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Abstract: This paper presents the lane-merging strategy for self-driving cars in dense traffic using
the Stackelberg game approach. From the perspective of the self-driving car, in order to make
sufficient space to merge into the next lane, a self-driving car should interact with the vehicles in
the next lane. In heavy traffic, where the possible actions of the vehicle are pretty limited, it is
possible to conjecture the driving intentions of the vehicles from their behaviors. For example,
by observing the speed changes of the human-driver in the next lane, the self-driving car can
estimate its driving intention in real time, much in the same way of a human driver. We use the
principle of Stackelberg competition to make the optimal decision for the self-driving car based on
the predicted reaction of the interacting vehicles in the next lane. In this way, according to the traffic
circumstances, a self-driving car can decide whether to merge or not. In addition, by limiting the
number of interacting vehicles, the computational burden is manageable enough to be implemented
in production vehicles. We verify the efficiency of the proposed method through the case studies
for different test scenarios, and the test results show that our approach is closer to the human-like
decision-making strategy, as compared to the conventional rule-based method.

Keywords: self-driving car; game theory; decision-making; stackelberg game; lane-merging; inten-
tion estimation

1. Introduction

The recent development of self-driving cars has shifted the concept of partially au-
tonomous driving from purely imaginary to the real. However, in order to achieve fully
autonomous driving (i.e., Level-5 [1]), developers should still overcome many technical
difficulties. One of the most challenging tasks is to describe the interaction between a
self-driving car and human-driven vehicles [2,3]. In city driving, the vehicle often faces
complex traffic situations that should be appropriately addressed. For instance, in con-
gested traffic, human drivers constantly interact with other vehicles to create flexibility [4]
by guessing the driving intentions of other drivers. Thus, autonomous vehicles should also
act similarly to human drivers when facing complex traffic situations instead of conserva-
tive motions. Otherwise, to ensure safety, very conservative decisions such as waiting for
traffic to ease is most likely to be made, which are not efficient [5]. Therefore, it is important
to reflect the interactions between autonomous vehicles (AV) and interacting vehicles in the
decision-making logic. In this way, human-like decision-making can be realized, which is
essential when human-driven vehicles and self-driving cars share roads in the near future.

To resolve the technical problems mentioned above, we propose the game theoretic
decision-making strategy that enables the self-driving car to consider the interactions
with the surrounding vehicles. In particular, we model human thinking processes using
game theory as a good candidate to handle heavy traffic conditions in which vehicles
affect each other [6]. In this approach, the game participants are assumed to be rational
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players that make decisions maximizing their own utility [7]. The latter includes setting
the player’s particular objective. Thus, the appropriate decisions for self-driving cars can
be made provided so that they play the game with surrounding vehicles. These vehicles
are considered rational decision makers maximizing the utility [8,9].

The efficiency of game theory in modeling vehicle’s decision-making process has been
verified in previous studies. The most common approaches include the level-K reasoning
framework and Stackelberg game approach.

The level-K framework (also referred to as the hierarchical reasoning game the-
ory) is a method to model interaction between players using the hierarchical depth of
thought [10,11]. The key idea of the level-K framework is that each player has a depth of
strategic thought from level-0 to a specific number K, and the K-level player makes the
decision, assuming that the other players choose the particular actions, which are based on
the (K-1)-level depth of thought [12]. More specifically, the players assume themselves as
the most advanced ones who can think one level ahead of others. In [13,14], the level-K
framework decision making is proposed at the unsignalized intersection where many inter-
actions between the vehicles occur. Other researchers also considered the lane-changing
problem in highways using the level-K framework [15]. Although, a level-K framework is
a promising technique to describe the interactions between the multiple agents, it should
model the depth of thought for all agents in the strategic game. Therefore, if a self-driving
car faces multiple vehicles, a heavy computational burden is required to model the depth
of all vehicle’s thoughts [16].

In contrast, the Stackelberg game (also referred to as the leader-follower game) is
a hierarchical game where each player is assigned the roles of either leader or follower.
By modeling the utility function that needs to be maximized by the each game participant,
the interactions between each vehicle can be modeled effectively. Compared to the level-K
framework, the Stackelberg game does not need to model the depth of thought for all game
players hierarchically, so the computation is less complex. The lane-changing scenario
is modeled using Stackelberg game theory in [17] and the surrounding drivers’ inten-
tions such as “aggressive driver” and “cautious driver” are estimated in real time [18,19].
In addition, the modeling of multi-vehicle interactions at uncontrolled intersections is
considered in [20]. However, these approaches do not consider active interaction which is
essential for lane-merging in dense traffic condition.

