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Abstract: The three-dimensional (3D) shape of specular surfaces is important in aerospace, precision
instrumentation, and automotive manufacturing. The phase measuring deflectometry (PMD) method
is an efficient and highly accurate technique to measure specular surfaces. A novel simulation model
with simulated fringe patterns for monoscopic PMD is developed in this study. Based on the pre-
calibration and the ray-tracing model of the monoscopic PMD system, a comprehensive model from
deformed pattern generation to shape reconstruction was constructed. Experimental results showed
that this model achieved high levels of measuring accuracy in both planar and concave surfaces
measurement. In planar surface measurement, the peak to valley (PV) value and root mean square
(RMS) value of the reconstructed shape can reach 26.93 nm and 10.32 nm, respectively. In addition,
the accuracy of the reconstructed concave surface can reach a micrometre scale. This work potentially
fills critical gaps in monoscopic PMD simulation and provides a cost-effective method of PMD study.

Keywords: fringe analysis; image analysis; three-dimensional shape measurement; monoscopic
phase measuring deflectometry; system simulation

1. Introduction

The precise three-dimensional (3D) shape measurement of free-form specular surfaces
is important for a wide range of applications in space observatory, scientific research, optical
precision measurement, and automotive manufacturing [1–5]. The 3D shape measurement
of specular surfaces is not implemented in the same way as diffuse reflection surfaces
measurement due to their reflecting properties. Generally, there are two competitive
method categories for specular surface measurement [6,7], which are interferometry [8] and
deflectometry [9–14]. Extensive studies [12–14] suggest that deflectometry methods such
as phase measuring deflectometry (PMD) can achieve the same accuracy with a full-field
measuring range. Moreover, it has many advantages of large dynamic range, noncontact
operation, and high precision [10,15]. PMD typically displays sinusoidal fringe patterns
on screens and captures the deformed reflected patterns through a camera or multiple
cameras. Phase information is then extracted from the deformed patterns, and 3D shapes of
test surfaces can be reconstructed [13]. The PMD method has become an important aspect
of specular surface shape measurement.

The modelling of the measuring system plays a critical role in developing PMD meth-
ods. Recent work has shown that PMD models can simulate the ideal condition and help
improve the performance of the measuring system. Zhao et al. [16] carried out a virtual
direct phase measuring deflectometry (DPMD) system by combining DPMD and a pinhole
imaging model, aiming to optimize the parameters of the measurement system and evalu-
ate the performance in DPMD applications. The high-accuracy 3D shape of specular objects
with discontinuous surfaces was obtained from the optimized system. Huang et al. [17]

Electronics 2022, 11, 1634. https://doi.org/10.3390/electronics11101634 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101634
https://doi.org/10.3390/electronics11101634
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11101634
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101634?type=check_update&version=1


Electronics 2022, 11, 1634 2 of 10

proposed modal phase measuring deflectometry to simultaneously estimate the height and
slopes of test surfaces in PMD. Its feasibility was demonstrated in simulations of mono-
scopic PMD and stereo-PMD systems. Simulation models can be separated from actual
measuring systems and implemented independently, especially when the experimental
condition is limited. In addition, simulation models exploit precise mathematic models
to deepen the understanding of PMD methods and provide a new direction to prompt
deflectometry method research.

In monoscopic phase measuring deflectometry (MPMD), the deformed fringe patterns
carry the shape information of the test surface. They are captured by one camera and
then analyzed by the measuring system to reconstruct the 3D shape of surfaces [18,19].
The fringe patterns are critical factors of MPMD, and the simulation of deformed fringe
patterns should also be studied in the MPMD simulation model. However, deformed
fringe patterns are both shape-specific and system-specific [6,18,20]. In other words, the
generation of fringe patterns is not independent of the actual measuring system and the
specific surface being tested. The simulation of deformed fringe patterns needs to combine
system configurations and surface situations in the traditional measuring process, which
increases the simulating difficulty. Recent studies mainly focused on the mathematical
models of specular surfaces but rarely considered the process of fringe generation.

This work proposes a new simulated monoscopic phase measuring deflectometry
(SMPMD) model that can simulate the steps from surface-tested deformed fringe generation
to shape reconstruction. Different from the traditional calibration, all the system parameters
of this simulation model are entirely acquired through the camera calibration process, which
involves no measuring parameters of distance and angles. Moreover, a model based on
system parameters and a ray-tracing model was established to simulate the deformed
patterns. A planar specular surface and concave mirror model were built and tested to
evaluate the performance of the model. The paper has been organized in the following
way. Section 2 explains the basic principle of the SMPMD model, Section 3 shows the
experimental results of pattern simulation and the performance of the SMPMD model, and
Section 4 concludes this work.

