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Abstract: Multiple object tracking (MOT) from unmanned aerial vehicle (UAV) videos has faced
several challenges such as motion capture and appearance, clustering, object variation, high altitudes,
and abrupt motion. Consequently, the volume of objects captured by the UAV is usually quite
small, and the target object appearance information is not always reliable. To solve these issues, a
new technique is presented to track objects based on a deep learning technique that attains state-of-
the-art performance on standard datasets, such as Stanford Drone and Unmanned Aerial Vehicle
Benchmark: Object Detection and Tracking (UAVDT) datasets. The proposed faster RCNN (region-
based convolutional neural network) framework was enhanced by integrating a series of activities,
including the proper calibration of key parameters, multi-scale training, hard negative mining, and
feature collection to improve the region-based CNN baseline. Furthermore, a deep quadruplet
network (DQN) was applied to track the movement of the captured objects from the crowded
environment, and it was modelled to utilize new quadruplet loss function in order to study the
feature space. A deep 6 Rectified linear units (ReLU) convolution was used in the faster RCNN to
mine spatial–spectral features. The experimental results on the standard datasets demonstrated a
high performance accuracy. Thus, the proposed method can be used to detect multiple objects and
track their trajectories with a high accuracy.

Keywords: quadruplet network; deep convolutional neural network; visual detection and tracking;
unmanned aerial vehicle

1. Introduction

Object tracking [1] is a significant task in computer vision applications based on
unmanned aerial vehicles (UAVs). Compared to single object tracking (SOT), the task of
multiple object tracking (MOT) has to develop the trajectories of all the objects in a precise
scene of video surveillance [1,2]. Online MOT two-dimensional space is a complex task
when there are similar objects [3]. In computer vision, the MOT task mainly includes action
recognition [4], behavior analysis [5], and pose estimation [6]. With the enhancement of
object detection methods such as the single-shot detector (SSD), the faster region-based
convolutional neural network (RCNN), and the deformable part model (DPM), tracking
by a prediction framework possesses high performances for MOT because prediction
can provide object location and object trajectories. Assignment could be inferred by
various problems such as context [7], shape [8], motion and appearance [9], out-of-plane
rotations [10], and background clutter [11]. The above problems are more difficult in MOT
than in SOT [11].

In recent years, UAVs have been increasingly used in surveillance and traffic monitor-
ing due to their ability to cover great distances while being remotely controlled to travel at
a predefined speed [12], combined with the computer vision technology in security moni-
toring [13,14]. Meanwhile, UAV videos are different than conventional videos. Generally,
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objects are small and difficult to differentiate due to their appearance. In such a situation,
motion is an important piece of data for linking objects. However, due to high movement
and altitude of UAVs in videos, the motion of an object is difficult to discriminate, thus
resulting in high challenge for MOT, and the motion of UAVs causes image instability
and platform motion. In this study, object refers to a car or human. In UAVs, the video
motion of an object can be divided into two types of motion models: object motion and
view modifications or the appearance feature of the UAV.

Many methods have been proposed to solve these problems, including a simple
tracking-by-detection method such as the intersection over union (IoU) tracker that can
only achieve a good result when objects are in good viewpoints [15]. A deep association
metric that considers the deep appearance feature and information motion of an object
while matching was proposed in [16]. The authors of [17] handled detection issues and
improved the appearance feature through the collection of samples from an output model.
Based on deep learning, image processing algorithms have made it easier to achieve auto-
navigation in commercial UAVs. Additionally, deep learning researchers have developed
fast and end-to-end trackers such as Cascade RCNN [18], FlowNet [19], DaSiameseRPN
(region proposal network) [20], simple online and real-time tracking (SORT) [21] and
DeepSORT [22] for MOT. However, all these trackers have at least one limitation, especially
in the larger detection of pedestrian or car and at a higher frame rate per seconds (FPS).