In this paper, we develop the decision-making strategy for a vehicle merging into
another lane in dense traffic where all vehicles interact with each other. In such dense traffic,
lane-merging is not possible unless there is a concession between interacting vehicles. So
we consider the active interaction that changes the behavior of the interacting vehicle. For
the manageable computation, we exploit the Stackelberg game approach. In real-world
driving, the human-drivers consider only interacting vehicles, not all vehicles on the
road. Similarly, in this paper, the self-driving cars consider interactions only with a single
interacting vehicle in the next lane. In this way, the computational load of the proposed
method is manageable enough to be implemented in the hardware.

It is also worth noting that the estimation of surrounding vehicle intentions is essential
to make the appropriate decision in real time [21]. In our problem (i.e., dense traffic
condition), we assume that the intentions of the drivers in the next lane are limited to
“yield” or “ignore” [22]. By imposing a certain quantity (i.e., politeness) to the surrounding
vehicles, the AV that needs to merge estimates the politeness of the interacting vehicle in
real time and decides whether to merge [23]. However, human drivers utilize a strategy
that is not exactly known to self-driving cars. To reflect this aspect, in our verification
environments, the interacting vehicles in the next lane behave based on the car-following
model that the self-driving car does not know. To verify the effectiveness of our game
theoretic decision-making strategy, the performances for the various test scenarios are
compared to those of the rule-based approach [24].

The characteristic features of the proposed strategy are summarized as follows.
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1. The complex vehicle interactions in dense traffic are effectively modeled using the
Stackelberg game approach with manageable computation;

2. To establish reliable and verifiable test environments, we propose the modified car-
following model that can change the target leading car depending on varying circum-
stances;

3. The intentions of the surrounding vehicles are effectively estimated in real time by
monitoring the speed variations of the interacting vehicles.

The remainder of the paper is organized as follows. In Section 2, we provide a problem
definition for the lane-merging scenario in heavy traffic. In Section 3, we introduce the
vehicle model, action space, and the driving strategy of the surrounding vehicles. The key
result of this paper, game theoretic decision-making strategy is presented in Section 4.
The efficiency of our approach is verified through the case studies in Section 5. Finally,
we make conclusions and provide a future outlook in Section 6.

2. Problem Statement

Here we describe the interactions between two agents in a strategic game. In Figure 1,
AV in the side lane is called an ”ego-car”, which is a controlled host vehicle and the
surrounding vehicles are the human-drivers modeled by a car-following model described
in Section 3.3. As illustrated in Figure 1, the interactions between the vehicles in dense
traffic are modeled using game theory. More specifically, we propose a lane-merging
decision-making strategy for an autonomous vehicle in dense traffic where AV essentially
does not have enough space to merge into the next lane from the side lane. In such
an environment, lane-merging is not encouraged due to the risk of collision. However,
for extreme cases, when traffic is not relaxed for a long time, the driver have to wait
indefinitely unless aggressive behavior is considered. In addition, when in emergency
situations such as hospital transport, aggressive behavior is required to a certain degree.
Therefore, the lane-merging method for traffic congestion can be an option for self-driving
cars, especially where traffic congestion happens frequently.

Figure 1. (a) Lane-merging scenario in the heavy traffic (photo is from Unsplash) and (b) reproducing
the real-world driving scenario.

Under such heavy traffic conditions, the AV should interact with vehicles in the next
lane to efficiently change the lane [25]. For example, if the AV in the side lane waits until
enough space becomes available to merge into the next lane, the decision and control
algorithm that is generally not willing to take a risk (i.e., lane-changing with an insufficient
distance) may not merge into the next lane unless safety is ensured. However, in reality,
human drivers in the side lane often attempt to influence interacting vehicles to get an
opportunity to merge [26]. The notable waysi in which drivers interact with others are
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hand gestures (motion indicating that they about to change the lane) and others. Obviously,
in general traffic, not only surrounding vehicles but also the AV influences the behaviors
of interacting vehicles. Therefore, such interaction modeling is essential to adequately
describe real-world traffic.

From the perspective of an AV, it can secure sufficient distance to merge rather than
wait forheavy traffic to be relaxed by affecting the behaviors of surrounding vehicles.
To achieve this goal, the AV should predict the response of other vehicles to its actions,
which is very uncertain in reality. From the perspective of the surrounding vehicles in the
next lane, they should decide whether to yield to AV while obeying traffic regulations.
For instance, even if the vehicle in the next lane is willing to make the safety gap by
decelerating, the traffic condition does not allow to decelerate considering the relative
distance or velocity with the behind vehicle. The latter is a very common situation for
heavy traffic. For instance, the perspective of Car 3 is shown in Figure 1. Car 3 makes the
decision based on its relationship to the AV, its relative distance, and velocity to Car 4.

