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Abstract: Cetacean monitoring is key to their protection. Understanding their behavior relies on
multi-channel and high-sampling-rate underwater acoustic recordings for identifying and tracking
them in a passive way. However, a lot of energy and data storage is required, requiring frequent
human maintenance operations. To cope with these constraints, an ultra-low power mixed-signal
always-on wake-up is proposed. Based on pulse-pattern analysis, it can be used for triggering a
multi-channel high-performance recorder only when cetacean clicks are detected, thus increasing
autonomy and saving storage space. This detector is implemented as a mixed architecture making
the most of analog and digital primitives: this combination drastically improves power consumption
by processing high-frequency data using analog features and lower-frequency ones in a digital way.
Furthermore, a bioacoustic expert system is proposed for improving detection accuracy (in ultra-low-
power) via state machines. Power consumption of the system is lower than 30 µW in always-on mode,
allowing an autonomy of 2 years on a single CR2032 battery cell with a high detection accuracy. The
receiver operating characteristic (ROC) curve obtained has an area under curve of 85% using expert
rules and 75% without it. This implementation provides an excellent trade-off between detection
accuracy and power consumption. Focused on sperm whales, it can be tuned to detect other species
emitting pulse trains. This approach facilitates biodiversity studies, reducing maintenance operations
and allowing the use of lighter, more compact and portable recording equipment, as large batteries are
no longer required. Additionally, recording only useful data helps to reduce the dataset labeling time.

Keywords: embedded artificial intelligence; ultra-low power; pattern detection; expert system;
biosonar; always-on wake-up; pulse train

1. Introduction

Every day, more than one hundred animal species disappear in the world. Since the
16th century at least 680 vertebrate species have been driven to extinction by human
actions (https://www.un.org/sustainabledevelopment/blog/2019/05/nature-decline-
unprecedented-report/, accessed on 25 March 2021). Improving understanding of animals
can help protect them. Biodiversity monitoring is fundamental for that using comple-
mentary techniques going from recorded video analysis to manual census. This article
focuses on one of the most relevant technique: acoustic monitoring of animals emitting
sound pulses, bursts or frequency chirps [1]. This category involves several species, from
the smallest such as insects or birds emitting trains of voiced pulses [2,3] to the largest
mammals. Indeed, most of the biomass emits trains of pulses mainly for echolocation,
sometimes with high-frequency pulses, sometimes at lower frequencies. Biosonars are
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perfect examples of trains of clicks or pulses emissions in different propagation environ-
ments: air for bats, water for marine mammals. While usually high frequency such as for
bats, biosonars can also rely on low frequency voiced pulses trains: an example is the blue
whale, emitting strong pulses at a frequency of 25 Hz.

To illustrate our work, sperm whales (Physeter macrocephalus, Pm) have been chosen as
a relevant case study. They use a biosonar to sense deep sea by echolocation, emitting click
trains, and can be considered to be a relevant case study as their echolocation technique is
very close to other species. That means results obtained in this paper can be extended to
other animals with minor adjustments such as modifying filters frequencies.

Some cetacean species have been categorized as vulnerable among the endangered
species. This is a result of anthropogenic activities creating chemical and acoustic pollution,
leading to a slow decay of the populations. However, it is hard to cope with these global
issues at a local scale. It is not the same with fishing or transportation activities [4] which
also cause many cetacean deaths due to collision with boats or fishing by-catch [5,6]. In
contrast with global issues, this can be locally avoided by detecting cetaceans in real time:
some boat and whale collisions could be prevented if relevant alerts were sent to in time.
This is the main purpose of this work, as well as monitoring them accurately to gather a
better knowledge about them.

Sperm whale monitoring is subject to several constraints. When installed in strict
nature reserves, recording systems need to be autonomous for a very long time, leading to
important requirements in battery life, especially if used in always-on mode. On the other
hand, echolocation pulses contain high-frequency information, requiring high-sampling-
rate recordings, which consumes a lot of embedded energy. As these sea giants are rarely
present, in standard always-on recorders, most of this energy is lost by recording empty
sequences at a high sampling rate. in this sense, power consumption can be drastically
reduced by activating high-performance recording and analysis only when animals are
suspected to be present. For our system, this relies on using an always-on ultra-low power
wake-up detector as a first step. It is the topic of this paper. A case study on a real
sperm whales dataset is presented with an embedded pulse detection technique. Detection
accuracy is further improved by using an expert rules system to reject false-positives.

