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Abstract: In the renewable energy sector, the extraction of parameters for solar photovoltaic (PV)
cells is a widely studied area of research. Parameter extraction is a non-linear complex optimization
problem for solar PV cells. In this research work, the authors have implemented the Tunicate swarm
algorithm (TSA) to estimate the optimized value of the unknown parameters of a PV cell/module
under standard temperature conditions. The simulation results have been compared with four
different, pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of
particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), and
whale optimization (WOA). The comparison of results broadly demonstrates that the TSA algorithm
outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and
convergence rate. Furthermore, the statistical results confirm that the TSA algorithm is a better
algorithm in terms of average robustness and precision. The Friedman ranking test is also carried out
to demonstrate the competency and reliability of the implemented approach.

Keywords: photovoltaic; TSA; parameter extraction; single-diode model; double-diode model;
swarm intelligence

1. Introduction

Solar energy is emerged as a potential renewable source of energy. For the eighth year
in a row, solar power has received the greatest proportion of groundbreaking investment
opportunities in renewable energy sources. Because of the high investment cost of PV-
generating installations, it is necessary to estimate the behavior of the PV-system from the
designing phase to assure efficient utilization of solar energy in electricity generation [1,2].
Solar energy is also reflected as an extremely capable renewable resource owing to its usage
and non-polluting nature [1–3]. Moreover, its modularity and scalability have added to
its extensive acceptance in power systems through different photovoltaic (PV) configura-
tions [4]. For simulating, controlling, and evaluating the photovoltaic systems, modeling
of the solar-cell installation must be done. Whenever photovoltaics start operating, the
solar-cell parameters could be utilized for accounting for the detectability and analysis [3].
However, the practical aspect is that photovoltaic devices are majorly bare compared to sev-
eral outer atmospheric belongings, and its photovoltaic arrays do not last always efficiently
which will harm the production of sun-based devices [4]. Accordingly, this is a critical
estimation of the practical performance of photovoltaic arrays in the process to achieve,
enhance, and simulate these types of systems/devices. With this aim, we frequently use a
reliable prototype to measure current and voltage files [5].
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The importance of photovoltaics is estimated to be a major stimulating topic by scien-
tists/researchers and firms to progress energy adaption and reduce costs [6–8]. To boost
the systematic performance of photovoltaics, modeling the photovoltaic cells and their
segments is a crucial part. The non-linear dimensions and sporadic nature of meteorologic
static make it difficult to identify cell constraints [9]. Furthermore, the production firms
require assurance of the performance of photovoltaic units for approx. twenty-five years;
photovoltaic arrangements are dependent on location and unavoidably undergo degrada-
tion, along with possible occurrences of electrical faults. So, we can considerably work on
a systematic model that predicts the practical behavior of the photovoltaic cell in possible
working conditions [10].

Generally, PV systems are vulnerable to outside atmospheric aspects such as tem-
perature and irradiance, which affect the effectiveness of solar energy [11]. Thus, it is
essential to generate current–voltage modeling setups for enhancing and controlling PV
arrangements [12]. Generally, single, double, and triple diode models are majorly used
for photovoltaic cells [13–15], and are extensively used to specify the current–voltage
connections. Parameters of the photovoltaics help to determine the accurateness and
dependability of the models. However, due to unbalanced operational cases, such as faults
and aging, the models’ parameters are not accessible. Therefore, the development of an
active methodology to accurately extract these parameters turn out to be critical. The single
diode model (SDM) is majorly used in the approximation of these constraints because
of ease and acceptance. The double diode model (DDM) is expected to be as accurate
as SDM, especially in lower solar irradiance; nevertheless, it desires to exist for a long
consuming time [16–20]. To get more accurate and precise parameters from nonlinear
implicit equations with high accuracy, evolutionary algorithms [21–31] were proposed.
The bio-related algorithms are more accurate and powerful optimization algorithms for
simplifying nonlinear transcendental equations, as they do not include complex mathe-
matics. In the proposed work, TSA is implemented for the parameter extraction of the
solar cell/module, and the results clearly show the superiority of the TSA over particle
swarm optimization (PSO). The reason for this is that PSO has the problem of getting
stuck in the local optima solution due to poor exploration capabilities for searching for the
optimal solution in the search space, while the searching mechanism of TSA provides a
good trade-off between exploration and exploitation capabilities [18]. Hence, TSA provides
a more optimal solution as compared with PSO and other existing algorithms.