In general, the decision-making of the drivers is determined by their dispositions
e.g., aggressive, cautious dispositions. However, for the limited traffic condition considered
(lane-merging in dense traffic), a decision of the vehicle is mainly governed by the traffic
conditions rather than its driving disposition. Generally, the resulting decisions of the
vehicle appears in the form of driving intentions. In the merging scenario, these intentions
include “yield” or “ignore” (from the perspective of the vehicle in the next lane). For in-
stance, when AV expresses a lane-merging intention by turning on the lane-changing signal,
the reaction of Car 3 can be the deceleration to express “yield” or maintain the speed to
express “ignore” (Figure 1). To build reliable and verifiable scenarios where the human
drivers usually consider only the adjacent vehicles, the AV considers only one interacting
vehicle.

3. Vehicle Model and Action Space

In this section, we introduce the model that represents the vehicle dynamics and the
decision-making process for all interacting vehicles.

3.1. Vehicle Dynamics

For simplicity, we consider a point-mass vehicle model with continuous time:

ẋ = vx,

v̇x = ax, (1)

ẏ = vy,

and discretize it using the Euler forward method [27]:

x(t + 1) = x(t) + vx(t)4t,

vx(t + 1) = vx(t) + ax(t)4t, (2)

y(t + 1) = y(t) + vy4t,

where state x = [x, vx, y]′ is defined by the longitudinal position at the center of gravity,
velocity, and lateral position at the center of gravity. Moreover, control u =

[
ax, vy

]′ is
defined by the acceleration, and lateral velocity. Finally,4t and t stand for the time step
size and is the discrete time instance, respectively.

3.2. Action Set

According to the Stackelberg game approach [28], the game players are assumed to
choose a discrete action and execute it for the entire control cycle. To focus on vehicle
interactions rather than dynamics itself, the finite discrete actions are assumed for all game
participants (interacting vehicles) as follows:

1. “Maintain” : Maintain the speed.



Electronics 2021, 10, 894 5 of 16

2. “Accelerate” : Constant acceleration with ax (m/s2) until vehicle speed reaches to the
maximum speed vmax.

3. “Decelerate” : Constant deceleration with −ax (m/s2) until vehicle speed drops to
zero.

4. “Lane-merge” : Changing lane with vy (m/s), i.e., movement in a lateral direction.

Here, we set the constant acceleration, maximum velocity, and the lane-merge velocity
to: ax = 0.97 m/s2, vmax = 2.5 m/s, and vy = 2 m/s, respectively. The latter is only
available to the ego-car.

Based on the action space, the strategy space for the leader and follower, i.e., the AV
and interacting vehicle, is defined as,

S = Γl × Γ f (3)

Γl =

{
{L, M} , Lateral Motions
{A, M, D} , Longitudinal Motions

Γ f = {A, M, D}, Longitudinal Motions

where S is a strategy space, Γl and Γ f are action sets of the leader and follower, L and
M denote the “Lane-merge” and ”Maintain”, and A, M, and D are the “Accelerate”,
”Maintain”, and “Decelerate” in the longitudinal direction.

Obviously, the lateral motions are only available to the ego-car, and the surrounding
vehicles are assumed to move forward in a longitudinal direction. In other words, for each
time step, the leader decides whether to change lanes or not, while the follower decides its
longitudinal motion based on the circumstances, such as traffic conditions.

3.3. Intelligent Driver Model

As mentioned earlier, in real-world driving, the ego-car reacts to the behaviors of
the surrounding vehicles and vice versa. Therefore, to establish reliable and verifiable
lane-merging scenarios for the formulated problem, the modeling of these interactions
between the vehicles is important, which distinguishes our test environment itself from
others where the vehicle motion is not interactive [29].

In game theoretic interaction modeling, it is assumed that all vehicles choose their
actions based on the game theory so that all actions are limited by defined strategy space S.
However, the surrounding vehicles, i.e., vehicles in the next lane, choose their actions based
on their own strategies that the ego-car does not know exactly. The latter is reasonable
because, generally, the drivers do not know the future behaviors and/or trajectories of
others. Instead, they can predict the behavior (velocity and acceleration) of other vehicles
from their observations.

To reflect this human-like decision-making process for interacting vehicles, a widely-
used longitudinal car-following model referred to as the intelligent driver model (IDM) is
introduced [30] :

v̇ =
dv
dt

= amax

{
1−

(
v
v0

)δ

−
(

s∗(v,4v)
s

)2
}

, (4)

where v0,4v, amax, δ, s, and s∗ stand for target speed, velocity difference (approach rate),
maximum acceleration, constant acceleration component, gap, and desired gap with the
front vehicle, respectively.