1.1. Sperm Whale Biosonar

Sperm whales use echolocation for orientation and prey localization as shown in
Figure 1. Signals emitted are composed by sequences of clicks named click trains [7–11].
A sperm whale click is a transient wave as shown Figure 2 and is composed of a direct
and a reflected pulses emitted by pneumatic compression [12,13] (Figure 1). Depending on
the relative orientation of the animal and the receiver, as well as the size of its head, the
Inter-Pulse Intervals (IPI) of this click going from 1 to 10 ms varies. Detection algorithms
must be compliant with these variations. IPI is an interesting feature to discriminate
between species and will be discussed later in the paper; however, in this study, as a proof
of concept, we will first integrate ICI that is also a discriminant features of this species.

Multipulsed clicks are transients (Figure 2) with a frequency spectrum going from
8 kHz to 20 kHz (Figure 3) [14–17]. Each click is separated from the next one by a time
interval TInterClick ∈ [100 ms; 1 s].

Cetacean monitoring is complex because these mammals are spending most of their
life in deep water, going down to 2000 m under sea-level and moving on long distances.
Moreover, due to the sparsity of these animals, they are rarely present in a given area.
Consequently, when an always-on recorder is used for monitoring, memory storage and
energy are spent in an inefficient manner. This is even more crucial when high-frequency
recordings with multiple hydrophones is performed (necessary to locate the acoustic emit-
ters such as in [17–19]. This implies using large batteries and storage capacities to be able
to record in always-on mode sperm whales from multiple hydrophones over a long period
of time. This makes monitoring of these species a technical challenge, as bio-environmental
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equipment is heavy, expensive, costly to install and maintain. Thus, reducing the size and
increasing autonomy of these recorders is key to facilitate biodiversity monitoring.

Figure 1. Sperm whale emission principle: a pulse is emitted by the distal air sac, propagated by the
spermaceti organ and reflected by the frontal air sac.

Figure 2. Physeter Macrocephalus click signal.

1.2. Keys to Ultra-Low Power Monitoring System

To achieve ultra-low power consumption in monitoring systems, continuous recording
is not an efficient option as most of the time animals are not present. Instead, selective
recording and analysis of times an animal has been detected is preferable. We thus choose
to keep only simple detectors consuming a few µW always-on. In this way, power and
data storage consumption can be drastically reduced by recording data only when the
probability of with a cetacean signal is high.

However, to achieve a state-of-art detection accuracy, using ultra-low power detectors
can be too limited. Instead of that it is advisable to implement the detector in three stages
as shown in Figure 4 in green, orange and red.
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Figure 3. Spectrogram of a Sperm Whale click train.

Figure 4. Cetacean Monitoring System.

These three stages correspond to the three different types of embedded artificial
intelligence implementations, each one with a different magnitude of power consumption
as shown in Figure 5. These three stages are described here:

• First stage: an ultra-low power mixed-signal analog–digital acoustic wake-up system
(green block in Figure 4): It processes high-frequency input signal using analog
primitives, triggering an event when high energy pulses at specific frequencies occur.
It is also robust to ambient sea noise, as the latter is measured using analog filters
and a digital ultra-low-power processor working at low frequency. With a power
consumption of 30 µW, it can be classified as an ultra-low power AI circuit as described
in Figure 5.



Electronics 2021, 10, 819 5 of 19

It also enters the category of ultra-low power wake-up, among other existing ones
presented in Table 1 and described here with their advantages and drawbacks. It is
important to note that in this comparison, most of proposed wake-up are standard
envelope detectors without smart features for improving their versatility and their
detection capabilities such as:

– Adapting to ambient noise for adjusting detection level automatically.
– Classifying signals considering their spectrum.
– Implementing temporal pattern detection for improving classification based on

expert rules.