In this manuscript, we have discussed, initially, the problem formulation followed by
a mathematical model for solar PV cell/module, as presented in Section 2. In Section 3,
a brief introduction of the TSA algorithm is discussed and is implemented to estimate
the optimized value of the unknown parameters of a PV module model. In Section 4,
the simulation results of the TSA algorithm are discussed and compared with those of
pre-existing metaheuristic algorithms. Section 5 entails the discussion and finally, the
manuscript is concluded in Section 6.

2. Problem Statement

In a photovoltaic solar cell, the parallel circuits are formulated using single-diode and
double-diode models. In the solar cell, the correlation between the current and voltage is
represented using equivalent circuit models.

2.1. Photovoltaic Panel Module Model

The equivalent circuit of PV panel module is shown in Figure 1. The relation between
the current and voltage at the output terminal for the PV panel module is expressed as:

Il/Np = Ip − ISD

[
exp

(
q
(
Vl/Ns + Rs Il/Np

)
akBT

)
− 1

]
−

Vl/Ns + Rs Il/Np

Rsh
(1)
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where Ns and Np represent the number of solar cells connected in series and parallel,
respectively. Il stands for cell current in the output, Ip represents the photogenerated
current, ISD stands for the reverse saturation current. Vl , a, Rs, kB, T and q are the cell
output voltage, diode ideality constant, series resistance, Boltzmann constant (1.381 ×
10−23 J/K), junction temperature (◦K), and electron charge (1.602 × 10−19 C), respectively.
It is depicted in Figure 1 that only five parameters (Ip, ISD, a, Rs and Rsh) are needed to be
estimated for the minimum value of RMSE.
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2.2. Objective Function

The key deliverables in this work are the optimization of unknown specifications for
both SDM and DDM models to reduce the error between the experimental and estimated
data. The objective function for error used here is the same as the one that authors have
used previously in [23–25]:

RMSE =

√√√√1
k

k

∑
N=1

f (Vl , Il , ) (2)

where Vl and Il are the measured voltage and current of the PV module. The parameter k
stands for the number of experimental data sets. The best solution found by the TSA is
represented by a vector X.

For the PV panel module model, fsingle(Vl , Il , X) = Ip − ISD

[
exp

(
q
( Vl

Ns +
Rs Il
Np

)
a1kBT

)
− 1

]
−

Vl
Ns +

Rs Il
Np

Rsh
− Il

Np(
X = Ip, ISD, a, Rs, Rsh

)
 (3)

3. Tunicate Swarm Algorithm

In [6], authors have proposed a new metaheuristic algorithm known as the Tunicate
swarm algorithm. These are visible from a few meters’ distance and create a pale blue–
green bioluminescent light which is intense in nature. These are cylindrically shaped and
must open at one end only when they grow to the size of a few millimeters. Each tunic
consists of growing a gelatinous tunic which helps to join all individuals. These tunicates
are opened at one end only, and they grow up to a few millimeters in size. In every tunicate,
a gelatinous tunic grows, which helps all the individuals to join. Each tunicate, through
atrial syphons, generates jet propulsion from its opening by receiving water from the
adjacent sea. To understand the actions of jet propulsion using the mathematical model,
the tunicate should fulfill three conditions: prevent collisions between candidate solutions,
step more toward the location of the best solution, and stick close to the best solution.
Figure 2 depicts the process flow chart of TSA for parameter extraction.
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3.1. Prevent Collisions between Candidate Solutions

We initialize the parameters
→
A (constant), gravity force (

→
G), water flow advection in

the deep ocean (
→
F ), social force

→
M and the maximum number of iterations:

→
A =

→
G
→
M

(4)

→
G = c2 + c3 −

→
F (5)

→
F = 2× c1 (6)

M = bPmin + c1 × Pmax − Pminc (7)

where, c1, c2, c3 are random numbers in the range [0,1], and Pmin and Pmax are considered
as 1 and 4, respectively.

