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Abstract: Internet of things (IoT) devices play a crucial role in the design of state-of-the-art infras-
tructures, with an increasing demand to support more complex services and applications. However,
IoT devices are known for having limited computational capacities. Traditional approaches used to
offload applications to the cloud to ease the burden on end-user devices, at the expense of a greater
latency and increased network traffic. Our goal is to optimize the use of IoT devices, particularly
those being underutilized. In this paper, we propose a pragmatic solution, built upon the Erlang
programming language, that allows a group of IoT devices to collectively execute services, using
their spare resources with minimal interference, and achieving a level of performance that otherwise
would not be met by individual execution.

Keywords: edge computing; computational offloading; orchestration; IoT; functional programming

1. Introduction

Given the ubiquity of internet of things (IoT) devices and their strong proliferation [1]
many opportunities appear in exploring their potentialities, namely their connectivity and
computational power [2]. It is well known that the quantity of data produced by a variety
of data sources and sent to end systems to further processing is growing significantly,
increasingly demanding more processing power. The challenges become even more critical
when a coordinated content analysis of the data sent from multiple sources is necessary.
Thus, with a potentially unbounded amount of stream data and limited resources, some of
the processing tasks may not be satisfyingly answered by individual devices, guaranteeing
a desired level of performance.

Computation offloading is recognized as a promising solution by migrating a part
or an entire application to a remote server in order to be executed there. Various models
and frameworks have been proposed to offload resource-intensive components of applica-
tions for more efficient execution [3–5]. However, these solutions rely on the concept of
offloading to the cloud. Due to the increasing hardware capabilities of IoT devices and
their proliferation, making it common to have several of these devices in the same area,
offloading to the cloud may not always be a necessity, if the available resources of these
devices are wisely used. The study of scenarios where heterogeneous nodes with unknown
resources are aggregated in a collaborative effort to achieve some goal has been the subject
of works such as [6] where some sort of data analysis is needed to estimate each node
capacity and distribute work wisely.

Orchestration in distributed systems is a common approach to creating an abstraction
layer between the several devices of the system. With the orchestration layer, devices
that constitute the distributed system are “hidden” and their details and behavior are
managed by the orchestrator (also referred as coordinator), providing a simplified interface
to those devices and centered in the use of their resources without the need to know other
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operational details. This is particularly relevant in service-oriented architectures (SOA) [7]
with obvious applications when using clusters of IoT devices [8].

At the same time, functional programming is an established approach to implement
parallel and distributed systems [9]. The minimization of the need of a shared state enables
code distribution and parallel processing that fosters the development of easily scalable
systems. Due to the rise of multicore and distributed systems, functional programming
spread its influence through many mainstream languages [10,11] and is used in major
cloud infrastructures such as the AWS Lambda [12]. In particular, Erlang [13], due to its
simplicity and strong support for fault-tolerant distributed programming, is seen as a
promising language for IoT applications [14].

In this paper, we propose an Erlang-based framework for the parallel processing of
tasks in a cluster of IoT devices. These devices are able to communicate and report their
resource availability, accepting computational tasks for execution. The goal is to have one
of the connected devices requesting the offloading of tasks and relying on a module that
coordinates all the communication process and balances the scheduling of tasks based on
their estimated computational cost and the device’s computational power and availability.

Resource allocation is one of the most complex problems in large multi-processor
and distributed systems, and in general it is considered NP-hard. Computation platforms
now integrate hundreds to thousands of processing cores, running complex and dynamic
applications that make it difficult to foresee the amount of load they can impose to those
platforms. Elementary combinatorics provides us with evidence of the problem of scale.
For a simple formulation of the problem of allocating jobs to processors (one-to-one alloca-
tion), one can see that the number of allocations grows with the factorial of the number of
jobs and processors.

A static allocation decided before deployment, based on the (nearly) complete knowl-
edge about the load and the platform, is no longer viable. In traditional embedded systems,
the workload is usually allocated in terms of its worst-case behaviour, but static allocations
that take such characterisation into account tend to produce under-utilized platforms. It
is, then, evident that optimal resource allocation algorithms cannot cope with this type of
problem, and that lightweight heuristic solutions are needed. A comprehensive survey
of the kinds of resource allocation heuristics that can cover different levels of dynamic-
ity, while coping with the scale and complexity of high-density many-core platforms, is
available in [15].

