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Abstract: This paper proposes a family of N-Branch hybrid switched inductor and capacitor (SLC)
converters. With the single circuit, the multi-level output voltage or current could be generated.
The proposed converter is suitable both for the voltage source and the current source. The same LC
network is reused for different LC branches. The proposed converter is controlled by the phase shift
control method with a time domain multiplexing concept. The N level circuit is operated with the
same frequency. One cycle period is divided into N small time cycles for each branch. The phase
shift for each branch is 360◦/N. The load voltage could be changed by modifying the duty cycle of
the transistor. When the SLCs work in the resonant condition, the soft switching will be acquired.
The power loss of transistors could be sharply reduced. In this paper, a 300 W SLC converter is
constructed to verify the theoretical analysis and operation mechanism in the resonant condition and
hard switching condition. With the experimental and simulated verification, the soft switching and
the stable multi-level output voltage or current are achieved. The proposed SLC converter could be
used for the multi-level voltage power supply system, such as the electric vehicle, the electric aircraft,
autonomous underwater vehicles (AUVs) and a new energy generation system.

Keywords: hybrid switched inductor and capacitor (SLC) converter; time domain multiplexing
concept; soft switching; multilevel output voltages

1. Introduction

There are different kinds of DC–DC converters. The mostly popular one is the inductor-
based converter. It includes a buck converter [1], boost converter, buck-boost converter, Cuk
converter and so on. They could provide the stable voltage and current supply for different
requirements. A switched capacitor (SC) converter has been widely used for renewable
energy applications [2–4], implant medical devices [5–7], portable electric devices [8,9],
data centers [10,11], and electric vehicles [12,13]. It has advantages such as ease of on-chip
integration, being lightweight, and high-power density. The voltage conversion ratio of SC
converters could be easily expanded through cascaded multiple SC cell topologies [14–18].
However, without the magnetic components, the current spikes will appear in the charge
loop and discharge loop of a capacitor [19]. On the other hand, the input current of an
SC converter will pulsate, leading to high current ripples and electromagnetic interfer-
ence (EMI) noises [20,21]. The resonant switched-capacitor (RSC) converter is proposed
for high-power applications. The small value inductor is injected into the charge loop
or the discharge loop to reduce the spikes of the charging current and the discharging
current [22,23]. What is more, the soft switching is achieved, which reduces the power loss
of the transistors. However, in order to maintain the resonant condition, the load voltage is
regulated in a very narrow range, which is hard for high-power applications.
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The switched-inductor converter is proposed based on the switched-capacitor con-
verter for the current source application [24–27]. It is widely used for PV system applica-
tions [28,29]. It provides an alternative power conversion method. This power conversion
method is suitable for the current source and the current based load, such as LEDs. How-
ever, the application range of a switched-inductor converter is limited.

The inductor energy storage in the switched-inductor converter could reduce the
current spikes. The capacitor energy storage in the switched-capacitor converter could
reduce the ripples of the voltage. If the capacitor and inductor are used together, the quality
of the converter could be highly improved, and the application range could then be largely
extended. What is more, this kind of converter is suitable for both the current source and
voltage source.

In a system, there are several required voltage levels for different applications [30–32].
The complex topology, such as buck-boost topology and modular multilevel topology,
could provide the power supply for the different output voltage requirements. However,
this method is high cost, and the power density is not high enough.

This paper proposes a family of N-Branch hybrid switched inductor and capacitor
(SLC) converters; the combination of the capacitor energy storage and the inductor energy
storage could bring an optimization of the traditional switched-capacitor converter and
switched-inductor converter. It is both suitable for the current source and the voltage source.
Moreover, it is good for the resistive load and the current based load. The pulsating input
current and the input voltage ripples could be reduced with the proposed SLC converter.
This converter provides multi-level voltage for different applications. It could be widely
used for DC–DC power conversion.