3.2. Step More toward the Location of the Best Solution

The search agents are moved in the direction of the finest neighbors after successfully
preventing a conflict with the neighbors:

→
PD =

∣∣∣∣→FS− rand×
→
P p(x)

∣∣∣∣ (8)

where
→

PD is the total distance between the search agent and food source, rand is the random

number in the range [0,1], x indicates the current iteration,
→
FS indicates the position of the

food source, and
→
P p(x) is the position of the tunicates.

3.3. Stick Close to the Best Solution

The search agent could even establish its position as the leading search agent.

→
P p(x) =


→
FS +

→
A×

→
PD, i f rand ≥ 0.5

→
FS−

→
A×

→
PD, i f rand < 0.5

(9)
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The position of all the tunicates is updated with respect to the position of the first two
tunicates as follows:

→
P p(x + 1) =

→
P p(x) +

→
P p(x + 1)

2 + c1
(10)

where
→
P p(x + 1) represents the updated position of the tunicates.

3.4. Implementation of TSA for Parameter Extraction

Step 1. Initialize the population of search agents of the fifth order dimension in the
search space. The fifth order dimension represents the photovoltaic current (Ip), series
resistance (Rs), shunt resistance (Rsh), diode saturation current (ISD), and diode ideality
factor (a). The range of these parameters are [0–10, 0.001–2, 0–2000, 0–50, 0–100].

Step 2. Regulate the fitness of all agents in the search space using Equation (2).
Step 3. Update the position of the agents at every iteration using TSA. The algorithm is

designed to work in the minimization mode; thus, the location of the particles that acquire
minimum costs represents the optimized parameters of SDM with minimum RMSE.

4. Results and Discussion

We analyzed the feasibility of the TSA algorithm and evaluated it using mainly one
polycrystalline PV module (Photowatt-PWP201) under standard temperature conditions
(i.e., 1000 W/m2 at 30 ◦C). As a result, the retrieved PV module parameters were monitored
and used to create simulated I-V data. The reliability of the WOAPSO is evaluated and
compared with six metaheuristics algorithms, i.e., GSA [7], SCA [8], GWO [9], PSO [10],
WOA [11], PSOGSA [12], as well as other algorithms existing in the literature. For the
experiment, the sample size and the objective function evaluations are set between 30 and
50,000, respectively. Furthermore, a minimum of 30 separate runs are carried out to prevent
contingency.

The efficiency of the proposed method is evaluated based on distinct empirical tools
such as the internal absolute error (IAE), the Relative Error (RE), the precision of the curve
fitting, and the global minimum convergence patterns. The experimental values of current
and voltage are taken from [13] by using Photowatt-PWP201 (Photowatt, Bourgoin-Jallieu,
France). The Photowatt-PWP201 PV module is composed of 36 polycrystalline cells ar-
ranged in a series to generate current-voltage data under standard temperature conditions.
The data collection consists of a total of 23 for the PV module. For a reasonable comparison,
the search ranges (i.e., upper and lower bound) for each parameter are tabulated in Table 1,
which are the same as those being used by investigators in [13–15]. The TSA algorithm is
implemented on the MATLAB 2018a (MathWorks, Mexico) platform with Intel ® core ™
i7-HQ CPU, 2.4 GHz, 16 GB RAM laptop.

Table 1. Range of parameters for solar photovoltaic (PV) module.