This comparison is ordered by the frequency capability of the detector, considering
this has a strong impact on power consumption.
One of the most interesting implementations is a low frequency (500 Hz) acoustic
signal processor able to distinguish cars, trucks and generators noises for a power
consumption equal to 12 nW [20]. This one is too limited in frequency for cetaceans and
cannot detect mixed temporal and frequency patterns such as sperm whales clicks,
but achieves a remarkable ultra-low-power consumption that can be considered
to be a milestone for a further silicon implementation of our solution. Another
wake-up detecting low seismic frequencies is proposed in [21], featuring a very low
40 nW power consumption but without classification capabilities and with a limited
frequency range (40 to 100 Hz). Ref. [22] is also an energy efficient (1.8 µW) envelope
detector working at 1 kHz, but does not implement advanced AI features anymore.
These first 3 implementations have a very low power consumption corresponding
to limited operation frequencies, and cannot be used for cetacean detection because
of that.
Refs. [23,24] are implementations able to deal with sperm whales signal frequen-
cies. They are energy efficient but focused on detection of given and fixed specific
ultrasonic frequencies (41 kHz and 57 kHz respectively). Used for remote activation
of devices, they cannot be used for pattern detection with temporal and frequency
analysis. Refs. [25,26] have a wide input frequency range, but are based on digital
or analog discrete circuits making their power consumption higher than previous
implementations (34 µW). However, they can be used for detecting an adjustable
specific frequency in a narrow band, making them interesting for several applications,
but cannot implement cetacean detection expert rules.
Higher frequency wake-up are proposed for comparison purpose such as [27] working
at 2 GHz: it is a radio frequency (RF) detector with a power consumption of 52 µW.
Ref. [28] presents an interesting optimized envelope detector for amplitude-modulated
(AM) signal at 315 MHz. It uses an interesting technique of frequency shifting using
passive components for reducing power consumption, but cannot implements AI
detection rules.
Finally, none of the solutions presented in Table 1 can be used for detecting cetaceans
and more precisely sperm whales clicks: this is the topic of this paper and proposed
solution is described extensively in Section 2, combining ultra-low-power analog
features and digital processing computed using the sensor controller of a low-power
system on chip (SoC). This allows to achieve low power detection of complex events
based on their frequency and temporal attributes at a rather high frequency (20 kHz).

• Second stage: a low-power microcontroller is implemented as a second stage detector
(orange block in Figure 4), adding the ability to automatically tune the sensitivity
of the first stage. It is implemented on a low-power microcontroller (ARM M4).
Described in Section 3.3, one of its features is a state machine implementing expert
rules: events generated by the ultra-low-power detector (first stage) are analyzed to
avoid some false-positives and thus improving click detection reliability. Another
option for this second stage could be to use an embedded shallow neural network
such as in [29–31]. State machine analysis is performed only when events have been
generated by the first stage, leading to a very low microcontroller activity (less than
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0.01% of the time). Consequently, average power consumption of this stage is lower
than the first one, even if this instantaneous consumption is a M4 microcontroller one
during the analysis. A second state machine, is implemented to dynamically tune
click detection sensitivity of the first stage detector, according to current false-positive
and true-positive rates observed. It is described extensively in Section 2.

• Third stage: a higher power 4-channels recorder (red block in Figure 4), able to
compute deep-learning signal analysis, is triggered by the second stage. It allows
recording several channels at a high sampling rate, but consumes a lot of energy (more
than 1.2 W). It implements 24 bits analog–digital converter (ADC), 512 ksps temporal
resolution, and channel synchronization, all of which are key to allow sound source
classification and localization. This recorder is started only when clicks have been
validated by the expert rule state machine, reducing drastically its average power
consumption compared to an always-on recorder. Active less than 0.05% of the time in
real conditions (due to the sparsity of sperm whales), it extends the battery life of the
recorder by a factor 2000, reducing its average power consumption to less than 1 mW.
This allows an important battery and overall size reduction, easing its installation and
maintenance while reducing its cost. This high-resolution recorder named Qualilife
HighBlue [18] has been designed by SMIoT [32] but is not on the scope of this paper. It
is used in Caribbean Marine Mammals Preservation Network (CARIMAM) project to
monitor Caribbean underwater biodiversity at a large scale.