The rest of the paper is organized as follows: the operation of the proposed SLC
converter is shown in Section 2. Section 3 provides the theory analysis of the SLC converter.
The theory verification is presented in Section 4. The conclusions and discussions are drawn
in Section 5.

2. Operation Analysis of Proposed SLC Converter

The topology of the N-Branch SLC converter is shown in Figure 1. This SLC converter
is a multi-level buck converter. Each branch circuit is divided and connected by a transistor.
Based on the time domain multiplexing concept, the phase range of each branch is 360

◦

N .
When the transistor is turned on in the Xth branch, the Xth branch is connected to the
power source. In each branch, the load voltage could also be alternated by changing the
duty-cycle of the transistor. A parallel connected LC network at the primary side of the
SLC converter consists of the inductor LR and the capacitor CR. The pulsating input current
could be reduced with the inductor LR, and the input voltage ripples could be filtered by
the capacitor CR. In each branch circuit, there is a serial connected inductor and capacitor. If
LR = L1 = L2 = L3 = . . . = LN and CR = C1 = C2 = C3 = . . . = CN, the proposed SLC converter
works in the resonant condition. The zero-voltage switching and the zero current switching
is achieved. What is more, the SLC converter could work in the hard-switching condition to
provide a wide regulated voltage range. This SLC converter could achieve the continuous
load voltage and continuous load current with the duty-cycle control in each branch.
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The three-branch SLC converter is taken as an example to show the theory analysis
and the operation method, which is shown in Figure 2. The timing waveforms of the
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three-branch SLC converter are shown in Figure 3. It can be seen from Figure 3 that the
phase shift of the transistor is set to 120◦. The one switching cycle could be divided into
three stages. The period of Stage 1 is from t0 to t2. The period of Stage 2 is from t2 to t4 and
the period of Stage 3 is from t4 to t6.
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In Stage 1, S1 is turned on while S2 and S3 are turned off; Branch 1 is connected to the
power source. During the period (t0~t1), the inductor LR and capacitor CR are charged by
the power source at the same time. The current of inductor LR and capacitor CR is in the
forward direction. During the same period, the power source transfers its energy to the
inductor L1, capacitor C1 and load resistor RL1. During the period (t1~t2), the direction of
current capacitor CR is changed. The power source, inductor LR and capacitor CR deliver
their energy to inductor L1, capacitor C1 and load resistor RL1.

In Stage 2, S2 is turned on while S1 and S3 are turned off; Branch 2 is connected to the
power source. The charge and the discharge of inductor LR and capacitor CR are similar to
Stage 1.

In Stage 3, S3 is turned on while S1 and S2 are turned off; Branch 3 is connected to the
power source. The charge and the discharge of inductor LR and capacitor CR are similar to
Stage 1.

The relative operating states of the proposed SLC converter are shown in Figure 4.
The charge of capacitor CR and the discharge of capacitor CR are kept balanced in one
switching cycle. Moreover, the charge of inductor LR and the discharge of inductor LR are
also kept balanced in one switching cycle. The inductor LR and capacitor CR build a LC
compensation network. It could work in the resonant condition to transfer the maximum
power level for the three LC branches.
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The operation of the proposed SLC converter could be drawn in six states, as shown
in Figure 4. During period (t0~t2), when S1 is on while S2 and S3 are off, there are States 1
and 2. As shown in Figure 4a, in State 1, the input current flows to the capacitor CR and
Branch 1. It can be seen from Figure 4b, in State 2, that the current of capacitor CR and the
input current both flow to Branch 1. During period (t2~t4), when S2 is on while S1 and S3
are off, there are States 3 and 4. As shown in Figure 4c, in State 3, the input current flows to
the capacitor CR and Branch 2. It can be seen from Figure 4d, in State 4, that the current
of capacitor CR and the input current both flow to Branch 2. During period (t4~t6), when
S3 is on while S1 and S2 are off, there are States 5 and 6. As shown in Figure 4e, in State 5,
the input current flows to the capacitor CR and Branch 3. It can be seen from Figure 4f, in
State 6, that the current of capacitor CR and the input current both flow to Branch 3.