To cope with dynamism, a dynamic approach to resource management is the most
obvious choice, aiming to dynamically learn and react to changes to the load character-
istics and to the underlying computing platform. Linux has a strong momentum in the
embedded software industry and has, in the past years, become the prevalent choice of
operating system for new platforms. A paradigm, based on resource reservation, can
endow applications with timing and throughput guarantees, independently of the good or
malicious behavior of other applications, and can be employed across all system resources,
including processor cycles, communication bandwidth, disk bandwidth, and storage.

The work presented here is the enhancement of previous work by the same authors [16,17]
and the remaining of this paper is organized as follows. In the next section, we introduce
the system model with the formal definitions for the network, communication protocol and
scheduling behavior along with details of the orchestration process. Then, we describe the
implementation of our system, and finally, we evaluate the results and conclude the paper.

2. System Model

We now proceed with the description of our system model by introducing formal
definitions along with several considerations about its behavior. It is important to note that
it is the programmer’s responsibility to identify decomposable problems that can be used
in this scenario. In a high level perspective, our system integrates the following features:
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Data decomposition and assignment of data to nodes: Work is decomposed in several
pieces, where the number of pieces is a function of the number of available nodes,
and their size is proportional to each node’s performance index.

Communication and failure management: There is a need to send data for processing to
chosen nodes, to wait for the results and manage any eventual failures. Whenever a
node fails, the work that was not processed is returned to the decomposition phase
as a new instance of the process.

Mapping of results: Final result computation and its return to the application.

We use an orchestrator-based approach in order to achieve this. The details will be
clarified in the following sections. We now proceed with some definitions and further
explanations.

Definition 1 (Task). We define a task, ti, as a λ function. By its nature, it will have no side effects
and can be executed in parallel with other λ functions.

In the remaining of this paper we will use the term task and lambda function for
describing the same unit of execution and we use the term IoT device and node with the
same meaning.

A device that needs to offload tasks to others can rely on a cluster of IoT devices
for accomplishing this goal. We now define a cluster, which is the set of nodes currently
available, meaning they are currently accepting tasks to execute.

Definition 2 (Cluster of IoT devices). Given an IoT device, we represent it by a node ni. A cluster
has a number of nodes, which can be variable during the execution of a computationally intensive
application and is defined as S = {n1, . . . , nk}, where k ≥ 1 and ni ∈ S is one of the nodes
currently available. The nodes can enter and leave the cluster at any time, as a result, for example,
of a power failure (in case of leaving) or a new device is turned on (in case of entering).

A cluster of nodes can be ordered from the more powerful to the less powerful
members by evaluating their capabilities in terms of processing power and memory. Our
option was to adopt a pragmatic approach, by implementing a simple heuristic function
that relates clock speed, available CPU, number of cores, available RAM and available
battery life. Details on how we get this data are described in the implementation section.
We now define the device performance index.

Definition 3 (Device Performance Index). We define a function, P , that given a node, ni, its
CPU speed, Csni (measured in Ghz), the number of cores, Ccni , the available CPU capacity, Cani

(measured in a number between 0 and 1), the available RAM, Mni (measured in Gigabytes), and the
available battery, Bni (measured in a number number between 0 and 1), returns the value P(ni),
which is a numerical estimate for ni performance based on the following formula:

P = α ∗ (Csni ∗ Ccni ∗ Cani ) + β ∗Mni + δ ∗ Bni

This is an easily computed value that, even if it is a relatively rough approximation, is,
nevertheless, enough to distinguish each node’s execution capacity without the burden of
online benchmarking. It is also the programmer’s responsibility to define adequate values
for α, β and δ to produce an adequate value for his/her application.