2. Principle of the SMPMD Model

The SMPMD model consists of two parts: the simulated pattern generation (SPG)
model and the MPMD measuring model. The SPG model simulates the deformed pattern
sampling process and generates patterns based on tested surfaces. The MPMD measuring
model is based on the MPMD method [13], which contains image preprocessing, phase-
shifting technique, phase unwrapping, gradient calculation, and integral shape reconstruc-
tion. The latter model focuses on the 3D reconstruction from generated fringe patterns.

2.1. The Principle of the SPG Model

To build a pattern-generation model of the MPMD system, a general setup of the
MPMD system is utilized as a reference, which is demonstrated in Figure 1. The system
consists of an LCD screen as a light source, a camera with a lens as the measuring sensor,
and a computing device as the postprocessing unit. The measuring system is established in
a proper configuration by a precise system calibration so that patterns deformed by the
tested surface can be captured correctly by the camera. The sum of normalized direction
vectors of incident light from screen pixels and corresponding reflected light to the camera
determines the normal vectors of surface points through the reflection law.
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Figure 1. The schematic diagram of monoscopic phase measuring deflectometry.

Coordinate transformations are necessary for this work to construct the SPG model.
There are four physical coordinate systems introduced in this measuring system model,
which are demonstrated in Figure 2. They include the Screen Coordinate System (SCS),
View Coordinate System (VCS), Camera Coordinate System (CCS), and Mirror Coordinate
System (MCS). In this work, the World Coordinate System (WCS) is MCS, and VCS is
the mirror coordinate system of SCS. Both the coordinate transformation between MCS
and CCS and the coordinate transformation between VCS and CCS are determined by an
improved camera calibration [21]. The camera calibration requires the camera to observe
a planar checkboard from a few different orientations. To figure out the transformation
between MCS and CCS, a planar checkboard is placed on the reference mirror plane, and
the image of the checkboard is captured. A virtual planar checkboard image that is the same
as the planar checkboard is displayed on the screen, and a flat mirror without markers is
introduced to establish the relation between VCS and CCS. Note that the lens is fixed when
the camera is calibrated. A camera-calibration algorithm is then introduced to estimate
the camera parameters. The camera parameters involve intrinsic parameters, distortion
coefficients, and extrinsic parameters. The rotation matrices and translation vectors among
coordinate systems are involved in the extrinsic parameters. The transformation relation
between SCS and CCS can be built by the mirroring relationship between VCS and SCS,
and it can be denoted as{

Rs=(I− 2RmeeTRm
T)Rv

Ts = (I− 2RmeeTRm
T)Tv+2RmeeTRm

TTm
, (1)

where Rs is the rotation matrix from SCS to CCS, Ts is the translation vector from SCS to
CCS, Rm and Tm are the rotation matrix and translation vector from MCS to CCS, Rv and
Tv is the rotation matrix and translation vector from the View Coordinate System (VCS) to
CCS, and I is a 3 × 3 unit matrix and vector e = [0 0 1]T.
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Figure 2. The distributions of the coordinate systems in the MPMD measuring system.

The direction of the optical path can be analyzed reversely in the MPMD system.
Following the conventional camera calibration model [21], the camera light ray is con-
sidered as a probe ray, and for a camera pixel cp : (ucp, vcp, 1)T, the corresponding point
P : (xc, yc, zc)

T of the light from the camera in CCS can be calculated by

s

 ucp
vcp
1

 = K[R|T]


xc
yc
zc
1

, (2)

where s is a scaling factor, K is the intrinsic matrix, and R and T are the extrinsic matrix
and translation vector. These parameters are obtained by camera calibration. Directional
vectors of camera pixels can then be calculated by projection points and the light source of
the camera, the origin of CCS.

When a test surface is installed on the reference plane with a known pose and shape,
a light ray from a camera pixel hits the specular surface at M: (xm, ym, zm)T and then is
reflected. The reflected light directional vector r : (mr, nr, pr)

T can be obtained by

r = 2n× (n·i)− i , (3)

where n is the normalized normal vector at point M on the test surface, and i is the
normalized directional vector of the incident ray, which denotes the dot product of vectors.
The reflected ray equations can be determined by vector r and point M.

