i?‘lg electronics

Article

Continuous Automotive Software Updates through Container

Image Layers

Nicholas Ayres 109, Lipika Deka %*

check for

updates
Citation: Ayres, N.; Deka, L.;
Paluszczyszyn, D. Continuous
Automotive Software Updates
through Container Image Layers.
Electronics 2021, 10, 739.
https://doi.org/10.3390/
electronics10060739

Academic Editors: Calin Iclodean,
Bogdan Ovidiu Varga and
Felix Pfister

Received: 7 March 2021
Accepted: 18 March 2021
Published: 20 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

and Daniel Paluszczyszyn 23

Department of Computer Science and Informatics, Cyber Technology Institute, De Montfort University,
Leicester LE1 9BH, UK; nick.ayres@dmu.ac.uk

The De Montfort University Interdisciplinary Group in Intelligent Transport Systems (DIGITS),
Department of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK;
paluszcol@dmu.ac.uk

3 Royal Academy of Engineering Industrial Fellow, HORIBA MIRA Ltd., Nuneaton CV10 0TU, UK

* Correspondence: lipika.deka@dmu.ac.uk

Abstract: The vehicle-embedded system also known as the electronic control unit (ECU) has trans-
formed the humble motorcar, making it more efficient, environmentally friendly, and safer, but
has led to a system which is highly dependent on software. As new technologies and features are
included with each new vehicle model, the increased reliance on software will no doubt continue.
It is an undeniable fact that all software contains bugs, errors, and potential vulnerabilities, which
when discovered must be addressed in a timely manner, primarily through patching and updates, to
preserve vehicle and occupant safety and integrity. However, current automotive software updating
practices are ad hoc at best and often follow the same inefficient fix mechanisms associated with a
physical component failure of return or recall. Increasing vehicle connectivity heralds the potential
for over the air (OtA) software updates, but rigid ECU hardware design does not often facilitate or
enable OtA updating. To address the associated issues regarding automotive ECU-based software
updates, a new approach in how automotive software is deployed to the ECU is required. This paper
presents how lightweight virtualisation technologies known as containers can promote efficient
automotive ECU software updates. ECU functional software can be deployed to a container built
from an associated image. Container images promote efficiency in download size and times through
layer sharing, similar to ECU difference or delta flashing. Through containers, connectivity and OtA
future software updates can be completed without inconveniences to the consumer or incurring
expense to the manufacturer.

Keywords: virtualisation; ECU; automotive E/E architecture; containers; over the air; software
updates

1. Introduction

In 1886, Karl Benz built what was considered the first modern motor vehicle: the Benz
Patent-Motorwagen, the humble car has transformed, not just in looks but function. In
1977, General Motors released the Oldsmobile Toronado, which is regarded as the first
car to include an electronic control unit (ECU) [1]; this first implementation managed the
electronic spark timing of the combustion process. ECUs benefit the driver with a safer,
efficient and more comfortable ride but the benefits can also be seen with regard to the
vehicle such as lower CO2 emissions, reduced mechanical wear and higher efficiency in
operation. Vehicle systems are no longer mechanically linked together, but rather software
driven hardware, connected between driver input and vehicle output. Since ECUs were
introduced, software has become an integral part of the motorcar similar to any mechanical
component which aids in its function and operation.

According to [2], “over 80% of innovations in the automotive industry are now re-
alised by software-intensive systems”. Over 100 million lines of software code across

Electronics 2021, 10, 739. https:/ /doi.org/10.3390/ electronics10060739

https:/ /www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9145-2560
https://orcid.org/0000-0001-8986-884X
https://orcid.org/0000-0003-2838-060X
https://doi.org/10.3390/electronics10060739
https://doi.org/10.3390/electronics10060739
https://doi.org/10.3390/electronics10060739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10060739
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10060739?type=check_update&version=2

Electronics 2021, 10, 739

20f 17

100 ECUs can be found within the automotive E/E architecture of many modern motor
vehicles providing vehicle functions from engine management to passenger comfort [3,4].
These diverse functions make the modern motorcar one of the most software-intensive
systems we use in our day-to-day lives [3,5,6]. There are regular and periodic preventative
and proactive maintenance procedures of a vehicle’s physical components throughout
its lifetime [7]. However, the same statement cannot be said concerning automotive soft-
ware. Despite the requirement for reliable software, bugs and errors are unintentional
but appear frequently within software code [8,9]. How and why software code contains
errors and flaws are varied [10-12]. Problems are often introduced during the various
stages of the software life-cycle. For example, bugs and errors in software code can lead
to unexpected and sometimes dangerous results in the output of software-driven devices
and functions [13-16]. Current automotive software update practices and procedures are
problematic because there is no clearly defined mechanism or standard.