The desired gap s∗ is a function of v and4v and given by:

s∗(v,4v) = s0 + vT +
v4 v

2
√

amaxb
, (5)

where s0 is the minimum gap between ego and front vehicles, T is a safe time headway,
and b is the desired deceleration that makes a driver feel comfortable.
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If there is no car ahead, s∗ is ignored, i.e., s∗ = 0, thus IDM become a function of the
v and v0. All parameter values for the IDM are summarized in Table 1. The preferred
time headway in dense traffic is defined based on [31] and the established models aim to
describe the car-following in heavy traffic.

Table 1. Parameter values for the intelligent driver model (IDM).

Parameter Given Value

Desired velocity v0 2.5 m/s
Safe time headway T 1.2 s
Maximum acceleration amax 0.97 m/s2

Desired deceleration b 1.67 m/s2

Acceleration exponent δ 4
Jam distance s0 1 m

The conventional IDM is a mathematical model that is based on psychical properties
such as the relative distance and speed between vehicles. Thus, the intention of the
drivers cannot be described in (4) and (5). To tackle this problem, we impose politeness
in the conventional model, and IDM is modified to adequately react to the surrounding
circumstances. In particular, when the ego-car sends a lane-changing signal to an interacting
vehicle, the latter chooses its action depending on its specified politeness pi ∈ [0, 1]. If the
pi of the ith interacting vehicle is close to 1, then the interacting vehicle is likely to allow
the ego-car to change lanes by reducing the speed. Once the ego-car merges into the
next lane successfully, the interacting vehicle now follows the ego-car based on (4) and (5).
Otherwise (pi is close to 0), the interacting driver ignores the signal from the ego-car and
follows the car ahead.

The speed control procedure of the modified IDM is described in Algorithm 1.
Here St = [{x1(t), v1

x(t), y1(t)}, · · · , {xn(t), vn
x(t), yn(t)}]′ is the state tuple of the interact-

ing vehicles at time step t, and S′t = {St, se}′ is the state tuple including the state of the
ego-car se = (xe(t), ve

x(t), ye(t)). Moreover, M = {i|i ∈ {1, · · · , n}}, where i is the index
of the interacting vehicle and n is the number of the interacting vehicle, P is the set of the
specified politeness to the interacting vehicle (P = {pi|i ∈ M}). Additionally, Sflag ∈ {0, 1}
is a flag of the lane-changing signal that the ego-car sends to the interacting vehicle. For ex-
ample, when the ego-car turns on the lane-changing signal, Sflag = 1, otherwise Sflag = 0.
Finally, fIDM represents a conventional IDM in (4) and (5).

It is assumed that only one interacting vehicle can see the lane-changing signal from
the ego-car. Thus, if Observe(Sflag) is true (i.e., ego-car turns on the lane-changing signal
and only one interacting vehicle observes it), the behavior of the interacting vehicle is
determined by the assigned politeness. The process of decision making for the interacting
vehicle behavior is as follows.

To include the stochastic component of the driver’s behavior, we first generate the
random number prand ∈ [0, 1] and compare it with the assigned politeness of the ith

vehicle pi ∈ [0, 1]. If the pi is larger than prand, it is assumed that the interacting vehicle
now considers the ego-car as its leader car (Line 6) and takes an action based on fIDM
(Line 7). More specifically, the interacting vehicle is willing to allow the lane-merging of
the ego-car. For example, if the interacting vehicle recognizes that the ego-car is too close,
it decelerates to keep a desired distance from the ego-car. In the case that pi is smaller than
prand, the interacting vehicle ignores the ego-car’s lane-merging intention and follows the
original front vehicle in the same lane (Line 9). In addition, when Observe(Sflag) = 0 (non-
interacting vehicle that cannot see the lane-merging signal from the ego-car), the vehicle
speed is controlled based on the conventional IDM (Line 12). This procedure is repeated
for every time step to create a reasonable test environment. Following Algorithm 1,
the politeness is imposed to the conventional car-following model.
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Algorithm 1: IDM with Politeness

1 Input St, M, P and se

2 for i ∈ M do
3 if Observe(Sflag) then
4 prand = rand[0, 1];
5 if pi > prand then
6 S′t ← St ∪ se;
7 si

t+1 = fIDM(si
t | s ∈ S′t);

8 else
9 si

t+1 = fIDM(si
t | s ∈ St);

10 end
11 else
12 si

t+1 = fIDM(si
t | s ∈ St);

13 end
14 end
15 St+1 = {∀si

t+1 ∈ St+1 | i ∈ M};
16 Output St+1

4. Game Theoretic Lane-Merging Strategy
4.1. Utility Function

In game theory, the participants are considered as rational decision-makers whose goal
is to maximize their utility function (achieve a certain numerical design value). Here we
define an appropriate utility function, and the ego-car assumes that the interacting vehicle’s
behavior aims to maximize the utility.