The intersection of the reflected ray and the screen surface can be obtained from the
screen surface equation and light ray equation. For the screen surface equation, it is the
xOy plane in Screen Coordinate System (SCS), and the normal vector and coordinate of a
point on the plane can be transformed into the Mirror Coordinate System (MCS) by Rs and
Ts. The normal vector ns and the point coordinate Ps of the equation can be determined by:{

ns = Rse
Ps = Ts

, (4)
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and finally hits the screen at the point S : (xs, ys, zs)
T, which can be calculated by: xs

ys
zs

 = − (Rse)T(M− Ts)

2(Rse)T(n × (n·i)− i)
·

 mr
nr
pr

+

 xm
ym
zm

. (5)

Note that point S now is denoted in WCS, and transformation from WCS to the Screen
Pixel Coordinate System (SPCS) is required to calculate the screen pixel coordinate on the
screen. Since the virtual mirroring point S′ : (xs, ys,−zs)

T of point S is on the xOy plane in
VCS, this transformation can be built in two steps: a transformation from WCS to VCS and
a transformation from VCS to SPCS. The former transformation contains transformations
from WCS to CCS and from CCS to VCS, so the coordinate V:(xv, yv, zv)

T of point S′ in
VCS can be calculated by xv

yv
zv

 = Rv
−1(Rm

 xs
ys
−zs

+ Tm − Tv). (6)

The latter transformation from VCS to SPCS contains transformations from VCS to the
View Pixel Coordinate System (VPCS) and from VPCS to SPCS. It can be determined by uv

vv
1

 = insv·

 xv
yv
zv

, (7)

where insv =

 1/ fx 0 Ox
0 1/ fy Oy
0 0 1

 is a transformation associated with the screen intrinsic

parameters, which converts the view coordinate into the view pixel coordinate. Factors fx
and fy are the height and width of the screen pixel, respectively, and (Ox, Oy) is the view
pixel coordinate of the VCS origin.

As the correspondence between camera pixels and screen pixels is established, the
grey value of each camera pixel is the corresponding screen pixel’s grayscale. As a result,
simulated pattern images can be generated as long as the displayed fringe patterns on the
screen are known. In this work, a three-step phase-shifting method is applied. The grey
intensity of screen pixels can be calculated as I(x, y) = I0 + Acos( 2πx

px
+ 2nπ

3 )

I(x, y) = I0 + Acos( 2πy
py

+ 2nπ
3 )

, (8)

where n = 0, 1, 2, I0 is the background intensity, A is the grey amplitude, px and py are
the fringe periods in x and y directions. The grey intensity of each camera pixel can then be
determined.

2.2. The Principle of the Simulated MPMD Model

The key to the shape reconstruction model is to determine the correspondence among
mirror, camera pixel, and screen pixel. As a traditional camera can be regarded as a probe
ray model, every pair of the mirror pixel and the screen pixel corresponds to the same
point in the camera model, the origin in CCS. Therefore, the correspondence between
the mirror pixel and screen pixel determines the gradient of the reconstructed shape. To
build this correspondence, as mentioned, a three-step phase-shifting method is applied
in this work, and phase maps in two directions are then retrieved and unwrapped [22].
Screen pixel coordinates corresponding to camera pixels and their positions in MCS can
be determined. Note that the step of image undistorting is not involved in the model
to simplify the complexity of the simulation. Regarding MCS coordinates of reference
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specular surface as initial coordinates of measured surface, normal vectors of mirror pixels
can be calculated by

n = − (i + r), (9)

where i and r are the normalized directional vectors of the incident ray and the reflected
ray. Gradient data of each mirror pixel can be available from the corresponding normal
vectors [12]. The height of the tested surface is then can be calculated with the zonal
integration method [23].

3. Results

Experiments are carried out to test the performance of the SMPMD model. As shown
in Figure 3, the SMPMD model is established. System parameters of this model are obtained
from a typical calibration of an MPMD measuring system that consists of an LCD screen
with a resolution of 1080× 1920 pixels and a high-speed camera with a 16 mm lens that
has a resolution of 2048× 2048 pixels at a frame rate of 30 frames per second. System
calibration, including geometric relationship calibration, is implemented in the camera
calibration. To decrease the effects of lens distortion on the model, camera calibration [21]
was first implemented to estimate the camera parameters of the lens and image sensor.
Camera parameters include intrinsic parameters, extrinsic parameters, and distortion
coefficients. Extrinsic parameters, distortion coefficient, the undistortImage function in the
Matlab toolbox, and the checkboard images in calibration are applied to further recalibrate
rotation matrices and translation vectors among coordinate systems. A typical planar
specular surface mathematic model and a typical concave mirror model based on a real
concave mirror are constructed and utilized for testing the performance of the model. It
should be noted that the centerlines of the models are through the origin of the mirror
coordinate system. Their diameters are equally 50.8 mm. For the concave mirror, its focus
is 200 mm, and its height from the reference plane is 8 mm. The shapes of mirror models
are shown in Figure 4.
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mirror. The configuration of the measuring system is the same as that of the planar mirror.
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0, and the period of fringe patterns is 8 pixels. 
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Figure 4. The simulation shape of specular objects. (a) The planar mirror model, a 50.8 mm cylinder
with reflecting surface on the xOy plane of MCS. (b) The concave mirror model with 50.8 mm
diameters, its focus f = 200 mm, the height of the edge is 8 mm, and its shape is a concave mirror.