Current software update mechanisms often follow the same return or recall mech-
anism associated with a physical vehicle component failure. The Original Equipment
Manufacturer (OEM) may issue a vehicle recall notice, especially if the fault concerns a
safety issue. The “return or recall” process has its own associated problems including cost
to the manufacturer and inconvenience to the consumer [13,17,18]. In order to address
these limitations, a new approach to automotive software updates is required. Software
Over the Air (OtA) update mechanisms can update automotive software without the need
to return the vehicle to an authorised garage or dealership [19-21]. Using the increasing
deployment of on-board vehicle connectivity, OtA updates can deliver new software as
and when required [22]. However, current rigid ECU hardware designs do not facilitate or
promote an architecture that can benefit from an OtA software update mechanism.

The focus of this paper is to propose and investigate how specific lightweight virtuali-
sation also known as containers can be deployed within the automotive E/E architecture
to promote periodic remote OtA software updates [23]. A container-based ECU can ad-
dress many of the current software updating issues identified within this paper. It can
provide a scalable and updateable solution that is not dependant on many applications of
individual ECU hardware systems, which is the standard practice in current automotive
E/E architecture design. Automotive functionality hosted within containers is a promising
technology which can address many of the current inadequacies in automotive software
updating and has the potential to deliver a standardised mechanism to promote continual
software updates throughout the vehicle’s lifetime as well as a platform that can provide
new system functionality to the consumer through aftermarket market sales.

2. Automotive E/E Architecture: Software Associated Issues

Vehicle software is considered to be a significant component of the modern motorcar.
As the number of ECUs increases, it inevitably results in more lines of software code to
drive those systems. As more lines of code are included it raises specific issues related to
an increased dependency on software.

2.1. Software Bugs and Errors

Automotive ECU software is often designed, developed, and written by third party
suppliers. However, according to [10], “guessing what the designer’s intentions were
most often results in more bugs”. Studies into the quality of software indicate strong
correlations between the size of the application and the total number of defects [11].
Reference [12], states that a software system consisting of millions of code lines could
have tens of thousands of unknown or undetected bugs. The following chart (Figure 1)
highlights the increasing trend of software associated vehicle recalls. In 2018, 8 million
vehicles in the U.S. were affected by some form of software defect.

Electronics 2021, 10, 739 30f17

E/E Architecture Related Vehicle Recalls

100
80 :

- B Software Remedy
M Software Integration
40 M Software Defect

M Physical Component
20

11
4
5 2 B
) 2 57
40
5
B B e
0

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Number of Campaigns

=
o

Year of Recall

Figure 1. Software related automotive recalls.

As stated in [24], automotive recalls can be classified into four groups, three of which
specifically relate to automotive software:

¢ Integrated electronic components—Failure of a physical, electronic component.

* Software integration—Software interfacing failure between different automotive com-
ponents or systems.

e Software defect—ECU software failure.

e Software remedy—Fault not solely attributed to software failure but was remedied
using a software update/patch.

Depending on the software’s application and how critical it is to operational safety
bugs and software errors can have disastrous consequences [13]. For example, in 1996,
the Ariane 5 Flight 501 rocket disintegrated 40 s after launch due to an undiscovered
software error within an arithmetic routine installed in the flight computer. The software
bug led to the backup and primary systems crashing, which ultimately led to the rocket’s
failure [25]. According to [26], the second most common reason for a vehicle-related
collision is attributed to automotive software bugs.

Many ECU systems within the modern motorcar are safety-related or considered
safety-critical. Any failure in an automotive safety-critical system can potentially endanger
vehicle occupant safety. Embedded software bugs and errors can cause control flow errors
which result in a flawed execution of the program that can lead to sensor or actuator
failure or the system hanging or crashing [27]. To mitigate against these types of errors in
dependable and safety-critical systems, expensive hardware-based countermeasures such
as triple modular redundancy are often required.

2.2. Software Associated Security Threats

Vehicles are no longer closed systems that require direct physical access to gain unau-
thorised entry to the car. Vehicle connectivity is gaining popularity as it offers vehicle
occupants a mechanism to connect to services outside of the vehicle via the Internet. How-
ever, the potential to compromise automotive security through vehicle-based connectivity
now has the potential to come from anywhere. Nevertheless, even though connectivity
systems have been incorporated into vehicles over the last few years, “car hacking” has not
been widespread due to the limited potential for cyber-crime and cyber-criminals.