The objective of the ego-car is to merge into the next lane while maintaining safety.
At the same time, the interacting vehicles also try to adjust their speeds to avoid a collision.
These objectives for all game participants can be described by the utility function U≤0 [32]:

U = w1C + w2V + w3H. (6)

where w1, w2, and w3 are the non-negative weights for each term depending on its impor-
tance, C, V and H denote “Collision,” “Velocity,” and “Headway” functions defined below.

The collision detection function C ∈ {−1, 0} is equal to −1 when the collision occurs.
Otherwise, it is set to 0. Additionally, we set the follower’s weight, w1, as a varying
parameter depending on the politeness:

w1 =

{
wc × pi , for follower
wc , for leader

(7)

where wc is a constant collision penalty.
Once we introduce pi, there is room for the follower to choose the less conservative

action, even if the collision is expected due to the action of the ego-car. For example, when
the pi is close to zero, the follower’s behavior is dominated by the functions V and H.
It means that an impolite driver usually prevents the merging of ego-car by choosing the
aggressive actions, such as “Accelerate” and “Maintain.”

The function V is the normalized difference between the current and the target speeds:

V = −
∥∥∥∥v− v0

v0

∥∥∥∥
2
. (8)

If v is different from v0, V is always negative.
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The function H is defined based on the headway:

H =

{
−1 , if headway ∈ “close”
0 , if headway ∈ “sufficient.”

(9)

The comparison of the current distance headway, s, and desired distance headway,
s0, allows for the vehicle to determine whether the headway is closed or not. When the
headway is “close,” the vehicle is likely to decelerate and keeps a sufficient distance to the
front car.

The defined utility (6) can be utilized for all game participants because the common
goal of all vehicles is to drive safely by taking the appropriate actions moment. Once the
follower recognizes the leader’s lane-merging intention, it tries to maximize its utility
based on the specified politeness. For instance, although the leader car takes action (L)
first, the follower with low politeness takes an action that prevents the leader’s merging
by choosing the non-conservative action. For the leader car, by estimating the follower’s
driving intention in real time, the prediction for the follower’s behavior is available,
which will be described in the next subsection. Other parameters such as “comfort” are
not considered due to the limitations of the scenario: Dense traffic, slow driving [33].

4.2. Stackelberg Game

In the Stackelberg game approach, the game participants are assigned as the leader and
the follower. A leader takes action first, and a follower makes a decision after observing the
leader’s behavior (“first-mover advantage” [34]). We assign the leader role to the ego-car
and the follower role to the vehicle in the next lane.

To successfully merge into the next lane, the leader vehicle should predict the reaction
of the follower according to the leader’s action. We assume that the behavior of the
interacting vehicle is based on the basic principle of game theory: “All game participants
make their decisions in such a way as to maximize their own utility U”. Thus, the future behavior
of the follower can be predicted to a certain degree.

For example, from the perspective of the follower, the optimal action γ f ,∗ should
maximize its utility U f (γl , γ f ). Note that the utility is influenced by the leader’s action
γl as well as the follower’s action γ f , which is true in reality. From the perspective of the
leader, he can predict the follower’s behavior based on U f (γl , γ f ) while maximizing its
utility Ul(γl , γ f ). Since the follower’s optimal action γ f ,∗ may be not unique in some cases,
the leader assumes the worst-case scenario (the follower can take the action that is the
worst in terms of Ul(γl , γ f ) maximization).

The optimal action for the leader γl,∗ referred to as the Stackelberg equilibrium [6] is
given by:

γl,∗ ∈ argmax( min
γ f∈S f (γl)

Ul(γl , γ f )), (10)

S f (γl)
def
=
{

ζ ∈ Γ f : U f (γl , ζ) ≥ U f (γl , γ f ), ∀γ f ∈ Γ f

}
, (11)

where ζ ∈ Γ f is an optimal action of the follower that maximizes U f after observing the
leader’s action γl , S f (γl) is the strategy space for the given leader’s action and follower’s
optimal action ζ, and γl,∗ is optimal action of the leader based on the maximin strategy.