Figure 5. Different types of embedded AI according to their power consumption.

This data acquisition system is embedded in a waterproof sonobuoy designed by
OSEAN company in France (Figure 6). This sonobuoy named Bombyx2, is the version
2 of Bombyx1 [33]. It is designed and used for the next five years to monitor cetacean
presence in real time to prevent collisions with ships in Cetacean sanctuary Pelagos and
elsewhere [5].

It is important to note that this paper only focuses on the ultra-low power part of the
wake-up system as well as the dynamic expert rules-based tuning algorithm: Section 2
presents the ultra-low power cetacean click detector, Section 3 describes optimization of the
algorithm using experts rules and automatic gain control. Results of both detector stages
are discussed in their respective sections and a final conclusion is presented in Section 4.
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Table 1. Comparison of proposed cetacean click detector and existing wake-up.

Application Frequency Ref. Power Year Noise Embedded
(Hz) Consump. (µW) Immunity AI

Seismic detection 1.0× 102 [21] 4.0× 10−2 2015 No No
Acoustic sensing and classification 5.0× 102 [20] 1.2× 10−2 2018 No Yes

Envelope detector wake-up 1.0× 103 [22] 1.8 2005 No No
Voice activity detector wake-up 5.0× 103 [34] 6.0 2016 No No

Cetacean click detector 2.0× 104 This paper 3.0× 101 2021 Yes Yes
Ultrasonic envelope detector wake-up ∗ 4.1× 104 [23] 1.0 2017 No No

Ultrasonic wake-up ∗ 5.7× 104 [24] 8.0× 10−3 2019 No No
Adjustable frequency detector wake-up 3.0× 105 [25] 3.4× 101 2018 No No

AM signal detector wake-up 3.2× 108 [28] 7.4 2018 No No
UHF signal detector wake-up 2.0× 109 [27] 5.2× 101 2008 No No

* Frequency cannot be changed.

Figure 6. Bombyx2—Project Interreg Maritime GIAS (whale anti-collision sonobuoy), here presented
with communication antenna (4G or Iridium antenna) but without the acoustic 5 hydrophones
antenna. The complete Bombyx2 is co-designed by LIS DYNI and IM2NP laboratories, SMIoT
platform, OSEAN company.

2. Ultra-Low Power Always-On Wake-Up Based on Acoustic Energy Analysis
2.1. System Architecture

The ultra-low power sperm whales pulse detector first and second stage implemen-
tation is presented in Figure 7 as a functional block diagram. It aims at detecting sudden
increases in acoustic level on well-defined frequencies (8 kHz to 20 kHz) characteristic of
cetacean clicks. It relies on the following circuits with ultra-low power consumption shown
in Figure 8.
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• Passive piezoelectric hydrophone with a measurement bandwidth of 50 kHz. This pas-
sive sensor has been chosen to minimize power consumption, compared to amplified
ones.

• Charge amplifier to amplify the piezoelectric charge signal. Integrator with a high
input impedance, it converts acoustic piezo sensor charge into voltage, multiplying
it by the inverse of the capacitance C1 in the feedback path as shown in Figure 9.
Without considering the additional resistor, this leads to:

VOut =
1

C1

∫ dQ
dt

Additional resistor R1 forms a low-pass filter with C1 to limit the frequency bandwidth
of the hydrophone to 20 kHz, the maximum frequency present in sperm whales clicks.
Power consumption of this block is: 0.9 µA.

• High-pass amplifier: as sperm whales pulse frequencies spread from 8 to 20 kHz, a
band-pass filter is used to focus only on relevant signal. This filter gain Bode diagram
is presented in Figure 10. This band-pass filter is formed by the preceding low-pass
filter and a high-pass amplifying filter cutting near 8 kHz. Amplification factor is 10.
An ultra-low power op-amp (MAXIM MAX409A [35]) is used in this block, with a
power consumption of 1 µA for a gain bandwidth product equal to 150 kHz, allowing
amplification by a factor 10 at 15 kHz.

Figure 7. Sperm Whales detector block diagram.
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Figure 8. Electronic circuit of the always-on wake-up. ultra-low power parts are in green, low-power
digital parts are in yellow. Voltage regulator and 1.65 V reference are not presented.