In 2015, two security professionals, Charlie Miller and Chris Valasaek, demonstrated
how to compromise a motor vehicle remotely through its connectivity system and vul-
nerabilities within its software code. They gained access through the HMI unit known
as the Uconnect system in the Gran Jeep Cherokee target vehicle. Access to the CANbus
vehicle network was possible through the design of this device. This system incorporates
an interface for particular vehicle operational and media functions. Due to vulnerabilities

Electronics 2021, 10, 739

40f17

in the HMI operating system software, the software update validation mechanism was dis-
abled, which permitted malware injection into the Uconnect software. Once compromised,
the system enabled the attackers to remotely inject spoofed CAN frames to ECUs which
were responsible for vehicle control. The HMI vulnerability allowed the hackers to interfere
with various vehicle subsystems, including interior climate control and vehicle windscreen
wipers. They also manipulated safety-critical systems, including shutting down the engine
and limited steering control. The Uconnect HMI is a standard product supplied by Fiat
Chrysler and is incorporated into numerous vehicle models across several different vehicle
makes. This software vulnerability affected 100,000 s of vehicles globally [5,28-30].

As the connected car becomes mainstream, it will ultimately become more of a target
for cyber-criminals [31]. Vehicle autonomy and many current ADAS features place the
vehicle in level 3 or 4 on the autonomy scale, where level 0 reflects complete driver control
and level 5 reflects complete computer control. An intruder’s potential to gain remote
system access and subsequent unauthorised control of a moving vehicle is an increasing
possibility [32]. Vehicle infotainment systems present large attack surfaces that often
delivers bi-directional vehicular connectivity. As such, any discovered vulnerabilities
within these systems software must be patched promptly to maintain the integrity of the
vehicle’s subsystems and occupants’ safety [33,34].

2.3. Ageing and Out of Date Code

Automotive E/E components, including associated ECU software, is often designed
and developed years before a particular vehicle model eventually leaves the sales fore-
court. The average vehicle has a life expectancy of between 10 to 15 years, and automotive
software must mirror this long-time frame. Automotive system longevity significantly
differs from many other software-based systems used in our day to day lives. For example,
periodic software updates are routinely applied to general-purpose computing and per-
sonal smart devices throughout their lifetime. Regular updates address flaws and bugs in
software code, provide security and deliver new or additional system functionality [35,36].
According to [37], software can exhibit signs of ageing where old software versions lose mar-
ket share and customers to new software products. Furthermore, reliability can decrease
because of the introduction of bugs and errors during periodic maintenance.

2.4. Aftermarket Sales and Additional Functionality

Throughout its life, the modern motorcar requires a robust aftermarket industry to
sustain vehicle longevity. Currently, the automotive aftermarket sector is predominately
concerned with two main revenue streams; services and parts. The service sector includes
the maintenance and repair of vehicles, and accounts for approximately 45% of total
European aftermarket revenue. The remaining 55% involves the sale of vehicle parts.
The global aftermarket industry in 2015 was worth an approximate $760 bn and accounted
for 20% of total automobile revenues [4].

Consumers increasingly demand the features and functions they use on their smart
devices to be made available within their vehicles. The automotive industry is looking
towards connectivity to provide the consumer with new aftermarket automotive features
and functions. Figure 2 highlights the most significant influence over new car purchase
decision where 10 means in-car technology has the most significant influence, and 1 refers
to the car’s performance as the predominant factor. In response to this trend, infotainment
systems that offer an “Apple-like” experience are predicted to grow from 18 million units
in 2015 to 50 million by 2025 [38].

Three of the six top trends surrounding aftermarket sales refer to new and emerging
digital technologies, these include:

¢ Interface digitisation—by 2035, there will be a predicted shift of between 20-30%
from physical component replacement to software upgrades of vehicle components,
including new digital services which can be purchased on demand [4].

Electronics 2021, 10, 739

50f17

e Car-generated data—connected vehicles generate considerable amounts of telem-
atics and driver data, approximately 25 GB per hour. Through big data analytics,
consumer-generated data can be of substantial value to the manufacturer in determin-
ing consumer insights, predictive maintenance and remote diagnostics.

e The increasing influence of digital intermediaries—usage-based companies and tech-
nology companies are increasingly using vehicle-generated data. These sectors will
require mechanisms to facilitate the retrieval and frequent deployment of automotive
software.

20

4
zll
0
i 23 4 5 6 7 8 9 10

Level of influence in new car selection
(1 refers to vehicle driving performace having greatest inpact
10 refers to in-car technology having greatest impact in influencing perchase)

= = e
L] [=a T]

[
S]

[+<]

Percentage of consumers (%)
=
(=] o

Figure 2. Consumer Preference: New Car Selection.

3. Automotive Software Updating

In the modern motorcar, almost all aspects of vehicle operation require considerable
amounts of software code [3,9,39]. However, as with all software, automotive software
needs to be periodically updated. In an increasingly software-centric automotive E/E archi-
tecture, new software installations may be required several times during a vehicle’s lifetime.