To predict the motion of an individual object from the crowded objects, a faster RCNN
was designed in this study with numerous important features such as multi-scale training,
negative mining, and concatenation to improve the region-based CNN baseline. Similarly
for the tracking motion of an individual object, a deep quadruplet network (DQN) was
introduced to track the predicted objects from the crowd of objects, and the accuracy
of tracking can be improved by using a quadruplet loss function and a deep CNN. We
examined our tracking model with the existing algorithms based on motion prediction with
certain indexes such as the IDF1-identity F1 score, as well as datasets such as the Unmanned
Aerial Vehicle Benchmark: Object Detection and Tracking (UAVDT) and Stanford Drone
datasets for the state-of-the-art comparisons. The major contributions of this paper are
summarized as:

• A quadruplet network is proposed by employing a faster region-based convolutional
neural network with novel generated image G-16 (VGG-16) network to train the
fine-tuned data for the prediction of individual motion from a crowded object.

• A newly optimized background learning method that uses boundary-based quadruplet
with deep networks is introduced to track prediction objects from crowded environments.

• We applied the proposed quadruplet method in some of the recent state-of-the-art
comparison benchmarks, such as the UAVDT and Stanford Drone datasets. The re
results shows outstanding performance.

2. Related Work

Based on the architecture of deep learning, many methods have been proposed to solve
MOT problems. In [23], a novel DQN was introduced to analyze the potential connections
between training samples, with the intention to attain a powerful representation. This
was modelled by a shared network with four branches that acquired numerous sample,
tuples as inputs which were linked by new loss function containing triplet loss and pair
loss. Related to similar metrics, similar and dissimilar samples were selected as the positive
and negative inputs, respectively, of triplet loss from each tuple. Additionally, a weight
layer was presented to automatically choose appropriate combinations of weight in order
to eliminate conflict among pair loss and triplet. The authors of [24] connected some
benefits of deep learning with data associated with tracking. They introduced a DAN
(deep affinity network) to study the compact features of pre-predicted objects at various
stages of abstraction and conducted comprehensive pairing permutations of those features
in any two frames to gather object affinities. The DAN accounted for numerous objects
disappearing and appearing among video frames in MOT.
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A unite re-identification (RE-ID) model and detector within an end-to-end network
was proposed in [25] by adding an extra track branch for monitoring a faster RCNN
architecture. This network could train the entire model with multi-loss. The RE-ID design
in deep simple online real-time tracking allowed for the mining of the feature map from
the predicted object images and the region of interest (RoI) feature vector in the faster
RCNN baseline to minimize calculations. The triplet loss function was utilized to optimize
and track the branch, while the neighboring frame was concatenated in video to build
the dataset. The authors of [26] proposed deep quadruplet appearance learning (DQAL),
where the quadruplet network was considered as an input and each quadruplet consisted
of anchor, negative, positive, and similar vehicles with different IDs. Then a quadruplet
network with softmax loss and quadruplet loss was created to study more discriminative
features for vehicle Re-ID. Deep learning was utilized to resolve the issue of pedestrian
prediction from drone images [27]; 1500 images were collected by an SJRC S30W drone at
various places with varying weather conditions, and different time spans were applied for
pedestrian detection with high performance.

The authors of [28] presented a UAV dataset that addressed numerous challenges
such as large camera motion, small object, high density, and complex scenes to predict
and monitor them. These challenges inspired researchers to state benchmarks for the three
fundamental tasks of MOT, SOT, and object prediction on a UAV dataset. Additionally,
a new technique based on CMSN (context-aware multi-task Siamese network) was intro-
duced to resolve issues in UAV videos by interceding for the degree of consistency among
contexts and objects that were utilized for MOT and SOT. In [29], a feature selection based
on new intuitionistic fuzzy clustering technique was developed for MOT. The adaptive
selection from the visual objects was comprised of several object features using the neigh-
borhood rough set that could measure the distance similarity among observations and
objects, proving to be efficient in robust environment. The authors of [30] suggested a
spatial–temporal scheme to study MOT in different scenarios. The location and insertion of
candidates were addressed by a novel motion model and semantic-feature spatial attention
mechanism. Then, the target occlusion estimated by the online-learned CNN of specific
target and appearance model were classified by adaptation in [31]. The authors proposed
a target re-detection model over the region that could adaptively learn to perform and
handle the existing scale estimation challenge. The noisy feature and channel redundancy
representation in convolutional features were overcome via the correlation filter learning
of channel regularization.

