S. Pathology of Perineural Spread. J. Neurol. Surg. B Skull Base 2016, 77, 124. [CrossRef] [PubMed]
3. Holthoff, E.R.; Jeffus, S.K.; Gehlot, A.; Stone, R.; Erickson, S.W.; Kelly, T.; Quick, C.M.; Post, S.R. Perineural Invasion Is an

Independent Pathologic Indicator of Recurrence in Vulvar Squamous Cell Carcinoma. Am. J. Surg. Pathol. 2015, 39, 1070.
[CrossRef] [PubMed]

4. Dunn, M.; Morgan, M.B.; Beer, T.W. Perineural Invasion: Identification, Significance, and a Standardized Definition. Dermatol.
Surg. 2009, 35, 214–221. [CrossRef] [PubMed]

5. Cao, Y.; Deng, S.; Yan, L.; Gu, J.; Li, J.; Wu, K.; Cai, K. Perineural Invasion Is Associated with Poor Prognosis of Colorectal Cancer:
A Retrospective Cohort Study. Int. J. Colorectal Dis. 2020, 35, 1067–1075. [CrossRef] [PubMed]

6. Schmitd, L.B.; Beesley, L.J.; Russo, N.; Bellile, E.L.; Inglehart, R.C.; Liu, M.; Romanowicz, G.; Wolf, G.T.; Taylor, J.M.G.; D’Silva, N.J.
Redefining Perineural Invasion: Integration of Biology with Clinical Outcome. Neoplasia 2018, 20, 657–667. [CrossRef] [PubMed]

7. Fagan, J.J.; Collins, B.; Barnes, L.; D’Amico, F.; Myers, E.N.; Johnson, J.T. Perineural Invasion in Squamous Cell Carcinoma of the
Head and Neck. Arch. Otolaryngol. Neck Surg. 1998, 124, 637–640. [CrossRef] [PubMed]

8. Ahmad, A.S.; Parameshwaran, V.; Beltran, L.; Fisher, G.; North, B.V.; Greenberg, D.; Soosay, G.; Møller, H.; Scardino, P.; Cuzick,
J.; et al. Should Reporting of Peri-Neural Invasion and Extra Prostatic Extension Be Mandatory in Prostate Cancer Biopsies?
Correlation with Outcome in Biopsy Cases Treated Conservatively. Oncotarget 2018, 9, 20555. [CrossRef] [PubMed]

9. Deepthi, G.; Shyam, N.D.V.N.; Kumar, G.K.; Narayen, V.; Paremala, K.; Preethi, P. Characterization of Perineural Invasion in
Different Histological Grades and Variants of Oral Squamous Cell Carcinoma. J. Oral Maxillofac. Pathol. JOMFP 2020, 24, 57.
[PubMed]

http://doi.org/10.1002/cncr.24396
http://www.ncbi.nlm.nih.gov/pubmed/19484787
http://doi.org/10.1055/s-0036-1571837
http://www.ncbi.nlm.nih.gov/pubmed/27123388
http://doi.org/10.1097/PAS.0000000000000422
http://www.ncbi.nlm.nih.gov/pubmed/25786085
http://doi.org/10.1111/j.1524-4725.2008.34412.x
http://www.ncbi.nlm.nih.gov/pubmed/19215258
http://doi.org/10.1007/s00384-020-03566-2
http://www.ncbi.nlm.nih.gov/pubmed/32179991
http://doi.org/10.1016/j.neo.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29800815
http://doi.org/10.1001/archotol.124.6.637
http://www.ncbi.nlm.nih.gov/pubmed/9639472
http://doi.org/10.18632/oncotarget.24994
http://www.ncbi.nlm.nih.gov/pubmed/29755671
http://www.ncbi.nlm.nih.gov/pubmed/32508449


Electronics 2022, 11, 1649 12 of 12

10. Fu, Y.; Zhang, X.; Ding, Z.; Zhu, N.; Song, Y.; Zhang, X.; Jing, Y.; Yu, Y.; Huang, X.; Zhang, L.; et al. Worst Pattern of Perineural
Invasion Redefines the Spatial Localization of Nerves in Oral Squamous Cell Carcinoma. Front. Oncol. 2021, 11, 4973. [CrossRef]
[PubMed]

11. Wang, J.; Zhu, H.; Wang, S.H.; Zhang, Y.D. A Review of Deep Learning on Medical Image Analysis. Mob. Netw. Appl. 2021, 26,
351–380. [CrossRef]

12. Shen, D.; Wu, G.; Suk, H., II. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]
[PubMed]

13. Jha, A.; Yang, H.; Deng, R.; Kapp, M.E.; Fogo, A.B.; Huo, Y. Instance Segmentation for Whole Slide Imaging: End-to-End or
Detect-Then-Segment. J. Med. Imaging 2020, 8, 014001. [CrossRef] [PubMed]

14. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 386–397. [CrossRef]
[PubMed]

15. Feng, R.; Liu, X.; Chen, J.; Chen, D.Z.; Gao, H.; Wu, J. A Deep Learning Approach for Colonoscopy Pathology WSI Analysis:
Accurate Segmentation and Classification. IEEE J. Biomed. Health Inform. 2021, 25, 3700–3708. [CrossRef] [PubMed]

16. Nirschl, J.J.; Janowczyk, A.; Peyster, E.G.; Frank, R.; Margulies, K.B.; Feldman, M.D.; Madabhushi, A. A Deep-Learning Classifier
Identifies Patients with Clinical Heart Failure Using Whole-Slide Images of H&E Tissue. PLoS ONE 2018, 13, e0192726.

17. Ahmed, S.; Shaikh, A.; Alshahrani, H.; Alghamdi, A.; Alrizq, M.; Baber, J.; Bakhtyar, M. Transfer Learning Approach for
Classification of Histopathology Whole Slide Images. Sensors 2021, 21, 5361. [CrossRef] [PubMed]

18. Wang, X.; Chen, H.; Gan, C.; Lin, H.; Dou, Q.; Tsougenis, E.; Huang, Q.; Cai, M.; Heng, P.A. Weakly Supervised Deep Learning for
Whole Slide Lung Cancer Image Analysis. IEEE Trans. Cybern. 2020, 50, 3950–3962. [CrossRef] [PubMed]

19. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022;
Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241.

20. PAIP 2021 Challenge. Available online: https://paip2021.grand-challenge.org/ (accessed on 9 April 2021).
21. Nateghi, R.; Pourakpour, F. Perineural Invasion Detection in Multiple Organ Cancer Based on Deep Convolutional Neural

Network. arXiv 2021, arXiv:2110.12283.
22. Han, C.H.; Kwak, J.T. A Hybrid Computational Pathology Method for the Detection of Perineural Invasion Junctions. In Medical

Imaging 2022: Digital and Computational Pathology; SPIE: Bellingham, WA, USA, 2022; Volume 12039, pp. 215–219. Available online:
http://lps3.doi.org.libproxy.dgist.ac.kr/10.1117/12.2610756 (accessed on 4 April 2022).

23. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; International Machine
Learning Society (IMLS): Long Beach, CA, USA, 2019; Volume 2019, pp. 10691–10700.

24. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: New York, NY,
USA, 2010; pp. 248–255.

25. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, G.J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32 (NeurIPS
2019); Curran Associates Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035.

26. Lakubovskii, P. Segmentation Models with Pretrained Backbones: Keras and TensorFlow Keras. Available online: https:
//github.com/qubvel/segmentation_models (accessed on 13 April 2022).

27. Ström, P.; Kartasalo, K.; Ruusuvuori, P.; Grönberg, H.; Samaratunga, H.; Delahunt, B.; Tsuzuki, T.; Egevad, L.; Eklund, M.
Detection of Perineural Invasion in Prostate Needle Biopsies with Deep Neural Networks. arXiv 2020, arXiv:2004.01589.

28. Lee, S.; Park, Y.; Park, J.; Jang, G.-J.; Kim, H. Multi-target Learning on asymmetric U-Net for PNI boundary detection. In Proceed-
ings of the 9th International Conference on Big Data Applications and Services (BIGDAS), Jeju Island, Korea, 20–23 October 2021;
Volume 9, pp. 127–131.

http://doi.org/10.3389/fonc.2021.766902
http://www.ncbi.nlm.nih.gov/pubmed/34912713
http://doi.org/10.1007/s11036-020-01672-7
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://www.ncbi.nlm.nih.gov/pubmed/28301734
http://doi.org/10.1117/1.JMI.8.1.014001
http://www.ncbi.nlm.nih.gov/pubmed/33426152
http://doi.org/10.1109/TPAMI.2018.2844175
http://www.ncbi.nlm.nih.gov/pubmed/29994331
http://doi.org/10.1109/JBHI.2020.3040269
http://www.ncbi.nlm.nih.gov/pubmed/33232248
http://doi.org/10.3390/s21165361
http://www.ncbi.nlm.nih.gov/pubmed/34450802
http://doi.org/10.1109/TCYB.2019.2935141
http://www.ncbi.nlm.nih.gov/pubmed/31484154
https://paip2021.grand-challenge.org/
http://lps3.doi.org.libproxy.dgist.ac.kr/10.1117/12.2610756
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models

	Introduction 
	Related Work 
	Methods 
	Proposed Boundary Dilation Method 
	End-to-End PNI Detection and Segmentation with Combined Loss 

	Experimental Results 
	Dataset 
	Implementation Details 
	Evaluation Metric 
	Qualitative and Quantitative Results 
	Additional Experiments: Normal Nerve Detection 

	Discussion and Conclusions 
	References