Example 1. Given a node, n0, reporting the following data: Csn0 = 1.4, Ccn0 = 4, Can0 = 0.6,
Mn0 = 0.37 and without battery information, and given α = β = 0.5, the application of the
formula results in:

P = 0.5 ∗ (1.4 ∗ 4 ∗ 0.37) + 0.5 ∗ 0.6 = 1.336
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Example 2. Given a node n1 reporting the following data: Csn1 = 1.5, Ccn1 = 4, Can1 = 0.15,
Mn1 = 0.54, the application of the formula results in:

P = 0.5 ∗ (1.5 ∗ 4 ∗ 0.54) + 0.5 ∗ 0.15 = 1.695

Knowing each node’s performance index, we now define how to decompose the
problem in order to distribute it in a balanced manner.

Definition 4 (Simple Problem Decomposition). Given a problem D and given a cluster of
available nodes S = {n1, . . . , nk}, then the problem must be decomposable in k parts and defined as
D = {d1, . . . , dk} such that each part’s computational cost is proportional to the assigned device
performance index.

Example 3. Given nodes n0, . . . , n5 and a problem of summing 100,000 numbers, the calculated
performance index, the percentage of the computational power each node represents and the assigned
partition of the problem is presented in the following table:

Node
Performance Percentage of Assigned

Index (Pi) System Power (pi) Partition

n0 2.013 21% 21,000
n3 1.965 20% 20,000
n1 1.695 18% 18,000
n4 1.472 15% 15,000
n2 1.336 14% 14,000
n5 1.125 12% 12,000

A strict decomposition can be a bad solution if the computational cost of processing
data is unevenly distributed, since a small interval of data can be harder to process than a
larger one. The approach we purpose includes the option to split the work in a bounded
number of parts that are processed sequentially by the cluster of nodes. We now define the
enhanced problem decomposition.

Definition 5 (Enhanced Problem Decomposition). Given a problem, D, and given a cluster of
available nodes, S = {n1, . . . , nk} , then the problem must be decomposable in n parts and defined
as D = {D1, . . . , Dn} and for each Di ∈ D, it is possible to decompose it further into k parts
and defined as Di = {di1, . . . , dik}, such that each part’s computational cost is proportional to the
assigned device performance index. Thus, given a node, ni, with a percentage of system power, pi,
then the size of the part, Di, it will process is given by pi ∗ sizeo f (Di).

Example 4. Given the Example 3, if we choose to have five partitions, then we get:

D1 D2 D3 D4 D5

l-elements

Here, each node ni will process pi ∗ l elements of each Di corresponding to:

Node
Performance Percentage of

Part Dk Size
Index (Pi) System Power (pi)

n0 2.013 21% 4200
n3 1.965 20% 4000
n1 1.695 18% 3600
n4 1.472 15% 3000
n2 1.336 14% 2800
n5 1.125 12% 2400
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Given the previous definitions we can now define the assigned problem.

Definition 6 (Assigned Problem). Given a cluster of nodes S = {n1, . . . , nk}, where each node
ni has a performance index, Pi, and the problem, D, which is decomposed in k different parts, we
define an assigned problem as a set of triples, AP = {(n1,P1, d1) . . . (nk,Pk, dk)}.

Communication between nodes is done using asynchronous message passing. There
is a permanent link between the node requesting the work and the nodes executing that
work. When this link is broken, it signals a loss of communication and the node is removed
from the list of available ones.

Definition 7 (Link set). Given a cluster of available nodes S = {n1, . . . , nk} we define L =
{l1, . . . , lk} as the list of links to the nodes such that the connection to node nk is done by link lk.

Failure during the execution of a task results in rescheduling the unfinished task
to the closest available node in terms of performance index. More formally, we define
task reassignment.

Definition 8 (Task Reassignment). Given a cluster of nodes, S = {n1, . . . , nk}, where each
node, ni, has a performance index, Pi, the problem, D, decomposed in k different parts proportional
to each of the nodes and the assigned problem AP = {(n1,P1, d1) . . . (nk,Pk, dk)}. When a link,
lj, assigned to a node, nj, such that (nj,Pj, dj) ∈ AP fails, then the task, dj, is reassigned to
the node, nm, such that (nm,Pm, dm) ∈ AP \ (nj,Pj, dj) and Pm ≥ Pn for any (nn,Pn, dn) ∈
AP \ (nj,Pj, dj).