Taking the step-three phase-shifting method as a fringe pattern generating example,
the initial phase of three images are 0,2π/3, 4π/3, respectively. Every period of fringe
patterns contains eight screen pixels. The expression of fringe patterns can be denoted as{

I(x, y) = 0.5 + 0. 5 cos
(
πx
8 + 2nπ

3
)

, n = 0, 1, 2

I(x, y) = 0.5 + 0.5 cos
(πy

8 + 2nπ
3
)

, n = 0, 1, 2
(10)

One of the generated sinusoidal fringe patterns for planar mirror and concave mirror
is shown in Figure 5, respectively. Totally, there are three images in horizontal and vertical
directions for one mirror measurement, respectively. Images are generated in the camera
view, and the resolution is 2048 × 2048 pixels.
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Figure 5. One of the simulated fringe patterns in camera view for planar mirror and concave mirror.
(a) The deformed horizontal fringe pattern image simulated for planar mirror. The resolution is
2048 × 2048 pixels; the sinusoidal fringe initial phase is 0, and the period is 8 screen pixels. (b) The
deformed horizontal fringe pattern simulated for the 200 mm-focus concave mirror; its initial phase
is 0, and the period of fringe patterns is 8 pixels.

The shape reconstruction of simulated mirrors is completed via the phase-shifting
method, phase unwrapping, gradient calculation, and shape reconstruction. The recon-
structed profile is shown in Figure 6. For the planar mirror, the peak to valley (PV) value
of the reconstructed shape is about 26.93 nm, and the root mean square (RMS) value
is 10.32 nm. For the concave mirror, the PV value is 812.80 µm, and the RMS value is
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465.22 µm. It can be found that the simulated fringe patterns can be utilized for reconstruct-
ing the shape of the specular surface under test, and the error is on a nanometer scale. For
concave mirror sensing, the reconstructed shape of the concave surface is nearly identical
to the mathematical model, and the error of the PV value is about 7 µm. The overall shape
of the concave mirror can be recovered through the SMPMD model.
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Figure 6. The reconstructed shape of specular objects through SPMD model. (a) The planar mir-
ror with PV = 26.93 nm, RMS = 10.32 nm. (b) The concave mirror shape from reconstruction.
PV = 812.80 µm, RMS = 465.22 µm.

The residual maps between mathematic models and reconstructed shapes of mirrors
are shown in Figure 7. As the reference shape of the planar mirror is the xOy plane in MCS,
the residual map is the same as the reconstructed planar mirror’s shape. For the concave
mirror, the mean error is 0.32 µm, and the RMS value of error is 17.39 µm.
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Figure 7. The residual map between the reference model and the reconstructed model of mirrors.
(a) The residual map of the planar mirror; the RMS of error is 10.32 nm. (b) The residual map of the
concave mirror; the RMS value of error is 17.39 µm.

Experiments showed that the system error of planar surface measurement was mainly
from the error of coordinates in VPCS in generating the deformed fringe patterns. The mean
error between reference pixel coordinates obtained in pattern generation and the calculated
pixel coordinates by the phase-shifting method was −4.04× 10−4 pixels in the x direction
and 5.24 × 10−4 pixels in the y direction. When the reference pixel coordinates were
substituted into the simulation model, the PV value decreased dramatically to 5.06× 10−15

nm, and the RMS value decreased dramatically to 3.05× 10−15 nm. For concave surfaces,
the system error of concave surface measurement is relatively complicated. A similar
experiment was conducted in concave model measurement: the decrease in the PV value in
the residual map was 0.08 µm, and the decrease in the RMS value in the residual map was
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0.03 µm. The simulated fringe patterns are effective and can be utilized for reconstructing
the shape of both planar and concave specular surfaces. The MPMD model can simulate
the entire measuring process and achieve a high measurement accuracy.

4. Conclusions

A novel simulation model has been developed based on the monoscopic phase measur-
ing deflectometry (MPMD) method. Simulated fringe patterns of both a planar surface and
concave surface were generated. The performance of the SMPMD model was evaluated
by two types of specular surface shape measurement. The reconstructed shape PV value
from simulated fringe patterns of planar specular surface can reach 26.93 nm, and the RMS
value can reach 10.32 nm, achieving a high level of modelling accuracy. The accuracy of the
reconstructed concave surface can also reach a micrometre scale. Our study has been one
of the first attempts to establish a mathematical model of the MPMD measuring process
to provide a cost-effective and universal method for MPMD, further research, and fill key
gaps in terms of MPMD simulation. Future research could be focused on complicated
specular surface sensing with this simulation model.
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