The target detection in a video sequence is the most essential stage in aerial surveil-
lance for subsequent processing, while the performance of surveillance system depends
on the detection of motion of any object in video. Therefore, understanding the moving
patterns of objects and persons is required to uncover suspicious events. In the literature,
various techniques for moving object tracking and detection in video have been proposed.
The anomaly detection methods can be divided into two types: machine learning-based
and pattern recognition-based methods. The disadvantages of existing methods are that
they have a minimum accuracy, are time-consuming, and have difficulties in the processing
of noisy data.

3. Materials and Methods

The proposed methodology was based on a faster RCNN of a deep learning frame-
work, with its structure summary divided into two parts: RoI represents the position of
the objects in the frame, and the fast RCNN network categorizes the region of image to
objects and filters the boundaries of the region. These two parts share the general param-
eter of a convolutional layer that is utilized for feature extraction and for permitting the
architecture to include object prediction tasks at a competitive speed. Here, a faster RCNN
was designed to predict objects with a high accuracy and recall rate. The trained proposed
methodology is depicted in Figure 1.
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Figure 1. Quadruplet network-based faster region-based convolutional neural network (RCNN) architecture. The unmanned
aerial vehicle (UAV) videos are fed into the novel generated image G-16 (VGG-16) network model. At this stage, the hard
negative mining were fine-tuned and moved to the quadruplet network based Deep CNN. Finally, the resulting output is
shown in sequence M1303 benchmark.

Primarily, a faster RCNN was trained with the Stanford Drone and UAVDT datasets.
This dataset was further used to test the pre-trained model to enable it find the hard
negatives and use them as the given input to the network in the 2nd step of the training
process. By training with this kind of hard negative sample, the model developed fewer
false positives. Moreover, this model was fine-tuned on the dataset. During the fine-tuning,
a multi-scale training process was used and implemented for feature concatenation to
boost the performance of the proposed model. For the training process, we utilized a faster
RCNN to enhance the performance of object prediction. Finally, the resulting predicted
bounding boxes were converted to ellipses as regions of objects. Below is the summary of
our methodology.

3.1. Feature Concatenation

Normally, in a conventional fast RCNN network, RoI pooling is done in the final
feature map layer to develop the features that are examined by the classification part
of the network. The inspired model made the classification process to use features that
were measured from the risk priority number and also preserved unwanted calculations.
However, such a technique is not optimal at all times, and, in some cases, it could eliminate
certain significant features. Thus, in the proposed work, to capture a finely grained parts of
the RoI, it was required to enhance the RoI pooling using the integrated feature maps of
numerous convolutional layers with high and low level features.

Therefore, we concatenated the pooling result of numerous convolutional feature
maps to develop the final pooling features for an accurate prediction tasks. This means
that we used few intermediate results with a risk priority number final feature map by
integrating them to provide the pooling features. In particular, the features that were from
many lower-level convolution layers were mainly L2-normalized and RoI-pooled. Then
the resultant features were combined to obtain the matching feature scale. Afterwards, a
1 × 1 convolution was used to match the channels of the original network.
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3.2. Hard Negative Mining

Hard negative mining is an efficient technique to boost deep learning performance,
mainly for object prediction [32]. The concept of this technique implies that a hard negative
is the region where a network fails to make right prediction. Therefore, a hard negatives
are given as inputs to the network as reinforcements to enhance the trained model with a
minimized number of false positives and the best classification performance.

In our design, hard negatives were gathered from the pre-trained model of the training
process. Then, a region was considered as a hard negative if its IOU (insertion over union)
and over a region ground truth was less than 0.5. During the training process, the hard
negatives were explicitly added to the RoI to tune the model and balance the ratio of the
background and foreground to 1:3.

3.3. Model Pre-Training

To adjust the faster RCNN for object prediction, we chose to fine-tune the pre-trained
model from the ImageNet dataset. Our model was pre-trained on the datasets with nu-
merous complex instances, which might have affected the convergence of the training
process. To overcome these difficulties, certain training data had to be removed. Addition-
ally, for a pre-training on this dataset, hard negative mining was a vital way to minimize
false positives.

3.4. Multi-Scale Training

A faster RCNN was used for a fixed scale in the whole training of images. Then, the
image was resized to a random scale, and a predictor is utilized to study the features over
a broad range of sizes, thus enhancing its performance of scale invariance. Here, among
the three scales, one scale was assigned to an image before it was inputted to network.