The orchestrator plays a central role in the system. It is responsible for the coordination
of the different participants, dealing with the details of each device and providing the
programmer with an API that abstracts the use of the distributed system. Thus, its main
features are:

• communication between all the participants;
• adding nodes to the cluster and removing nodes from the cluster;
• task distribution; and
• fault tolerance.

The orchestrator relies on the host that needs to offload work to other nodes. We now
describe in more detail the concepts behind each of its features and other relevant details
will be clarified in the implementation section.

Communication is done by message passing. All the different participants behave like
actors [18]. All the messaging relies on the built-in features of the Erlang language that
provide high-level approaches to message passing and code distribution, facilitating the
whole process.

IoT devices can enter and leave the cluster at anytime. When they enter, they are
available to accept tasks to execute. The node starts by sending a registration message to the
orchestrator and, after acknowledgment, sends its score, which results from a performance
index computation in the node. This will allow the orchestrator to rank that specific node
within the cluster. Nodes can leave the cluster in two different scenarios: (i) when the
orchestrator is shutdown; and (ii) when they stop, for example, due to power failure. In the
first case, a message is sent from the orchestrator to the node, terminating the collaboration
process. In the second one, the orchestrator detects the node’s failure and removes it from
the list of available nodes. Again, these features rely strongly on the built-in features
of Erlang.

The API that the orchestrator provides accepts code and data, and returns the result
of applying the code to the data. Its main goal is to distribute the data by node. It starts by
splitting the data by the different nodes using their rank (given by the score obtained by the
computed device performance index) to create partitions of data that each one will process.
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This is illustrated in Figure 1, where we have an input to the orchestrator consisting of
code and data, it distributes the code by the different nodes {N1, N2, . . . , Nn} and data D
= {D1, D2, . . . , Dn}, such that they can process it locally. For each Ni, the size of Di varies
accordingly with Ni’s rank.

Figure 1. Orchestration process.

It is also the role of the orchestrator to provide fault-tolerance. Here, fault-tolerance
consists in guaranteeing that all the data is processed. Since data is split among differ-
ent nodes, failure in one or more than one node during execution results in losing the
corresponding partial result. To guarantee the completion of the designated task, the or-
chestrator maintains a permanent link with each node in the cluster and detects any failure.
In case of failure, the task given to that node is rescheduled for execution in the available
node with highest performance index.

3. Data and Code Distribution Algorithm

We now present the core algorithms of this framework. Algorithm 1 describes
how data is split and Algorithm 2 describes how data is distributed among the nodes.
In Algorithm 1 we start by choosing from the simple problem decomposition of data
(Definition 4) or the enhanced problem decomposition (Definition 5). In the first case, we
split data by the number of available nodes proportionally to each node’s performance
index. On the other hand, if the enhanced problem decomposition is chosen, then an
additional parameter (here described by the variable k) is provided, allowing a first split
of the partition into k parts, then, for each of these parts, the data is split again, now in
p parts (given p, the number of available nodes) with each of these parts with a size pro-
portional to the nodes’ performance indexes. This allows a more fine-grained distribution
to the computational power of nodes with respect to the data being processed, which is
particularly useful when the processing data has an uneven processing cost.

Having all the parts of data defined, we proceed with the distribution of the data
and the supplied code for processing the data (described as F ) by the different nodes as
described in Algorithm 2. The result is then stored. In case of a node being unable to
complete a task, which translates into a broken link, the associated data must be processed
by another node. The approach we use is to give it to the available node with highest
performance to minimize further delays. In the case of several nodes failing, the process is
repeated and the data is queued to the best available node. The algorithm hides most of
the low-level technicalities which will be further discussed in the following sections.
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Algorithm 1 Data Split
Let D := {D1, . . . , Dp} be the set of data which is divided in p parts.
Let D′ := {} be an empty set of data pairs.