Parameters Photowatt-PWP201 PV Module

Lower Bound Upper Bound

Ip (A) 0 10
Isd (µA) 0 50
Rs (Ω) 0.001 2
Rsh (Ω) 0 2000

a 0 100

4.1. TSA for Parameter Extraction of Photowatt-PWP201 PV Module

This section discusses the evaluation efficiency of the TSA algorithm. Parameters of
the Photowatt-PWP201 PV module were estimated under standard temperature conditions
by utilizing the SDM model. The optimal values of the five parameters (Ip, Isd, a, Rs, Rsh) for
SDM of the solar PV module are presented in Table 2. The characteristics curves of current-
voltage (I-V) and power-voltage (P-V) are redrawn by implementing the TSA algorithm
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under optimized parameters. Figure 3 demonstrates the estimated and experimental I-V
and P-V characteristics curves. It can be observed that the estimated parameters show good
agreement with the measured ones, which proves the efficient performance of the TSA.

Table 2. Comparison of TSA with other parameter estimation methods for Photowatt-PWP201
PV Module.

Algorithms Iph (A) Rs (Ω) Rsh (Ω) Isd (µA) a RMSE

WOAPSO [18] 1.5032 0.0213 668.27 0.024 1.502 8.86 × 10−4

GSA 0.0278 2 1201.097 0.050 58.4588 8.80 × 10−3

PSOGSA 0.0218 0.6430 1100.437 0.01 79.7893 7.156 × 10−3

SCA 1.0063 0.0496 1107.399 0.039 1.0532 1.28 × 10−2

WOA 0.0264 0.0113 588.5011 0.0424 1.4496 9.54 × 10−4

TSA 0.0261 0.0017 2000 0.053 1.4727 5.06 × 10−4
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Figure 3. Current-Voltage (I-V) and Power-Voltage (P-V) characteristics curve for estimated and
experimental values for single-diode model of Photowatt-PWP201 PV Module. Symbols represent
measured data, and optimized data are represented by solid lines.

Table 3 represents the Internal absolute error (IAE) between the estimated and experi-
mental data sets. Every determined value of IAE (at 1000 W/m2 and 30 ◦C) is less than
0.0195, which indicates that the parameters optimized by the TSA are very precise. The
error relating to the measurement results for each of the 23 pair points is determined by
the IAE and Relative Error (RE). The IAE and RE values are calculated using Equations (11)
and (12). The curve of IAE and RE between experimental and estimated values is shown in
Figure 4.

IAE = |Imeasured − Isimulated| (11)

RE =
(Imeasured − Isimulated)

Imeasured
(12)
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Table 3. The calculated current and absolute error results of TSA (Tunicate swarm algorithm) for solar PV (Photovoltaic)
module.

Observations VL (V) IL (A) Isim (A) IAE (A) Pmeasured (W) Psimulted (W) IAE (W)

1 0.1246 1.0345 1.0335 0.001 0.1288 0.1256 0.0032
2 0.1248 1.0315 1.0335 0.002 0.1287 0.1226 0.0061
3 1.8093 1.03 1.0335 0.0035 1.8635 1.8765 0.013
4 3.3511 1.026 1.0234 0.0026 3.4382 3.4354 0.0028
5 4.7622 1.022 1.0234 0.0014 4.8669 4.8766 0.0097
6 6.0538 1.018 1.019 0.001 6.1627 6.1456 0.0171
7 7.2364 1.0155 1.0142 0.0013 7.3485 7.3256 0.0229
8 8.3189 1.014 1.011 0.003 8.4353 8.4453 0.01
9 9.3097 1.01 1.002 0.008 9.4027 9.4124 0.0097
10 10.2163 1.0035 1.023 0.0195 10.252 10.245 0.007
11 11.0449 0.988 0.985 0.003 10.9123 10.9234 0.0111
12 11.8018 0.963 0.967 0.004 11.3651 11.3554 0.0097
13 12.4929 0.9255 0.918 0.0075 11.5621 11.5722 0.0101
14 13.1231 0.8725 0.883 0.0105 11.4499 11.445 0.0049
15 13.6983 0.8075 0.8173 0.0098 11.0613 11.0521 0.0092
16 14.2221 0.7265 0.7324 0.0059 10.3323 10.321 0.0113
17 14.6995 0.6345 0.633 0.0015 9.3268 9.313 0.0138
18 15.1346 0.5345 0.535 0.0005 8.0894 8.0754 0.014
19 15.5311 0.4275 0.4356 0.0081 6.6395 6.6367 0.0028
20 15.8929 0.3185 0.3256 0.0071 5.0618 5.0524 0.0094
21 16.2229 0.2085 0.2145 0.006 3.3824 3.3724 0.01
22 16.5241 0.101 0.111 0.01 1.6689 1.6564 0.0125
23 16.7987 0.008 0.006 0.002 0.1343 0.1347 0.0004