3.5. Number of Anchors

The various key hyper-parameters in the faster RCNN had to be turned, and the
number of anchors was crucial; each was found within the region proposal network, where
the conventional faster RCNN utilized nine anchors, which made it fail to recall smaller
objects. For object prediction, small objects are the most common, mainly for unconstrained
prediction. Hence, instead of utilizing the default setting, a size of 64 ∗ 64 was added to
increase the number of anchors to 12.

3.6. Boundary-Based Quadruplet Network

The DQN is trained to study the feature space. Testing data were moved from
learning feature space to mine features. Classification was achieved with the help of the
CNN classifier: Є(w) = 1

2‖y − ∑I
i=1 B xi ∗ ci‖2

2 − ∑I
i=1 ‖ pmci ‖2

2, where pm denotes
penalization matrix and ci represents the dth channel of the correlation filter.

3.7. Deep Network

The deep CNN block contained 6 convolutional layers. “Conv” is the convolutional
operation with 3 × 3 × 3 kernels, while “2 Conv” the denotes convolutional layer with
2 kernels. Normally, a CNN block of six layers consists of 6 connections. However, as
the network becomes deeper, issues with the normal CNN arise, i.e., the features in the
input vanish once it travels through several layers until it comes to the end. Thus, we
preferred to use a deep CNN with 6 layer connections, where 3 connections were between
the 1st, 3rd, 4th, 5th, and 6th layers, and 2 connections were between the 2nd and 6th layers.
Figure 2 illustrates the connection points in the dense CNN, and ⊕ indicates the sum of all
imported connected lines. The dense layer resolved issues that were related to information
vanishing while passing over multiple layers, and it also utilized the features mined by the
entire layers.
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3.8. Quadruplet Learning

Metric learning means to transfer the input data to new feature space S(C) (e_θ: S(E)→ S(C)

from the original space, where E denotes the dimension of original the space, C denotes the
dimension the of new space, and θ is the learning parameter. In the new feature space S(C),
the samples from the same class were assumed to be nearer than those from the diverse
classes so that the classification could be completed in S(C) with the NN. A network such
as a quadruplet network [33] could be created.

3.9. Quadruplet Loss (QL)

Here, the quadruplet loss (QL) included 4 various samples: y (i)
p , y (i)

q , y (i)
n1 , and y (i)

n2 ,

where y (i)
p and y (i)

q are samples from the same class and y (i)
n1 and y (i)

n2 are sample of another
class. All samples were moved to the feature space by eθ : SE → SC . QL is given by

LFquad =
1

NUMquad
∑

NUMquad
i=1 (ed

(
y(i)p , y(i)q

)
− ed

(
y(i)p , y(i)n1

)
+ ε )

+

(
ed
(

y(i)p , y(i)q

)
− ed

(
y(i)n1 , y(i)n2

)
+ Ω )+

)
(1)

where Ω and ε are margins of 2 terms, and NUMquad denotes the number of quadru-
plets. The 2nd term of the QL limits the intra-class distance and causes it to be smaller
than the inter-class distances. However, the loss function in Equation (1) performed poorly
since the quadruplet pairs and the number of quadruplet grew faster while the dataset got
broader. In certain cases, all the samples were not sufficient to train the network, which led
to poor performance [33]. To overcome all the issue, a new QL function was designed:

LFnquad =
1

NUMnquad
∑

NUMnquad
i=1 (ed

(
y(i)p , y(i)q

)
− ed

(
y(i)m , y(i)n

)
+ ε)

+
(2)

where y (i)
q denotes the farthest sample to the reference y (i)

p in the same class, y (i)
m and y (i)

n
are the nearby negative pairs in the entire batch, NUMnquad is the number of quadruplet in
the new loss function, and ε is the value of the margin. Each sample in Equation (2) was
moved by eθ : SE → SC . The pseudocode for the batch training with the proposed loss
function is expressed in Algorithm 1, where TD = {td1, td2, td3, . . . , tds} is the training
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dataset for this batch and s is the number of the labelled samples. As said in the algorithm,
NUMnquad = r and tdj, tdk indicate the sample in the dataset TD. Meanwhile, tdj and tdk
indicate the pair of samples, C(tdj) is a class of label of sample tdj, and ∀ represents the
learning rate. tdp, tdq, tdm, and tdn are the quadruplets before the deep network, while yp,
yq, ym, and yn are the corresponding quadruplets after the deep network.