3. Theory Analysis of Proposed SLC Converter

For easy understanding, in the calculation, the internal resistance of the power source
and diodes is ignored. What is more, the voltages of the diodes are also neglected. For the
effectual regulation of the load voltage, the duty-cycle of each branch should be set to less
than 1

3 .
The resonant frequency of the primary compensation network could be written as:

fs =
1

2π
√

LrCr
(1)

where Lr is the inductance of inductor LR, and Cr is the capacitance of capacitor CR.
When S1 is turned on while S2 and S3 are turned off, Branch 1 is connected to the

power source. In Stage 1, during the period (t0~t1), as shown in Figure 4a, inductor LR and
CR are charged by the power source. At the same time, the power delivers its energy to
Branch 1. Based on the KVL principle, the following expressions are obtained:

Lr
diLr(t)

dt
= Vin(t) − VC1(t) − VL1(t) (2)

iin(t) = Cr
dVCr(t)

dt
+ iin1(t) (3)

VCr(t) = VC1(t) + VL1(t) = Vin−VLr(t) (4)
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where iLr(t) is the current of the inductor LR, Vin(t) is the input voltage, VC1(t) is the
voltage of capacitor C1, VL1(t) is the voltage of inductor L1, iin(t) is the input current, Cr
is the capacitance of capacitor CR, VCr(t) is the voltage of capacitor CR, and iin1(t) is the
input current of Branch 1.

From Figure 3, the boundary condition is:

iCr(t 1) = 0 (5)

During the period (t1~t2), as shown in Figure 4b, the power source, inductor LR, and
capacitor CR deliver their energy to Branch 1 at the same time.

The following equations could be obtained:

iin1(t) = Cr
dVCr(t)

dt
+ iin(t) (6)

VCr(t) = Vin(t) + VLr(t) (7)

When S2 is turned on while S1 and S3 are turned off, Branch 2 is connected to the
power source. In Stage 2, during the period (t2~t3), as shown in Figure 4c, inductor LR and
CR are charged by the power source. At the same time, the power delivers its energy to
Branch 2. Based on the KVL principle, the following expression is obtained:

Lr
diLr(t)

dt
= Vin(t) − VC2(t) − VL2(t) (8)

where VC2(t) is the voltage of capacitor C2, and VL2(t) is the voltage of inductor L2;

VCr(t) = Vin(t) − VLr(t) (9)

iin(t) = Cr
dVCr(t)

dt
+ iin2(t) (10)

where iin2(t) is the input current of Branch 2.
It can be seen from Figure 3 that the boundary condition is:

iCr(t 3) = 0 (11)

During the period (t3~t4), as shown in Figure 4d, the power source, inductor LR, and
capacitor CR deliver their energy to Branch 2.

The following equations could be obtained:

iin2(t) = Cr
dVCr(t)

dt
+ iin(t) (12)

VCr(t) = Vin(t) + VLr(t) (13)

It can be seen from Figure 3 that the boundary condition is:

iCr(t4) = 0 (14)

When S3 is turned on while S1 and S2 are turned off, Branch 3 is connected to the
power source. In Stage 3, during the period (t4~t5), as shown in Figure 4e, inductor LR and
CR are charged by the power source. At the same time, the power delivers its energy to
Branch 3. Based on the KVL principle, the following expression is obtained:

Lr
diLr(t)

dt
= Vin(t) − VC3(t) − VL3(t) (15)

where VC3(t) is the voltage of capacitor C3, and VL3(t) is the voltage of inductor L2;



Electronics 2021, 10, 891 6 of 15

VCr(t) = Vin − VLr(t) (16)

iin(t) = Cr
dVCr(t)

dt
+ iin3(t) (17)

where iin3(t) is the input current of Branch 3.
It can be seen from Figure 3 that the boundary condition is:

iCr(t 5) = 0 (18)

During the period (t5~t6), as shown in Figure 4f, the power source, inductor LR, and
capacitor CR deliver their energy to Branch 3.