Figure 9. Cetacean click signal in output of the charge amplifier. Three clicks are present in the signal
as well as sea noise.

Figure 10. High-pass active filter measured frequency response.
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• Low-Pass Peak Detector: signal envelope is extracted using passive components: a
diode [36] and a RC low-pass filter with a time constant equal to 10 ms. This peak
detector gathers multiples click reverberations P0, P1 and P2 (Figure 2) of a cetacean
click into one single detection as shown in Figure 11. Power consumption of this
passive block is null.
It is important to note that signal envelope is properly detected when input signal
is increasing, but not when it is decreasing: output cannot decrease faster than the
RC discharge. Thus, measuring output pulse time returns a result more related to
pulse amplitude than to its duration. Improving this can be done by adding a reset
circuit activated when input signal stays under a given threshold during a very short
time. This have been considered in this work, but this circuit also add an additional
power consumption that is not worthwhile. As explained in Section 3, it is useful to
distinguish between cetacean clicks and periodic anthropogenic noise: sperm whales
clicks are very short pulses (1 ms) separated by a long pulse interval (100 ms to
1 s) whereas common anthropogenic noises are mainly continuously repetitive ones
(motor boats vibrations for example). In these conditions, adding a RC discharge with
a duration of 3RC = 30 ms to the cetacean pulses does not affect the algorithm for
detecting isolated pulses repeated with a long time interval. Thus, reset circuit is not
necessary and has been removed.

Figure 11. Real cetacean clicks and analog detection algorithm waveforms. High-pass-filtered input
signal is in orange, VRe f in yellow, click envelope in grey and comparator output in blue.

• Low-pass filter for sea noise estimation: to avoid false-positives, average sea noise
level must be estimated as a reference value for peak extraction. This is done using a
low-pass filter with a cutoff frequency of 0.1 Hz in output of the peak detector. When
a stationary noise is present, output VNoise increases as it depends on the average of
successive input signal amplitudes. In this way, a heavy swell or a motorboat cruising
around the hydrophone will increase VNoise, whereas an isolated sperm whale click
will not change the input average amplitude and therefore VNoise. Thus, this long
period low-pass filter provides an estimate of the sea noise level in the frequency
band of interest. To implement this block, a voltage follower (implemented using an
operational amplifier LPV811 [37]) acting as a voltage buffer is added between the
peak detector and the low-pass filter, consuming 600 nA.

• Comparator: this component is responsible for comparing the signal envelope (output
of the peak detector) to a reference value VRe f proportional to the estimated average
sea noise level. When the output of peak detector block is higher than the reference
value, a detection event is generated, triggering an interrupt in the processing mi-
crocontroller. The power consumption of this ultra-low power analog comparator is
320 nA.

• Reference value VRe f generation: this feature is fundamental for the algorithm reli-
ability. In a first approach, it seems evident to set VRe f = KVNoise. However, for a
calm sea, this noise level will be very low, and possibly under the inner noise level of
the hydrophone combined with its amplifying chain, leading to an important false-
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positive ratio detection. Thus, a constant must be added to ensure a reliable detection.
This leads to Equation (1):

VRe f = K1VNoise + K2, (1)

where K1 and K2 are constants to be optimized according to AUC or specific func-
tional points. Too small K1 and K2 generate false alarms as the reference level of the
comparator is low, while high K1 and K2 constants result in a loss of smallest clicks of
a distant sperm whale, as well as when the average sea noise level is important.
Doing these adjustments using analog circuits (Figure 12) requires an adjustable
constant generator, an adjustable amplifier and an adder. This solution has a power
consumption of 58 µA, mainly due to the use of digital potentiometers allowing up to
1 MΩ resistances, such as AD5222 [38], consuming 40 µA.

Figure 12. Alternative circuit diagram for comparator reference adjustment.