Algorithm 1. Quadruplet Network

1. Input: The training dataset for this batch TD = {td1, td2, td3, . . . , tds}
2. The initialized or updated learnable parameter θ.
3. For all pairs of samples (tdj, tdk) in TD, DO
4. Calculate the Euclidean distance ed ( fθ (tdj), fθ (tdk))
5. End For
6. Set the loss LFquad = 0
7. Set (m, n) = argmined(j,k) (fθ(tdj), fθ(tdk)), under the condition C(tdj) 6= C(tdk)
8. ym = fθ (tdm), yn = fθ (tdn). (Transfer tdm, tdn to ym, yn by the network fθ: EG→EH)
9. For tdp in the dataset TD, DO
10. yp = fθ (tdp). (Transfer tdp to yp by the network fθ: EG→EH)
11. Set p = argmaxed(j) (fθ(tdj), yp), under the condition CL(tdj) = C(tdp)
12. yq = fθ (tdp). (Transfer tdp to yq by the network fθ: EG→EH)
13. Update: LFquad = LFquad + 1

NUMnquad
(d(yp, yq) − d(ym, yn) + ε)+

14. End For
15. Update: θ = θ − ∀∆θ LFnquad

16. Output: θ, LFnquad

4. Results

The proposed tracking technique quadruplet-based faster RCNN was tested with
existing algorithms, such as Bayesian multi-object tracking (BMOT) [34], intersection-over-
union tracker (IOUT) [15], global optimal greedy (GOG) algorithm [35], continuous energy
minimization (CEM) [36], social long short term memory (SLSTM) [37], simple online and
real-time tracking (SORT) [21], relative long short term memory (RLSTM) [38], and relative
motion online tracking (RMOT) [39]. To examine the performance of the MOT techniques,
we utilized numerous metrics such as identification precision (IDP), identification recall
(IDR), and F1 score, which are together referred as IDF1. IDF1 is stated as

IDF1 =
2IDTP

2IDPP + IDP + IDN

where IDPP represents the ID of the true positives, IDP represents the ID of the false
positive, and IDN represents the ID of the false negative. Additionally, the accuracy,
precision of MOT, mostly tracked target, mostly lost target, count of false positives, count
of false negatives, count of ID switches, and count of time trajectory are fragmented.

4.1. Datasets

The proposed method was executed on the public Stanford Drone and UAVDT
datasets [7,33]. The UAVDT dataset provided a sequence of 50 records of the traffic
state from UAVs. There are four types of prediction results for MOT, faster RCNN [40],
reverse connection with objectiveness prior network (RON) [41], Single Shot Multi Box
Detector (SSD) [42], and region-based fully convolutional network (R-FCN) [42]. The
Stanford Drone dataset consists of sequences of 60 videos that were recorded from a high
altitude looking down by a flying UAV on a campus scene. The gathered videos consisted
of several kinds of objects, as seen in Figure 3.
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Figure 3. Five sequences of videos in different benchmarks. (a) M0204 sequence with quadruplet-based faster RCNN,
(b) M0301 sequence with quadruplet-based faster RCNN, (c) M0704 sequence with quadruplet-based faster RCNN,
(d) M1301 sequence with quadruplet-based faster RCNN, and (e) M1303 sequence with quadruplet-based faster RCNN.

4.2. Evaluation

We utilized four types of object prediction results as inputs to the quadruplet-based
faster RCNN on the UAVDT datasets. It was noticed that our quadruplet-based faster
RCNN attained good results for the basic metric of IDP and IDF1, while SORT attained an
IDF1 of 37.1 and SDD achieved an IDF1 of 54.6. Compared to other prediction technique,
our proposed technique had great improvements on most of the metrics and could also
handle most difficult trajectories. This means that with the proposed approach, the pre-
diction of motion of object trajectories was stronger. The highest value of the IDF1 score
illustrates that the proposed technique was more effective.