1: if Simple Problem Decomposition then
2: p := n and the size of partition Di is adjusted to be proportional to pi.
3: D′ := D′ ∪ {(D1, n1), . . . , (Dp, np)}
4: end if
5: if Enhanced Problem Decomposition then
6: A size k is provided, p := k and
7: for each Dj ∈ D do
8: Split Dj in {dj1, . . . , djp} where each dji is proportional to pi.
9: D′ := D′ ∪ {(dj1, n1), . . . , (djp, np)}

10: end for
11: end if
12: return D′

Algorithm 2 Data Distribution
Let S := {n1, . . . , nn} be the set of available nodes in the cluster.
Let L := {l1, . . . , ln} be the set of links to nodes in the cluster, where li is the link to node ni.
Let SP := {(n1, p1), . . . , (nn, pn)} be the set of pairs of available nodes in the cluster where
each ni is the node name and pi is node’s i performance index.
Let D′ be the result of execution of the previous algorithm.
Let F be a function to process data in D.
LetR := {} be an empty set of results of processing data in D by function F .
Let Success := False

while Success = False do
while D′ has data do

Remove (da, nb) from D′
Submit data da for execution by nb with code F

end while
Wait until all nodes return a response and add them as a tuple (ni, ri) toR, where

ri is the value returned by node ni.
if failed links exist then

Add unprocessed requests (da, nb) as (da, nc) to D′, where node b is replaced by
the best one available, c.

else
Success := True

end if
end while

4. Implementation

Although the idea is to have a general purpose solution for IoT devices, at this moment,
we decided to focus on a specific type of hardware/software to develop a proof of concept
with all the properties we believe that are relevant in this domain. Our nodes are all single-
board computers, namely Raspberry Pi devices [19]. They all run a Linux distribution and
an Erlang virtual machine.

Although single-board computers (SBC) are just one type of IoT device, they enjoy
enormous popularity due to their high performance for their price range and the vast
number of scenarios where they can be used [19,20]. It is possible to have several Raspberry
Pi SBCs in the same area, each with a different purpose. With our framework we enable
the optimization of devices that are, often, sitting idle.
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4.1. IoT Node Implementation

The IoT node must have installed the Erlang VM to allow code transfer, execution and
communication. Whenever an IoT device is available for collaboration, it searches for a
registered orchestrator (in Erlang, registered processes are those that have a name associated
with them) and uses the Erlang built-in instruction, net_adm : ping(′orchestrator_name′),
to register with the orchestrator. On success, the ping will add the IoT device to the
list of known neighbors in the orchestrator process. Then, the device will compute its
performance index using sysbench (https://github.com/akopytov/sysbench, accessed on
22 November 2021) and Linux’s integrated acpitools and sends it to to the orchestrator. This
allows the orchestrator to rank the node. From here on, the node is ready to be used as part
of the cluster.

The code deployed to a node is initially minimal and consists of a simple process that
executes code as instructed by received messages and is described in Listing 1.

Listing 1. IoT node main code.

task_executor ( ) −>
r e c e i v e
{ From , execute ,Mod, Fun , Param } −>
From ! { B , E ,Mod: Fun ( Param ) } ,
task_executor ( ) ;
_ −>
task_executor ( )
end .

The function, task_executor/0, waits for messages instructing the node to execute code
(function Fun from module Mod with parameters Param) and the result of the execution is
returned to the requesting node.

4.2. Orchestrator Implementation

The orchestrator is executed on the node that needs to offload data. This node, as all
the others nodes that may form a cluster, runs an Erlang VM and the orchestrator is
activated whenever it needs to offload work to others. After activation, the orchestrator is
able to build a cluster of IoT devices and knows each one’s performance score. Therefore,
it can split tasks accordingly. In more detail, after knowing the list of available nodes S
(nodes that successfully registered and sent their performance index), the first step is to
create a ranked list. Given a list of nodes, S = {n1, . . . , nn}, they will be ordered in a list
from the one with highest performance index to the one with lowest performance index.
Their relative computational power will be used to compute the partition they must handle.

The orchestrator then proceeds with the transfer of code, C, and data, D, to nodes in
the cluster. Erlang provides an easy way to do this. Given a module, Mod, on the device
where the orchestrator is running, the Erlang instruction c : nl(Mod) will transfer it to the
nodes in A. After this step, all the nodes have the same version of the code and data and
know the partition they will work on, which is also sent by the orchestrator.

Please note that this approach may not escalate well when the problem being decom-
posed does not have an even distribution of work. It is also unable to split inter-dependent
pieces of data. Nevertheless, these type of problems can also be handled by the orchestrator,
but data will not be partitioned. Instead, all the application will be transferred to the node
with the highest performance index.