Compared with other parts of the analog front-end, the comparator reference adjust-
ment power consumption is too high and needs to be reduced. There is another way
of proceeding, less power consuming and more versatile: using an ultra-low power
digital processor used to acquire average sea noise level VNoise with an analog to
digital converter (ADC) at a low sampling frequency rate. Then, computing VRe f is
done digitally and converted into an analog value entering the comparator, using an
ultra-low power Digital Analog Converter (DAC). These operations are implemented
using an ultra-low power system on chip (CC2652 [39]) with a circuit dedicated to
low frequency operations, named sensor controller. This circuit can be activated while
the main processor is in sleep mode, leading to an ultra-low power consumption of
4 µA for ADC conversion of average sea noise level at 0.1 Hz. A LTC1662 [40] DAC
is used to convert the reference value transmitted by the sensor controller in SPI to an
analogical value. Corresponding power consumption is 1.5 µA, leading to an overall
consumption of 5.5 µA.
This shows that mixing analog and digital ultra-low-power techniques can be a power
efficient way of processing an analog signal. It makes the most of using analog
computations for high-frequency signal processing and digital computations for low
frequency ones.
It is important to note that in Equation (1), constants K1 and K2 are fixed hyper-
parameters of the model that can be adjusted by grid search algorithms to maximize
click detection accuracy as described in Section 2.2. However, depending on experi-
mental conditions such as anthropogenic noise, sea noise evaluation can be biased,
leading to false alarms. In this case, algorithm reliability can be improved by adjusting
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dynamically K1 and K2 to avoid false alarms. These adjustments are done using a
state machine-based automatic gain control introduced in Section 3.

• Voltage regulator: a 3.3 V supply voltage value has been chosen. Powered by a single
Li-Ion 3.7 V cell, a Microchip MCP1810 [41] linear voltage regulator is used, with a
power consumption of 20 nA. Reducing the input voltage to 1.8 V would be a good
option and will be done in a further work.

• Voltage reference: a single 3.3 V supply is used, requiring generation of a virtual
1.65 V ground voltage. This is done using a 1.65 V voltage divider followed by an
analog buffer (using a LPV811 operational amplifier [37]) with a current consumption
of 0.58 µA.

Table 2 shows the power consumption of each circuit used in the ultra-low power
part of the click detector, leading to an aggregated power consumption of 12.5 µA, without
using expert system state machines. Measurements have been done using a custom mixed
analog–digital breadboard shown in Figure 13 and designed for this project. This board is
fully functional and allows measuring precisely power consumption of each analog and
digital modules by physically connecting or disconnecting power supplies of each stage.
Considering there are limited space constraints in the sonobuoy, this breadboard has been
used in this form during experiments. Its size will be reduced in the future, but without
changing anything to the implemented analog features. However, it is noticeable that
many available features in the development board shown in Figure 13 have not been used.
4 Sallen-Key structures, 4 multiple feedback (MFB) structure, 4 peak detectors, 2 DAC,
4 passive filters, 4 comparators and 4 delay lines are available on the board, with a CC2652
for the digital part. Only 2 Sallen-Key structures, 1 peak detector, 1 passive low-pass filter,
1 comparator and the CC2652 S ◦C have been used for implementing the system (plus one
more analog structure for the charge amplifier that can be implemented using an additional
MFB structure, but is not in the scope of this paper).

Figure 13. Analog test and power measurement board.

Each block of the analog implementation is detailed in Table 2.
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Table 2. Always-on ultra-low power analog circuits implementation and supply current (µA).

Circuit Current
(µA)

Picture Board Schematic Associated
Datasheet

High-pass Amplifier 4.0 MAX409
[35]

Peak Detector – SD103AW
[36]

Sea noise Low frequency
Low-pass Filter 0.6 LPV811

[37]

DAC 1.5 LTC1662
[40]

Comparator 0.3 TS881
[42]

Voltage regulator 0.02 MCP1810
[41]

1.65 V voltage reference 0.58 LPV811
[37]

Sensor Controller using
a 10 Hz timer 4.5 CC2652

[39]

Complete ultra-low
power hardware 12.5
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2.2. Results

Signal waveforms obtained using the analog detection algorithm are shown on
Figure 11. As explained before, an important feature of the proposed ultra-low power
cetacean detector is the ability to automatically tune the comparator reference value VRe f
described in Equation (1) depending on the sea ambient noise. This equation uses 2 fixed
hyper-parameters K1 and K2 that must be optimized to maximize classification accuracy.