The following equations could be obtained:

iin3(t) = Cr
dVCr(t)

dt
+ iin(t) (19)

VCr(t) = Vin(t) + VLr(t) (20)

It can be seen from Figure 3 that the boundary condition is:

iCr(t 6) = 0 (21)

In one switching cycle, the charge and discharge of inductor LR and capacitor CR are
kept balanced. Based on the aforementioned discussion and calculation, it can be seen from
Figure 3 that the total charge of capacitor CR and total discharge of capacitor CR could be
respectively derived as:

QCr(charge) =
∫ t1

t0

Cr
dVCr(t)

dt
dt+

∫ t3

t2

Cr
dVCr(t)

dt
dt+

∫ t5

t4

Cr
dVCr(t)

dt
dt (22)

QCr(discharge)= [
∫ t2

t1

Cr
dVCr(t)

dt
dt+

∫ t4

t3

Cr
dVCr(t)

dt
dt+

∫ t6

t5

Cr
dVCr(t)

dt
dt] (23)

In one switching cycle period, the charge balance of capacitor CR could be written as:

QCr(discharge) + QCr(discharge) = 0 (24)

Substituting (22) and (23) into (24), the charge balance of capacitor CR in one switching
cycle of capacitor could be derived as:

[
∫ t1

t0
Cr

dVCr(t)
dt

dt+
∫ t3

t2
Cr

dVCr(t)
dt

dt+
∫ t5

t4

Cr
dVCr(t)

dt
dt] + [

∫ t2

t1

Cr
dVCr(t)

dt
dt+

∫ t4

t3
Cr

dVCr(t)
dt

dt+
∫ t6

t5
Cr

dVCr(t)
dt

dt] = 0 (25)

During the period (t0~t2), the following equation does always stand up.

VCr(t) = Vo1(t) + VL1(t) (26)

During the period (t2~t4), the following equation does always stand up.

VCr(t) = Vo2(t) + VL2(t) (27)

During the period (t4~t6), the following equation could be derived.

VCr(t) = Vo2(t) + VL3(t) (28)

As a result, the average load voltages Vo1, Vo2 and Vo3 in one switching cycle could
be expressed as:

Vo1 =
3
∫ t2

t0
[V Cr(t) − VL1(t)]dt

Ts
(29)



Electronics 2021, 10, 891 7 of 15

Vo2 =
3
∫ t4

t2
[V Cr(t) − VL2(t)]dt

Ts
(30)

Vo3 =
3
∫ t6

t4
[V Cr(t) − VL3(t)]dt

Ts
(31)

In this paper, D1 is set as the duty cycle of S1, D2 is set as the duty cycle of S2 and
D3 is set as the duty cycle of S3. The duty cycle could be changed to achieve the different
load voltage.

If D1 ≤ 1
3 , D2 ≤ 1

3 , and D3 ≤ 1
3 , the average load voltages Vo1, Vo2, and Vo3, in one

switching cycle, could be expressed as:

Vo1 =
3
∫ D1Ts

0 [V Cr(t)−VL1(t)]dt
Ts

(32)

Vo2 =
3
∫ D2Ts

0 [V Cr(t)−VL2(t)]dt
Ts

(33)

Vo3 =
3
∫ D3Ts

0 [V Cr(t)−VL3(t)]dt
Ts

(34)

4. Experimental and Simulated Verification

In order to verify the performance and mechanism of the SLC converter, a 300 W
power level SLC converter is constructed in this paper. The experimental SLC converter is
shown in Figure 5. The power circuit and control unit are integrated in the same PCB board.
The performance of the proposed SLC converter is respectively tested in the resonant
condition and the normal condition. The parameters of the proposed SLC converter are
shown in Table 1.
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Table 1. Circuit parameters.