The UAVDT dataset consists of four types of attributes (camera view, weather con-
dition, flying altitude, and time attribute such as duration). The proposed approach was
examined for those four attributes. Regarding the camera view attribute, our technique
performed very well for the inside, front, and bird views, as the images captured from all
these views had more object information that helped in the object prediction and tracking.
Our proposed technique attained good result because the scene information of the side
and front views was needed for global motion analysis. Regarding the weather condition
attribute, most of the techniques performed well in night and day but failed to perform well
in fog, as the view was altered in the night and day. However, our proposed approach did
well in all conditions. Regarding the flying altitude attribute, most other MOT technique
were reduced with increasing altitude. However, our proposed approach performed very
well at the medium and low altitudes, where there were drastic changes in view due to
UAV movements, which caused wrong predictions for the other techniques. Regarding the
duration attribute, the proposed approach performance is stable for short and long term
with robustness of the proposed method.

We also executed our proposed approach on the Stanford Drone dataset. As it was
difficult to predict objects in this type of dataset, the ground truth position of each object
was used for MOT to examine the performance of MOT techniques regarding the position
of real objects. It was noticed that our proposed approach outperformed the other MOT
techniques. This was actualized by comparing all the positive and negative indexes for
each prediction, as seen below.

4.2.1. Faster Region-Convolutional Network (Faster RCNN)

Table 1 shows the detection input of the faster RCNN evaluation with respect to all
the performance metrics. Figure 4 represents the of performance comparison measures
of IDF1, IDP, IDR and multiple object tracking precision (MOTP). The proposed method
contained 55% of IDF1, 67% of IDP, 43% of IDR, 39% of multiple object tracking accuracy
(MOTA), and 75% of MOTP. These measures were compared with the existing methods of
SMOT, IOUT, GOG, CEM, SLSTM, SORT, RLSTM, RMOT, and the previously existing faster
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RCNN. This statistical analysis proved that the proposed method had higher efficiencies
than the existing methods.

Table 1. The detection input of the faster RCNN. MOT: multiple object tracking; IDP: identification
precision; IDR: identification recall. MOTA: multiple object tracking accuracy. MOTP: multiple object
tracking precision. FP: false positive. FN: false negative. IDS: identification switches, and the total
number of times a trajectory is fragmented (FM).

MOT Methods IDF1 IDP IDR MOTA MOTP FP FN IDS FM

CEM 10.2 19.4 7 7.3 69.6 72,378 290,962 2488 4248
GOG 18 23.3 14.6 34.4 72.2 41,126 168,194 14,301 12,516
IOUT 23.7 30.3 19.5 36.6 72.1 42,245 163,881 9938 10,463
BMOT 33.3 27.8 41.4 39.8 72.3 319,008 151,485 5973 5897
RLSTM 31.3 38.6 26.3 25.6 69.1 71,955 180,461 1333 13,088
SMOT 45 55.7 37.8 33.9 72.2 57,112 166,528 1752 9577
SORT 43.7 58.9 34.8 39 74.3 33,037 172,628 2350 5787

SLSTM 37.2 46.8 30.8 37.9 72 44,783 161,009 6048 12,051
IPGAT 49.4 63.2 40.6 39 72.2 42,135 163,837 2091 10,057

PROPOSED 55 67 45 40.3 74 30,065 150,837 1091 3057

Figure 5 shows the proposed method’s results in regards to the performance measures
of FP, FN, IDS and FM. The proposed method contained 3000 FP, 13,000 FN, 2 IDR, and
5 FM values. These measures were compared with the existing methods of BMOT, IOUT,
GOG, CEM, SLSTM, SORT, RLSTM, and RMOT in the faster RCNN. This statistical anal-
ysis proved that the proposed method of the minimum false rate had higher efficiencies
compared to the existing methods.
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Figure 5. Comparative analysis of proposed method with existing methods based on the minimum false rate. CEM:
continuous energy minimization, GOG: global optimal greedy, IOUT: intersection-over-union tracker, RMOT: relative
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online and real-time tracking, SLSTM: social long short term memory.

4.2.2. The Faster Region-Based Fully Convolutional Network (Faster R-FCN)

Table 2 shows the detection input of the faster R-FCN with respect to all the perfor-
mance metrics. Figure 6 shows the performance comparison measures of IDF1, IDP, IDR,
and MOTP. The proposed method contained 50% IDF1, 64% IDP, 44% IDR, 40% MOTA, and
80% MOTP values. These measures were compared with the existing methods of SMOT,
IOUT, GOG, CEM, SLSTM, SORT, RLSTM, and RMOT in the existing faster R-FCN. This
statistical analysis proved that the proposed method had a higher accuracy and precision
rate compared to the existing methods.