Sum of IAE 0.0594 0.0927

Electronics 2021, 10, x FOR PEER REVIEW 7 of 12 
 

 

Table 3 represents the Internal absolute error (IAE) between the estimated and ex-
perimental data sets. Every determined value of IAE (at 1000 W/m2 and 30 °C) is less than 
0.0195, which indicates that the parameters optimized by the TSA are very precise. The 
error relating to the measurement results for each of the 23 pair points is determined by 
the IAE and Relative Error (RE). The IAE and RE values are calculated using Equations 
(11) and (12). The curve of IAE and RE between experimental and estimated values is 
shown in Figure 4. IAE = |𝐼௠௘௔௦௨௥௘ௗ − 𝐼௦௜௠௨௟௔௧௘ௗ| (11)RE = (𝐼௠௘௔௦௨௥௘ௗ − 𝐼௦௜௠௨௟௔௧௘ௗ)𝐼௠௘௔௦௨௥௘ௗ  (12)

 
Figure 4. (a) Internal absolute error and (b) relative error curve between measured and estimated 
current for Photowatt-PWP201 PV Module. 

Table 3. The calculated current and absolute error results of TSA (Tunicate swarm algorithm) for 
solar PV (Photovoltaic) module. 

Observations VL (V) IL (A) Isim (A) IAE (A) Pmeasured (W) Psimulted (W) IAE (W) 
1 0.1246 1.0345 1.0335 0.001 0.1288 0.1256 0.0032 
2 0.1248 1.0315 1.0335 0.002 0.1287 0.1226 0.0061 
3 1.8093 1.03 1.0335 0.0035 1.8635 1.8765 0.013 
4 3.3511 1.026 1.0234 0.0026 3.4382 3.4354 0.0028 
5 4.7622 1.022 1.0234 0.0014 4.8669 4.8766 0.0097 
6 6.0538 1.018 1.019 0.001 6.1627 6.1456 0.0171 

0 5 10 15 20 25

Voltage Measurement (V)
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 4. (a) Internal absolute error and (b) relative error curve between measured and estimated
current for Photowatt-PWP201 PV Module.



Electronics 2021, 10, 878 8 of 12

4.2. Convergence Analysis

The convergence analysis was performed to examine the computational competence
of the TSA. The convergence curves of the solar PV module are presented in Figure 5. It
is depicted in Figure 5 that the TSA algorithm outperforms the GSA, PSOGSA, SCA, and
WOA algorithms in terms of convergence speed and generates a precise solution for the
identical number of function evaluations (i.e., 50,000).
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4.3. Robustness and Statistics Analysis

This section presents the statistical evaluation based on mean, minimum, maximum,
and standard deviation of the RMSE for all previously implemented methods and com-
parison concerning precision and consistency of the distinct algorithms in a total of thirty
runs, as depicted in Table 4. The mean of the RMSE is calculated to evaluate the precision
of the algorithms, and the standard deviation is calculated to evaluate the consistency of
the parameter estimation methods.