Prameters Value

Lr 5 µH/20 µH
Cr 10 µF

L1, L2, L3 5 µH
C1, C2, C3 10 µF

S1, S2, S3, S4

N channel MOSFET,
IRF640NPBF, Vdss = 200 V, Id = 18 A, 150 mΩ @

11 A, 10 V, 150 W
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Table 1. Cont.

Prameters Value

D1, D2, D3

Fast Recovery Diode,
VS-20CTH03STRL-M3, Vr = 300 V, Io = 10 A,

Vf = 1.25 V@10 A, trr = 35 ns.
Input voltage 50 V and 100 V

Switching frequency 22.51 kHz/100 kHz
RL1 = RL2 = RL3 0~1000 Ω

4.1. Case 1: Charge Balance Validation

As shown in Figure 6, if the switching frequency is set to 22.51 kHz, the proposed
SLC converter works in the resonant condition. It can be seen that the waveforms of the
input current and the currents of Branch 1, Branch 2 and Branch 3 meet the theory analysis.
The smoothly input current is achieved. The current spikes of the transistors are highly
reduced with the LC network in each branch. As shown in Figure 6, in one switching cycle,
the summation of the charge of capacitor CR and the discharge of capacitor CR equal zero.
This is the same for the inductor LR. As a result, the charge balance of inductor LR and
capacitor CR in one switching cycle is verified.
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4.2. Case 2: Soft Switching Validation

In the resonant condition, the ZVS and ZCS are achieved with the proposed SLC
converter, as shown in Figure 7. When the switching frequency is set to 100 kHz (the duty
cycle of S1 is 0.2, the duty cycle of S2 is 0.1 and the duty cycle of S3 is 0.33), it can be seen
from Figure 8 that the different voltages (33.19 V, 17.00 V and 41.23 V) are achieved by
changing the duty-cycle of the transistor in each branch with the load resistance 50 Ω. The
load voltage ripple factors of the three branches are respectively 0.80%, 0.85% and 0.69%.
As a result, with a suitable regulation, the load voltage could be steadily controlled with
good performance.
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4.3. Case 3: Current Source Validation

To demonstrate the suitable application for the current source, the simulation is
conducted with a 5 A current source. When the proposed SLC converter works in the
resonant condition, as can be seen in Figure 9, the input current is kept stable with very
small ripples. The input currents of Branch 1, Branch 2 and Branch 3 are regulated smoothly
without high spikes. The current spikes of the transistors are highly reduced with the LC
network in each branch. In the resonant condition, as shown in Figure 10, the transistor
could be turned on in the ZCS condition and turned off in the ZVS condition. The soft
switching is achieved with the proposed SLC converter. It can be seen from Figure 11
that the load currents of the three branches are measured with the switching frequency
of 100 kHz. When the switching frequency is set to 100 kHz (the duty-cycle of S1 is 0.2,
the duty cycle of S2 is 0.1 and the duty cycle of S3 is 0.33), as shown in Figure 11, the
different currents (1.80 A, 0.93 A and 2.27 A) are achieved by changing the duty-cycle of the
transistor in each branch with the load resistance 50 Ω. The load current ripple factors of
the three branches are 0.79%, 0.87% and 0.69%. As a result, with a suitable regulation, the
load current could be steadily controlled with good performance. The simulation results
have a good match to the theory analysis.
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As shown in Figure 12, with the same duty cycle of the transistors, the constant
currents of the different branches will be achieved with different load power levels. It can
be seen from Figure 12 that the input current source is set to 1 A, and the duty cycle of the
three transistors of the three branches is set to 0.33. If the load resistors of Branch 1, Branch
2 and Branch 3 are set to 20 Ω, 50 Ω and 100 Ω, the load currents of the three branches are,
respectively, 0.34 A, 0.33 A and 0.33 A. The constant current does not depend on the load
power level. This is a specific feature of the SLC converter.
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4.4. Case 4: Comparison of Voltage Source and Current Source