Performance is evaluated using a test set of 100 underwater recordings, with and
without sperm whale clicks. They are chosen at random in a labeled database composed
of samples from the BOMBYX project sonobuoy [33]. The dataset is composed of 8% of
clean samples, and 92% of noisy ones (either boat noise or white noise were added at
−6, 0, 6, 12, 18, 24 dB signal-to-noise ratio (SNR)). There is equal number of positive and
negative samples. For Findability, Accessibility, Interoperability, and Reuse (FAIR) comparisons
to other detectors, the full labeled dataset (including pulses of another Mediterranean fin
whales) is available online at SABIOD.org (http://sabiod.org/pub/dataset/PhyseterM-
and-BalaenopteraP-dataset.zip, accessed on 25 March 2021).

Receiver Operating Characteristic (ROC) curve of the ultra-low power click detector
is presented in Section 3.3: Area Under the Curve (AUC) is 75%. An optimal configuration
corresponds to K1 = 4.3 and K2 = 0.25 V. This is a relevant achievement considering
system power consumption is only 12.5 µA. Moreover, it is important to note that the
reference database is mainly focused on sperm whales and motorboats but has very few
samples of silent sea. Consequently, detecting clicks on this database is much more difficult
than it would be in real conditions with a frequently quiet sea.

3. Improving Click Detection Using Expert Bioacoustic Rules

The proposed ultra-low power click detector relies on the real time analysis of the
input acoustic signal to detect a sudden increase in its energy. The output of the comparator
corresponds to a logical 1 during a click. However, other types of acoustic signal with a
high level in high frequencies, such as a motorboat running close to the hydrophone, can
also trigger the comparator, leading to false alarms.

3.1. Implementing Expert Rules in Ultra-Low Power Using State Machines

To improve the accuracy of the detection algorithm, an ultra-low power improvement
based on two bioacoustical expert rules is proposed. It relies on:

• Click duration: a cetacean click has a well-known shape [13], its main peak lasts
between 50 µs and 200 µs and can be repeated a few times. This first expert rule is
used to decide whether the received pulse fits this interval or not, corresponding to a
high probability for the received signal to be a click.

• Interclick interval: time between two successive clicks is also well-defined (Interval ∈
[100 ms; 1 s]) [13] and can be used as a second expert rule to confirm if two successive
clicks can be part of a click train or not. Process is iterated on each new click.

These expert rules can be implemented efficiently using a microcontroller. As de-
scribed in the left diagram of Figure 14, it relies on a simple state machine, leading to a very
low additional power consumption. When an event (rising edge) is generated in output of
the comparator, meaning that a high energy signal has been received in the given frequency
band, the state machine starts waiting for a falling edge. The latter corresponds to the end
of the high energy pulse whose duration is compared to a reference interval (the first expert
rule) to determine whether the pulse is consistent with the possible acoustic emission of
sperm whales or not. If it is, a click counter is incremented, and the next click detection
is started. If the click is not the first one, interclick duration is calculated and compared
to a second reference interval using the second expert rule. If the interclick duration is
in the interval, click detection is validated and a true-positive (TP) counter is incremented,
otherwise a false-positive (FP) counter is incremented.

SABIOD.org
http://sabiod.org/pub/dataset/PhyseterM-and-BalaenopteraP-dataset.zip
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Figure 14. Cetacean click detection state machine (a), and automatic gain control state machine (b).

3.2. Automatic Gain Control

As described before, using expert rules also allows to get indications on the number
of true and false-positives. This is useful to fine tune the main detection algorithm and
especially K1 and K2 constants used to generate the comparator reference as described in
Equation (1). If the constant is too high, clicks will be missed, if it is too low, the comparator
output will be triggered on unwanted signals. To dynamically adjust these constants, a
second state machine implementing an automatic gain control has been proposed and is
shown on the right side of Figure 14. It uses the false-positive and true-positive counters
incremented in the click detector state machine. Each time a click is identified as part of
a click train, the true-positive counter CountTP is incremented. Each time a pulse or an
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inter-pulse length does not comply with the expert rules, the false-positive counter CountFP
is incremented. Periodically, these counters values are reset to 0. Following situations can
occur as shown in the state machine of Figure 14:

• If CountFP = 0 and CountTP > 0, clicks are detected. In this situation, gain is well-
tuned and is not adjusted.