After all the work has been distributed, the orchestrator waits for the results and
handles failures. Waiting for results means it will wait for an answer from each node
with the result of its particular execution. In case there is some failure, for example one
node disconnects, it detects this because it relies on the underlying Erlang mechanism that
generates a message whenever one element of S stops working. Thus, it is easy to know
if one node stopped working and which part of the data it was processing. In this case,
the orchestrator reschedules this exact execution to another node. The criteria implemented

https://github.com/akopytov/sysbench
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is to wait until the end of the current execution and reschedule the uncompleted one to the
highest ranked node.

The orchestrator node coordinates the offloading process and, typically, nodes can
be both an orchestrator and a node executing tasks. The orchestrator Erlang function is
succinctly described in Listing 2.

Listing 2. Orchestrator node main code.

o r c h e s t r a t o r (Mod, Fun , DataSize , NPart ) −>
NodesList = i n i t i a l i z e _ c l u s t e r ( ) ,
c : nl (Mod) ,
Parts_Node = d i s t r i b u t e ( NodesList , DataSize , NPart ) ,
Resu l t s = execute (Mod, Fun , Parts_Node ) ,
resechedule ( Results , Parts_Node ) .

The function orchestrator/4 receives the name of the module, Mod, with the code and
data that must be distributed, the main function processing the data, Fun, the size of the
data being processed, DataSize, and the number of partitions, NPart, that should be used
in the distribution of the work. Next, the function initialize_cluster/0 finds nodes in the
local network area that are able to collaborate (execute the slave function described before),
and adds them to the NodesList, establishing a link. Code and data are then distributed to
the available nodes with the Erlang builtin function c : nl/1 and distribute/3 determines
which parts of the data partition must be processed by which nodes. In case NPart is
one, the process is a simple problem decomposition, if Npart > 1, then the process is an
enhanced problem decomposition. The next step is to send the data for remote execution
and gather all the results in the Results list. Finally, the function resechedule/2 compares
the results obtained from nodes with the requests that were made. In case it detects
unanswered requests (resulting from nodes failing during execution), tasks related with
those requests are rescheduled to available nodes as described in the system model.

Example 5. Given a module, primes, where a function, sum_primes(B, E, List), returns the sum
of the prime numbers in the interval from B to E in List and given a list of 100,000 numbers, sum-
ming all the primes in the list can be done using the cluster of IoT devices available, by submitting
the following instruction to the orchestrator:

orchestrator:process(primes,sum_primes,1000000,1)

By calling this function, all the features previously described are used to create a
collaborative effort of handling the problem.

5. Evaluation

We carried several tests using a cluster of four devices connected wirelessly to the
same WiFi router. These four IoT devices were in use with different main applications as
described in Table 1.

Table 1. Cluster Setup.

Node Device CPU Clock RAM Application

n1 Raspberry Pi 3 B+ quad-core 1.4 GHz 1.0 GB arcade machine
n2 Raspberry Pi Zero W single-core 1.0 GHz 0.5 GB network add-blocker
n3 Raspberry Pi 3 A+ quad-core 1.4 GHz 0.5 GB wireless print server
n4 Raspberry Pi Zero W single-core 1.0 GHz 0.5 GB no application

To evaluate the benefits of our framework, we have developed a battery of tests based
on data-decomposable problems. Since results are consistent among the several tests, here,
we present one of them, consisting of counting prime numbers in the interval [1, 50,000].
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The interval we use in this test is I = {1, . . . , 50, 000} with a total of 5133 prime
numbers. Note that the primes are not evenly distributed in this interval and higher ones
are considerably more difficult to find than lower ones. We started with one device and
added devices to the cluster measuring the gain in performance. Since the problem is not
easy to break in balanced partitions we use the enhanced problem decomposition solution
and break it in several partitions (1, 5, 10 and 20). Each of the partitions is then split by the
available nodes accordingly with their reported performance index. We choose the node n1
to be the node running the orchestrator although it can also execute tasks. The calculation
of the primes on I1 took an average of 26.07 s. We don’t get any advantage in using more
than one partition with only one device since the implementation already uses multiple
processes to optimize the use of the available cores of the device. The results of distributing
data by the nodes are presented in Figure 2.
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Figure 2. Distributing data by nodes.