The operating waveforms of public capacitor CR and inductor LR are also measured
in this paper. It can be seen from Figure 13 that, with the rising switching frequency, the
voltage ripples of capacitor CR and the current ripples of inductor LR will be reduced. When
the SLC converter works in the resonant condition (22.51 kHz), the sinusoidal voltage and
sinusoidal current will be achieved with low EMI noise, as shown in Figure 13. With the
5 A current source, the value of the current ripples of inductor LR is almost zero. With the
100 V input voltage source, the maximum peak to peak voltage ripple of capacitor CR and
the maximum peak to peak current ripple of inductor LR are respectively 3 V and 2 A.

The Vo vs. duty-cycle and Io vs. duty-cycle of Branch 1 are respectively measured
with the voltage source and the current source. The duty-cycle of S2 and duty-cycle S3 are
both set to 0.31. The results are shown in Figure 14. The switching frequency is 100 kHz. It
can be seen from Figure 14 that the output voltage and output current will both increase
with the rising of the duty-cycle for the voltage source and the current source.
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Figure 14. Vo vs. duty-cycle and Io vs. duty-cycle of Branch 1.

4.5. Case 5: Experimental Validation

To verify the theory analysis, experiments were conducted in the laboratory. A 300 W
power level three-branch SLC converter was built and tested as the experimental object.
The voltage source was adapted in the experiments. The input voltages were respectively
set to 50 V and 100 V. The duty-cycle of S1 in branch 1 was set to 0.2. The switching
frequency of all transistors was set to 100 kHz. As shown in Figure 15, the stable load
voltage and current were achieved with 100 V input voltage. The input voltage of the
three-branch SLC converter is continuous and smooth without high spikes. What is more,



Electronics 2021, 10, 891 12 of 15

when the input voltage was changed to 50 V and the duty-cycle was set to 0.3 for all
transistors of the SLC converter, the tested waveforms of the load voltages of the three
branches were obtained and are shown in Figure 16. It can be seen from Figure 16 that the
output voltages of the three branches are similar. The amplitude is about 48 V. As a result,
the multilevel output voltages could be acquired with the single SLC topology. The good
performance of the SLC converter is verified with the simple topology.
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4.6. Case 6: Efficiency Analysis

The efficiency of the proposed SLC converter is respectively tested with the voltage
source and the current source. The high efficiency is achieved with the proposed SLC
converter. The tested results are respectively shown in Figures 17 and 18. The switching
frequency is set to 100 kHz in the experiments. As shown in Figure 17, with the voltage
source, the highest efficiency of the proposed SLC converter is 98.62% at the load power of
70 W. It can be seen from Figure 18 that, with the current source, the highest tested efficiency
of the proposed SLC converter is 98.49% at the load power 270 W. The conclusion could
be derived from the measured data, as shown in Figures 17 and 18, that, with the voltage
source, the efficiency of the proposed SLC converter will decrease with the increasing of the
load power; however, with the current source, the efficiency of the proposed SLC converter
will climb with the increasing of the load power.
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5. Conclusions and Discussion

An innovative N-Branch SLC converter is proposed in this paper. The LC resonant
network is used for the power transfer unit. When the proposed SLC converter works
in the resonant condition, the ZVS and ZCS are achieved. The proposed SLC converter
is suitable for both the voltage source and the current source. The multi-level voltage or
current could be realized by extending the branches and sharing the same primary LC
network. The time domain multiplexing concept is used in this paper by dividing the one
switching cycle phase to 360

◦

N . The PWM control method is adapted to get the required
load voltage or current. Moreover, the continuous input current could be achieved with the
voltage source. The simulated and experimental results show that the stable multi-level
load voltage or current could be realized with the proposed SLC converter. The high
efficiency of the proposed SLC converter is achieved with the simple topology. This SLC
converter extends the application range of the converter for resistive loads and current
based loads.
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