For a better understanding of the above-described algorithm, we give a simple ex-
ample of the Stackelberg game in Figure 2. In the overtaking case, the leader car in the
left line wants to go back to the right line and the follower car in the right line wants
to drive faster. The possible decisions of the leader and follower are limited to discrete
actions in Section 3.2 and denotes the initial letters in the heading as (4). To simplify, Γl
and Γ f are given as {A, L, D} and {A, M, D} respectively, so that the tree diagram has nine
leaves. The numbers at the leaves are the payoff of the leader and follower for each action
combination in S. The leader can predict the decision of the follower based on the game
theory approach.
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If the leader chooses action L, then S f (γl) is {M} to maximize its own utility. There-
fore, the leader can predict that the Ul should be 0.7 when choosing action L. Likewise,
the utility of action A and D can be predicted if the leader can predict the follower’s action
based on S f (γl). However, when the leader chooses action D, the decision to maximize
the follower’s utility is not unique, i.e., S f (γl) = {A, M}. To avoid the risk of the worst
case, the leader assumes that the follower chooses the action A, which is the worst for the
leader’s utility. The expected utility of the leader’s decision is 0.6 with action A, 0.7 with
action L, and 0.8 with action D. In this manner, we can find that the optimal action γl,∗ that
maximizes the utility is action D. It means the optimal action of the leader is deceleration
so as to allow the follower to go ahead.

-15 -10 -5 0 5 10 15

(m)

-4

-2

0

2

4

(m
)

Follower

Leader

Figure 2. Simple example of the Stackelberg game in an overtaking scenario.

4.3. Real Time Politeness Estimation

As defined earlier, politeness is the numerical value representing the intention of
the interacting vehicle to yield the ego-car. When the politeness is low, the interacting
vehicle is likely to ignore the lane-changing signal from the leader car and follows the
front car based on the IDM. If the follower’s intention is to yield to ego-car with high
politeness, the follower considers the ego-car as its target vehicle to follow. Therefore,
for safe lane-changing, the leader car should estimate the interacting vehicle’s driving
intention (i.e., politeness).

The politeness can be estimated by observing the current interacting vehicle’s acceler-
ation and is given by:

P(t + 1)← P(t) + α

1 + β
(12)

where P(t) ∈ [0, 1] is the estimated politeness at time step t, α ∈ [0, β] and β ∈ (0, ∞] are
the tunable weighting parameters that determine the update rate, and the initial politeness
P(0) is set to a relatively low value.

For example, when the acceleration of the interacting vehicle is observed (i.e., a f (t) ≥ 0
and v f (t) 6= 0), the politeness should be decreased. That is, if the interacting vehicle
accelerates in dense traffic, where there is no sufficient gap between the vehicles, we assume
that its driver is aggressive. In this case, we set α = 0. In contrast, if the deceleration of the
interacting vehicle (i.e., a f (t) < 0 or v f (t) = 0) is observed, the politeness increases until it
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reaches 1 by setting α equal to β. The ego-car estimates the follower’s intention in real time
by comparing the P(t) with the threshold Pth = [Pl

th, Pu
th], where Pl

th = 0.2 and Pu
th = 0.8.

For instance, if P(t) is less than Pl
th, then the ego-car determines the intention of follower

as “ignore” and vice versa.

4.4. Game Process

The process of the merging strategy is shown in Figure 3. As the game starts, the leader
and the follower are assigned based on their states. Specifically, the ego-car is always the
leader, and the vehicle behind the ego-car in the next lane is considered as the follower
(the Stackelberg game settings). We assume that ego-car has already reached the end
of the side lane so that lane merging is needed as soon as possible. After the target
vehicle (follower) that the ego-car should interact with is selected, the ego-car estimates the
politeness of the target vehicle by observing its acceleration and follows the optimal action
based on Stackelberg equilibrium for every time step.

Figure 3. Game process.

If the estimated politeness of the target vehicle is high enough (P(t) > Pu
th), it is

considered as “Yield” intention and the optimal action of the ego-car (γl,∗) is “Lane Change.”
In this case, based on the Stackelberg game approach, the ego-car tries to change the lane.
By contrast, even though P(t) < Pu

th is given, if γl,∗ is determined as “Maintain,” the ego-car
waits for the next time step and repeats the same procedure of the “Politeness Estimation”
(Figure 3). In addition, when the target vehicle ignores the signal from the ego-car for some
reason, the latter finishes the interaction with the target vehicle and starts the game again
with the other target vehicle. If the ego-car fails lane merging by interacting with all the
vehicles in the next lane, lane merging is possible when the traffic condition in the next
lane is relaxed rather than based on the game theoretic approach.

5. Case Studies

In order to verify the effectiveness of the proposed approach, we conduct case studies
for various test scenarios and compare our approach with the conventional rule-based
decision making. The simulations are performed on Matlab R2020a platform under desktop
specification (Intel i5-9500 CPU, Ram 16GB, Windows 10) and no computational difficulty
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is found. Figure 4 and Table 2 visualize and give the initial vehicle state conditions. There
are four vehicles in the next lane. Car 3 and Car 4 are the interacting vehicles and all the
vehicles move slowly due to the dense traffic. Therefore, space for the ego-car to merge into
the next lane is not sufficient. In addition, we assume that all vehicles can observe the state
of other vehicles, i.e., state tuple S

′
t is available for all vehicles. Although the perception

part is one of the major components in the autonomous driving technology, we exclude it
from the scope of our study and focus on the decision and control parts.