• If CountFP = CountTP = 0, nothing is detected, neither clicks nor other signals.
Sensitivity of detection can be increased by reducing simultaneously gain K1 and K2,
with a minimum value of K1 = 2. This reduces the reference voltage corresponding to
the sea noise level (yellow line in Figure 11)

• If CountFP > 0, false alarms are present, and gains K1 and K2 must be increased
simultaneously to avoid detection of sea noise. This can happen when weather
conditions are changing very quickly or boats are approaching.

Considering power consumption, this automatic gain control can be implemented in
ultra-low power, because adjustment is done when a click has been validated or not in a
few µs.

3.3. Results

Results (ROC curves) of the improved detection algorithm using expert rules are
shown in Figure 15. Performance is evaluated using the same test set of 100 recordings as
for the click detection algorithm. Area Under the Curve (AUC) is equal to 85%, compared
to 75% without using the expert rules.

Figure 15. Click detector ROC (receiver operating characteristic) curve using the state machine and
expert rules validation (in yellow), versus without it (in blue) for different values of K1 parameter.
Area under the ROC curve is 85% using the state machine and expert rules, versus 75% without.

Power consumption impact of these expert rules and automatic gain control is low:
current is increased by 4.5 µA (measured value), mainly because of a timer used for evalu-
ating pulse and inter-pulses duration has been activated. This limited additional power
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consumption allows to avoid false alarms, reducing the number of high-frequency recorder
activation, thus saving battery power by avoiding unnecessary high-power recordings.

Proposed embedded ultra-low power cetacean detector can also be compared with a
standard solution using a convolutional neural network (CNN) [43], trained and tested
using the same dataset. This network has approximately 10.000 parameters. Its input
signal is a windowed 512 points short-time Fourier transform (STFT), split using a Mel-
Spectrum front-end. It is processed by 3 depth-wise convolution layers of 64 features.
Complexity of this CNN illustrates how it can be difficult to detect cetacean clicks: its
corresponding area under the curve (AUC) is 92% for a power consumption of 543.51 mW.
As shown in Table 3, proposed ultra-low power detector has an AUC of 85% (7% less
accurate than the CNN solution), but its power consumption is approximately 18,000 times
lower. Thus, this makes it particularly relevant to be embedded in a buoy for real-time
long-term cetacean monitoring.

Table 3. Area Under the Curve (AUC) and power consumption comparison with the state-of-the-art
detectors using the labeled database composed of samples from the BOMBYX project sonobuoy [33].

Power Consumption (µW) AUC (%)

Proposed smart detector 30 85
CNN detector [43] 54× 104 92

4. Conclusions

In this paper, a mixed analog–digital always-on ultra-low power smart wake-up based
on pulse-pattern analysis is presented. It is used for triggering a high-performance multi-
channel recorder only when necessary. Its architecture makes the most of ultra-low power
analogical primitives coupled with an embedded digital low-power system for fine tuning
the pulse detector to reduce energy consumption. An ultra-low power application to sperm
whales click detection is proposed. Overall measured power consumption of the basic click
detector is 12.5 µA. Tested on a labeled dataset that is more difficult than real conditions,
its area under the receiver operating characteristic (ROC) curve is equal to 75%. It can be
improved using expert rules implemented with state machines, leading to an area under
the curve of 85%, while consuming only 17 µA in operational conditions. This allows an
autonomy of 2 years on a single CR2032 battery cell.

Further work will focus on more complex pattern analyses, based on same princi-
ple: merging frequency filter bank and heterogeneous temporal features analysis. More
precisely, IPI feature for this species is also being integrated in an enhanced multiscaled
version of the state machine to increase its AUC. Existing CNN is integrating this IPI
pattern. One could reach the CNN AUC with this completed state machine, but in Ultra
Low Power. IPI is also an efficient feature to discriminate between individuals of different
sizes, and then to better estimate the number of individuals in an area. This would be
another output of the state machine.
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