Table 4. Statistical results of the root mean square error (RMSE) of different algorithms for Photowatt-
PWP201 PV Modules.

Photowatt-PWP201
Module Model

Algorithm RMSE

Min Mean Max SD

GSA 8.80 × 10−3 2.65 × 10−1 2.08 × 10−1 5.85 × 10−3

PSOGSA 7.156 × 10−3 6.47 × 10-3 2.83 × 10−1 1.81 × 10−2

SCA 1.28 × 10−2 2.26 × 10-1 6.35 × 10−1 1.78 × 10−2

WOA 9.54 × 10−4 2.35 ×10-2 2.63 × 10−1 2.83 × 10−2

TSA 5.06 × 10−4 1.45 × 10-3 2.34 × 10−2 1.25 × 10−3

In Table 4, it is depicted that the proposed TSA algorithm significantly outperforms the
GSA, PSOGSA, SCA, and WOA algorithms for the solar PV module model. The statistical
results presented in Table 4 indicate that TSA is the most accurate and reliable parameter
optimization technique.
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5. Discussion

The TSA algorithm is successfully developed and implemented for parameter ex-
traction of the polycrystalline Photowatt-PWP201 PV module. The I-V and P-V curves
obtained by the optimization process show excellent accord with the measured data. The
IAE values (both current and power) validate the exactness of the optimized parameters.
The statistical evaluation confirms that the standard deviation is very small, which con-
firms that the TSA is an accurate and useful parameter estimation technique. The average
execution time of every algorithm on the Photowatt-PWP201 PV module is established
and introduced in Figure 6. Compared to GSA, PSOGSA, SCA, and WOA, TSA requires a
much lower time of about 11 s, while PSOGSA has the worst execution time of about 40 s.
The Friedman ranking test results are shown in Figure 7. The best ranking is obtained by
the TSA, followed by SCA, WOA, GSA, and PSOGSA.
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In this research investigation, TSA was employed to estimate the Photowatt-PWP201
PV panel module parameters under standard temperature conditions. It should be noted



Electronics 2021, 10, 878 10 of 12

the TSA technique is, for the first time, intended to reliably track the estimation of param-
eters for photovoltaic models. The observations based on the experimental findings are
defined as follows:

• TSA is relatively accurate and reliable at delivering the solution in terms of the RMSE
compared with other algorithms such as GSA, PSOGSA, SCA, and WOA.

• The I-V and P-V characteristic curves and IAE results indicate that TSA can generate
the optimized value of the estimated parameters for all the solar PV cell models
compared with other algorithms.

• The statistical analysis depicts the robustness of the TSA technique in parameter
estimation problems under standard operating conditions.

• The convergence curves demonstrate that the TSA obtains the best estimated parame-
ters in terms of RMSE (5.06 × 10−4).

• From the above discussion, it can be concluded that the TSA is an effective and robust
technique to estimate the unknown optimized parameters of the solar PV module
model under standard operating conditions.
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fund acquisition: B.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the European Commission H2020 TWINNING
JUMP2Excel (Joint Universal activities for Mediterranean PV integration Excellence) project under
grant 810809.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Authors are thankful to anonymous reviewers and editors for their suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations and Symbols
The following abbreviations and nomenclature are used in this manuscript:
Ip Photo Diode Current
Isd Reverse Saturation Current
Rs Series Resistance
Rsh Shunt Resistance
A Diode Ideality Factor
RMSE Root Mean Square Error
PV Photovoltaic
I-V Current-Voltage
P-V Power-Voltage
MPPT Maximum Power Point Tracking
Voc Open Circuit Voltage
Impp Maximum Power Point Current
Isc Short Circuit Current
PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
SDM Single diode Model
DDM Double diode Model
IAE Internal Absolute Error
RE Relative Error
GSA Gravitational Search Algorithm
SCA Sine Cosine Algorithm
PSOGSA Particle Swarm Optimization Gravitational Search Algorithm
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