-30 -25 -20 -15 -10 -5 0 5 10 15

(m)

-4

-2

0

2

4

(m
)

Car 1Car 2Car 3Car 4

Ego car t=0s

Figure 4. Initial condition for the case studies.

Table 2. Initial conditions for simulations.

x0 (m) y0 (m) v0 (m2)
Car 1 6 2 2.5

Car 2 −4 2 2.5

Car 3 −14 2 2.5

Car 4 −24 2 2.5

Ego car −4.5 −2 0

5.1. Test Environment Setup

We consider three scenarios by assigning the different politeness values to the four
vehicles in the next lane. For a fair comparison, the same initial conditions are used for all
scenarios. The differently assigned politeness values mean that the interacting vehicles can
interpret the same traffic condition differently. For example, even for the same condition,
the reactions of the interacting vehicles to the action of the ego-car are different, which is
true in reality.

It is worth noting that instead of setting the extreme values (0 and 1), we consider the
politeness of 0.1 or 0.9 for all vehicles. It gives room to act against unexpected situations
like jaywalking. For example, even though the politeness of the interacting vehicle is 0.1,
the vehicle has a 10% chance to behave cautiously in an emergency situation.

5.2. Rule-Based Lane Merging

In this subsection, the rule-based lane-merging approach is introduced, and the
decision-making performance is compared to that of our approach in the next subsection.
Rule-based lane-merging is a quite conservative decision-making strategy since it prefers
to obey the traffic rules rather than interacting with the vehicles. For example, only the
physical properties such as the relative distance and velocity between the vehicles are
considered when making the decision [16]. From the perspective of the ego-car using the
rule-based lane-merging approach, the surrounding vehicles in the next lane are considered
as the moving obstacles, and the gap between the obstacles seems too tight to attempt
a cut-in.

5.3. Case Studies

The results of the case studies for different scenarios are shown in Figures 5–7,
where the snapshots are visualized for every 5 s during the entire simulation time (15 s).
In Scenario 1, since the politeness of Car 3 is relatively high, we reckon that Car 3 is likely
to allow the lane-changing of the ego-car as shown in Figure 5. As expected, starting from
the initial traffic state in Figure 4, the ego-car successfully merges into the next lane around
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t = 5 s. In contrast, Car 3 in Scenario 2 (Figure 6) ignores the ego-car’s lane-merging signal
due to its low politeness. Instead, the ego-car interacts with Car 4 whose politeness is high,
and the ego-car can change lanes around t = 10 s as illustrated in Figure 6.

-4

-2

0

2

4

Car 2Ego carCar 3Car 4

t=5s

-4

-2

0

2

4

(m
)

Ego carCar 3Car 4

t=10s

-30 -25 -20 -15 -10 -5 0 5 10 15

(m)
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2

4

Car 3Car 4

t=15s

Figure 5. Scenario 1: pi = {0.9, 0.1, 0.9, 0.9}.
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-30 -25 -20 -15 -10 -5 0 5 10 15
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2

4

Ego carCar 4

t=15s

Figure 6. Scenario 2: pi = {0.1, 0.9, 0.1, 0.9}.

In Scenario 3 (Figure 7), the ego-car fails to merge into the next lane when all interacting
vehicles have (Car 3 and Car 4) aggressive drivers. In this case, lane merging is only possible
once the traffic condition is relaxed (t = 15 s). The production vehicle may not want to take
a risk when they face these conflicts. Thus, it is most likely that the production AV in the
side lane may behave as the ego-car in Figure 7, which is not very efficient.

Next, we estimate politeness values for all interacting vehicles using (12). The cor-
responding plots are shown in Figure 8. We make a neutral guess by assigning the
initial politeness P0 = 0.5, which is tunable. As can be seen in Figure 8a, the ego-car
changes lanes successfully when the estimated politeness is larger than the upper thresh-
old, i.e., P(t) > Pu

th, and the optimal action γl,∗ is calculated as “Lane change.” The
estimation of the Car 4’s politeness is not performed since the ego-car does not interact
with it after completing the mission (i.e., Lane-merging).
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Figure 7. Scenario 3: pi = {0.9, 0.1, 0.1, 0.1}.
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Figure 8. Estimated politeness of target vehicles for each scenario.