Table 2. R-FCN (region-based fully convolutional network) evaluation with respect to performance
metrics. MOT: multiple object tracking; IDP: identification precision; IDR: identification recall. MOTA:
multiple object tracking accuracy. MOTP: multiple object tracking precision. FP: false positive. FN: false
negative. IDS: identification switches, and the total number of times a trajectory is fragmented (FM).

MOT Methods IDF1 IDP IDR MOTA MOTP FP FN IDS FM

CEM 10.3 18.4 7.2 9.6 70.4 81,617 289,683 2201 3789
GOG 30.9 38.8 25.6 28.5 77.1 60,511 176,256 6935 6823
IOUT 44 47.5 40.9 26.9 75.9 98,789 145,617 4903 6129
RMOT 34.4 28.7 43 43.8 76.3 328,677 158,760 2949 2286
RLSTM 29.3 34.8 25.2 14.7 70.6 97,670 191,720 1395 9953
SMOT 44 53.5 37.3 24.5 77.2 76,544 179,609 1370 5142
SORT 42.6 58.7 33.5 30.2 78.5 44,612 190,999 2248 4378

SLSTM 35.6 43.6 30.1 27.5 76.9 66,980 172,942 7355 9791
IPGAT 47.5 60.1 39.2 30.2 77.1 58,875 177,304 1799 6705

PROPOSED 49.5 64 44.2 40.3 79.6 42,065 135,617 1191 2057

Figure 7 shows the proposed method’s results regarding the performance measures of
FP, FN, IDS, and FM. The proposed method contained 42,065 FP, 13, 5617 FN, 1191 IDR,
and 2057 FM values. These measures were compared with the existing methods of SMOT,
IOUT, GOG, CEM, SLSTM, SORT, RLSTM, and RMOT in the existing faster SSD. This
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statistical analysis proved that the proposed method had a higher accuracy and precision
rate than the existing methods.
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Figure 7. Comparative analysis of proposed method with existing methods. CEM: continuous energy minimization, GOG:
global optimal greedy, IOUT: intersection-over-union tracker, RMOT: relative motion online tracking, RLSTM: relative long
short term memory, Bayesian multi-object tracking (BMOT), SORT: simple online and real-time tracking, SLSTM: social long
short term memory.

4.2.3. Single Shot Multi Box Detector (SSD)

Table 3 shows the detection input of SSD evaluation with respect to all the perfor-
mance metrics.
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Table 3. SSD (single-shot detector) evaluation with respect to performance metrics. MOT: multiple
object tracking; IDP: identification precision; IDR: identification recall. MOTA: multiple object
tracking accuracy. MOTP: multiple object tracking precision. FP: false positive. FN: false negative.
IDS: identification switches, and the total number of times a trajectory is fragmented (FM).

MOT Methods IDF1 IDP IDR MOTA MOTP FP FN IDS FM

CEM 10.1 21.1 6.6 6.8 70.4 64,373 298,090 1530 2835
GOG 29.2 33.6 25.9 33.6 76.4 70,080 148,369 7964 10,023
IOUT 29.4 34.5 25.6 33.5 76.6 65,549 154,042 6993 8793
RMOT 26.1 18.9 41.8 10 75.1 544,591 131,382 9252 7211
RLSTM 26.5 28.9 24.4 7.6 69 129,660 182,828 347 12,654
SMOT 41.9 45.9 38.6 27.2 76.5 95,737 149,777 2738 9605
SORT 37.1 45.8 31.1 33.2 76.7 57,440 166,493 3918 7898

SLSTM 39.4 44.2 35.5 33 75.8 77,706 144,617 6019 13,332
IPGAT 43.3 49.6 38.5 34.1 76 71,519 148,248 4739 11,128

PROPOSED 44.5 51 42.2 35.5 78.6 54,065 129,617 1267 1890

Figure 8 shows the proposed method’s results regarding the performance measures of
IDF1, IDP, IDR, and MOTP. The proposed method contained 45% IDF1, 51% IDP, 42% IDR,
36% MOTA, and 79% MOTP values.
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These measures were compared with the existing methods of SMOT, IOUT, GOG,
CEM, SLSTM, SORT, RLSTM, and RMOT in the existing faster SSD. This statistical analysis
proved that the proposed method had a higher accuracy and precision rate than the
existing methods.