Note that, if we add one device (n1 and n2), even with only one partition, the time
needed to compute all the primes decreases from an average of 26.07 s to an average of
24.43 s. The performance increases as we divide chunks of work by the devices. With
five partitions, we achieve the best result of an average 16.67 s. The increase in the number
of partitions is not alone a factor of enhancement in performance, since, the more partitions
we have, the more messages we need to exchange. When using devices n1, n2 and n3,
the performance increases considerably, which seems normal since n3 is a powerful node
in this context. Adding node n4 also further increases the cluster’s performance. In Table 2,
one can see the percentage of gain in terms of execution time when adding, one, two and
three devices to the cluster. The advantage is evident, although the gain when adding three
devices when compared to two devices is marginal. One thing we notice is that problems
have, generally, an ideal number of devices in the cluster to get the better trade-off between
the size of the problem and the cluster setup and communication overhead.

Table 2. Percentage of gain by adding devices.

Devices Added Gain When Compared to Single Device

1 55.8%
2 64.1%
3 65.2%
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In Figure 3 we present the graphic detailing the gain of having one device (no devices
added to help), with one, two and three devices added. These values are the ones for the
configuration with best performance in each of the scenarios.
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Figure 3. Result of adding devices to n1.

We also experimented with failure in nodes and consequent rescheduling. The impact
of such operation is highly dependent on the capacity of the node or of the nodes failing.
Failing node n3 has a considerable higher impact than failing node n2, due to their different
capacity and thus the amount of work that is distributed to them. Nevertheless, with a small
number of failures, the cooperative distributed computation still has a better performance
when compared to the single problem solving solution. In terms of time needed for
the execution we conclude that given a set of nodes {n1, . . . , nk}, the time, X, needed to
decompose the service, the time, Y, to send code and data to a node, the time, W, to send
the result back from a node and, tni , the time that node ni needs to processes its block,
the total time, T , needed for a distributed service execution can be determined by:

T = X + k ∗Y +
k

∑
i=1

tni

k
+ k ∗W

From a general perspective and focusing only in the framework we developed and
not the problems it may solve, we are able to draw some conclusions about the scalability
of our framework. The division of work is done in two different approaches, one using a
simplified split of data based on the performance index of the available nodes, and another
based on the split in a given number of partitions and again, the split of each partition
given the number of available nodes and their performance index. Both operations have
low complexity since they have no relation with the size of the data being processed.
In terms of communication and message passing the number of messages needed to setup
the framework are equal to the number of available nodes and the number of messages
needed to send and receive data are twice the number of partitions assigned to each node.
Thus, the complexity of the whole framework setup and distribution of data and code is
low. In the case of the enhanced problems assignment and depending on the data being
processed, there is a compromise between the number of partitions given to each node and
the time of the execution of the code over the data. Sometimes, depending on the data
it may be faster to have less partitions, avoiding the communication overhead. General
complexity of distributed systems has been previously studied in research such as [21–23].
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6. Conclusions

Even though IoT devices are becoming more powerful, the available local resources
cannot cope with the increasing computational requirements of resource-intensive applica-
tions that can be offered to a large range of end-users. This has created a new opportunity
for task offloading, where computationally intensive tasks need to be offloaded to more
resource powerful devices. Naturally, cloud computing is a well-tested infrastructure
that can facilitate the task offloading. However, cloud computing, as a centralized and
distant infrastructure, creates significant communication delays that cannot satisfy the
requirements of the emerging delay-sensitive applications.

To this end, in this paper we presented a cooperative framework for IoT devices based
in Single Board Computers and the Erlang programming language. The goal is to maximize
the collaborative power of these devices with a minimal setup and interference on their
main functions. By distributing the computational load across a set of heterogeneous IoT
nodes, a cooperative environment enables the execution of more complex and resource-
demanding services that otherwise would not be able to be executed on a stand-alone basis
or would suffer from unacceptable performance. We intend to add more features to the
framework and foresee the creation of a distributed solution for computation that uses
available power of simple devices replacing larger systems.
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