Figure 8b shows the estimated politeness for Car 3 and Car 4. For the first few steps,
the ego-car interacts with Car 3, and the estimated politeness of Car 3 decreases as the
steps progress. Once the P(t) of Car 3 reaches the lower bound Pl

th, the ego-car gives
up lane-merging attempts and changes the target vehicle. Around 8 s, the target vehicle
is changed from Car 3 to Car 4, and the ego-car repeats the same procedure. Similar to
Figure 8a, the estimated politeness of Car 4 increases, and the ego-car attempts to change
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lanes when the predicted action of the follower is “Yield,” i.e., P(t) > Pu
th. The vertical

dotted line indicates the moment of time when the target vehicle is changed.
The estimated politeness for Scenario 3 is illustrated in Figure 8c. Similar to the

interaction with Car 3 in Figure 8b, both estimated politeness values decrease as the ego-car
interacts with Car 3 and Car 4. Therefore, the ego-car fails to change lanes (Figure 7). Thus,
we confirm that the estimated politeness values correspond to those from Table 3, even
though the ego-car does not know the decision-making strategy of the interacting vehicle
exactly, which is in fact based on the modified IDM.

For a fair comparison, the rule-based lane-merging strategy that is only based on the
relative distance is implemented in our scenarios with the same initial condition. In this
case, the vehicles in the next lane always ignore the lane-changing signals from the ego-car
and move based on the conventional IDM. The snapshot of this case is omitted since it
does not differ from that of Scenario 3 in Figure 7 regardless of the interacting vehicle’s
politeness. Instead, as shown in Figure 9, we illustrate the relative distance between the
ego-car and vehicle in the next lane.

Table 3. Assigned politeness.

Scenario 1 Scenario 2 Scenario 3

Car 1 0.9 0.1 0.9

Car 2 0.1 0.9 0.1

Car 3 0.9 0.1 0.1

Car 4 0.9 0.9 0.1

Using the rule-based approach, the ego-car calculates the distance to each interacting
car and compares it with the threshold (dashed line). In Figure 9, xego

t − xi+1
t+1 is the distance

between the ego-car and the vehicle behind the ego-car in the next lane (i.e., (i + 1)th

vehicle). As the (i + 1)th vehicle approaches the ego-car, the relative distance decreases
until the (i + 1)th vehicle passes the ego-car. Thus, the ego-car calculates the predicted
relative distance one step ahead. In contrast, the relative distance between the ego-car
and the vehicle in front of the ego-car in the next lane ((i)th vehicle) described by xi

t − xego
t

increases since the vehicle ahead is moving away.
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Figure 9. Calculated distance for rule-based approach.

xego
t − xi+1

t+1 and xi
t − xego

t changes drastically at the 8-th time step. It corresponds to
the (i + 1)th vehicle approaching and going beyond the ego-car at this moment. After this
step, the (i + 1)th vehicle becomes the ith vehicle, since the ego-car fails to change the lane.



Electronics 2021, 10, 894 15 of 16

At the same time, the ego-car changes the (i + 2)th vehicle to a new interacting vehicle
((i + 1)th).

We assume the safety threshold of 7 m because the vehicle length is 5 m. Therefore,
the safe gap between ith vehicle and (i + 1)th vehicle is set to 2 m. The ego-car initiates
the lane-merging when both relative distances exceed the safety threshold. In this dense
traffic, unlike the results of the game theoretic decision-making strategy, there is no chance
to merge into the next lane. That is, the ego-car is tuned to behave cautiously so that risky
decision making is avoided, which is general in production vehicles.

Based on the results of the case studies, we confirm that the Stackelberg game approach
in Figures 5 and 6 is much closer to human decision making in dense traffic compared to the
rule-based approach (see Figure 7). Since an AV being too cautious in its decision making
may not be preferred by the driver in the AV, human-like decision making should be
considered. The AV may share the road with human-driven vehicles until the penetration
rate of the AV in the road reaches 100%. Therefore, including vehicle interactions in
decision-making algorithm is quite promising. Moreover, it can also be extended to other
driving situations with little modifications.

6. Conclusions

This paper presented the lane-merging strategy for a self-driving car in dense traffic
using the Stackelberg game approach, which included the driving intention of the surround-
ing vehicles. By monitoring the speed variations of the interacting vehicle, the self-driving
car could estimate its politeness, representing driving intention. Based on the Stackelberg
game theory, the decision of the self-driving car is made in such a way as to maximize
utility function that is affected by the self-driving car as well as the interacting vehicle.
Furthermore, to describe the reasonable behavior of the human driver, we present the
modified car-following model that responds to the self-driving car’s action. The proposed
method is verified through case studies in various driving conditions. Compared to the
rule-based lane-merging strategy, the decision made by our approach is much closer to that
of the human driver in real-world driving. To extend the proposed method for different
driving scenarios, future work will include the generalization of the proposed logic in other
situations where the self-driving car frequently interacts with vehicles (e.g., intersection,
take over, cut-in, etc). In addition, rather than discrete actions, continuous action will be
considered to capture accurate vehicle dynamics.
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