Figure 9 shows the proposed method’s results regarding the performance measures
of FP, FN, IDS, and FM. The proposed method contained 54,065 FP, 12, 9617 FN, 1267
IDR, and 1890 FM values. These measures were compared with the existing methods of
SMOT, IOUT, GOG, CEM, SLSTM, SORT, RLSTM, and RMOT in the existing SSD. This
statistical analysis proved that the proposed method of the minimum false rate had higher
efficiencies than the existing methods.
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Figure 9. Comparative analysis of proposed method with existing methods. CEM: continuous energy minimization, GOG:
global optimal greedy, IOUT: intersection-over-union tracker, RMOT: relative motion online tracking, RLSTM: relative long
short term memory, Bayesian multi-object tracking (BMOT), SORT: simple online and real-time tracking, SLSTM: social long
short term memory.

4.2.4. Reverse Connection with Objectiveness Prior Network (RON)

Table 4 shows the detection input of RON evaluation with respect to all the perfor-
mance metrics.

Table 4. RON evaluation with respect to performance metrics. MOT: multiple object tracking; IDP:
identification precision; IDR: identification recall. MOTA: multiple object tracking accuracy. MOTP:
multiple object tracking precision. FP: false positive. FN: false negative. IDS: identification switches,
and the total number of times a trajectory is fragmented (FM).

MOT Methods IDF1 IDP IDR MOTA MOTP FP FN IDS FM

CEM 10.1 18.8 6.9 9.7 68.8 78,265 293,576 2086 3526
GOG 51 60.2 44.3 35.7 72 62,929 153,336 3104 5130
IOUT 50.1 59.1 43.4 35.6 72 63,086 153,348 2991 5103
RMOT 28.8 22.5 40 34 70.9 418,222 153,480 7902 7007
RLSTM 36.5 42.4 32.1 24.1 68.7 87,589 169,866 1156 12,657
SMOT 52.6 60.8 46.3 32.8 72 73,226 154,696 1157 4643
SORT 54.6 66.9 46.1 37.2 72.2 53,435 159,347 1369 3661

SLSTM 48.1 56.4 41.9 35 71.9 65,093 152,481 4013 6059
IPGAT 54.1 64.3 46.8 35.9 72 62,038 154,871 1679 5062

PROPOSED 57.5 67 47.3 39.2 73.9 52,065 150,917 1476 2539

Figure 10 shows the proposed method’s results regarding the performance measures of
IDF1, IDP, IDR, and MOTP. The proposed method contained 58% IDF1, 67% IDP, 47% IDR,
and 39% MOTA values. These measures were then compared with the existing methods of
GOG, CEM, SLSTM, SORT, RLSTM, and RMOT in the previously existing faster RON.

Figure 11 shows the proposed method’s results regarding the performance measures
of FP, FN, IDS, and FM. The proposed method contained 52,065 FP, 150,917 FN, 1476 IDR,
and 2539 FM values. These measures were compared with the existing methods of SMOT,
IOUT, GOG, CEM, SLSTM, SORT, RLSTM, and RMOT in RON. This statistical analysis
proved that the proposed method of the minimum false rate had higher efficiencies than
the existing methods. We also evaluated our tracker with one-pass evaluation (OPE), and
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our tracker was found to attain the best expected average overlap (EAO) while maintaining
beyond real-time speed.
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5. Conclusions

For MOT, motion is generally utilized as a cue for linking objects and predictions.
However, the conventional MOT technique addresses a performance drop in UAV videos
due to UAVs’ autonomous motion. Therefore, we proposed a new quadruplet-based RCNN
framework to find every objects’ motion and view modifications of UAVs. Experiments
were conducted on two public datasets (Stanford Drone and UAVDT), and the results
show the efficiency of the proposed approach. Our future research work will include
a combination of other modules such as a triplet network for abnormal event detection
and tracking.
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