The process of online or OtA software updates has been seen in personal computing
technology and more recently in our smart devices, which are updated periodically to
provide software bug fixes and the latest security patches, and add new software function-
ality or install newer software and operating system versions. This is enabled through the
device’s own connectivity hardware. However, this wide-scale software update mechanism
is in an infant stage in automobiles.

Any future automotive software update mechanism must present minimal disruption
to the customer and be cost-effective to the manufacturer and supplier. There are several
principle reasons why it is vital to periodically update automotive software, these include:

¢ Addressing system failure through software errors and bugs.
e Patching or enhancing the system and software security.
* Adding value post-sale through aftermarket content.

Current automotive software update practices and procedures are problematic because
there is no clearly defined mechanism or standard. Historically, when a common fault was
discovered within a particular installed physical component of a vehicle, the OEM could
issue a vehicle recall notice [40], especially if the fault reflects a severe safety issue.

The current mechanisms for automotive software updates are ad hoc at best. This pa-
per has identified three common mechanisms, including;:

¢ Manufacturer-initiated vehicle recall process.
* Guided user intervention.
* Opver the air update.

Electronics 2021, 10, 739

60of 17

3.1. Software Update Mechanism: Manufacturer-Initiated Recall Process

Vehicle recalls are relatively common. For example, since 1966 in the U.S., over 390
million vehicles have been recalled due to safety issues [41]. Like a physical component,
a software-related problem, depending upon the severity, needs to be addressed and
resolved. The recall mechanism, for both physical and software-related issues, requires
the vehicle’s return to a qualified engineer to rectify the problem [13]. Vehicle recalls are
an expensive exercise for the manufacturer [13,17,18,42]. They are also a disruptive and
time-consuming procedure for the customer [42,43].

The process of a physical component fix may differ from a software fix. Physical
components are replaced with new ones, often because of mechanical wear or a fault in the
original component design or construction. In contrast, a software fault may require special-
ist equipment and a new software version installed on the existing hardware. However, this
is not always possible with older embedded systems. Legacy ECU systems have their code
pre-set at component manufacture. According to [44], high hardware optimisation often
results in ECUs with minimal resources where limited storage, memory and processing
capacity cannot accommodate additional lines of new software code. Limitations in ECU
hardware resources require a similar exchange of hardware to repair a software-related
fault. As such, like a physical component, ECU hardware exchange may be the only option
to repair a software-related defect. This has led to a state where more than 50% of error-free
hardware is replaced with entirely new hardware to resolve a software-related issue [44].

Incurred manufacturer maintenance costs can be high if a previously undetected
software error or design flaw requires a vehicle recall [45]. A much higher cost multiplier
to repair a software fault post-production is applied when compared with identifying
the same fault much earlier in the software development life cycle. Cost is not the only
factor in this update process. Customer confidence and brand loyalty can also be affected
by software bugs and errors [6]. In recent years this has been an issue with the highly
publicised Grand Jeep Cherokee cyber-attack [5,28,30].

3.2. Software Update Mechanism: Guided User Intervention

This mechanism uses a physical input port installed inside the vehicle. Many modern
cars provide a physical connection port for their owners’ portable electronic devices, such
as external Global Positioning System (GPS) and personal mobile devices, including MP3
players, mobile phones and tablets. These devices are often connected to the vehicle via a
universal serial bus (USB) port. Using this port, vehicle owners are able to undertake their
own software update either by inserting a supplied preloaded removable storage device or
downloading a specific update from the manufacturer onto a USB device. Notably, Fiat
Chrysler employed this type of update following the 2015 Grand Jeep Cherokee remote
cyber-attack. Using the postal system, Fiat Chrysler distributed preloaded USB memory
sticks with updated software to 1.4 million affected customers [30]. However, there are
problems associated with this type of update mechanism. These include the following;:

¢ Limited port functionality.

* Inaccessible code.

e Basic understanding of computing technology.
¢ Willingness to undertake the task.

If any of the above prerequisites cannot be achieved, the software update will not be
completed and it will be left unresolved. This software update method relies heavily on the
customer having a particular level of technical knowledge and a willingness to perform the
update process themselves. For example, there may be a reluctance to complete a necessary
software update task due to a fear that their actions could “break the car”, rendering it
unserviceable and them responsible for any additional repair costs. Furthermore, there are
inherent security risks. This method is open to potential exploitation from malicious threat
actors that could enable unauthorised vehicle system access or the introduction of malware
into the vehicle through compromised storage devices or software download files [46].

Electronics 2021, 10, 739

7 of 17

3.3. Software Update Mechanism: Over the Air (OtA) Update

OtA mechanisms can update automotive software without the need to return the vehi-
cle to an authorised garage or dealership, or relying on the customer to update themselves.
Using on-board vehicle connectivity, OtA updates can deliver new software as and when
required. There are several options which can provide OtA software updates:

3.3.1. Dedicated Short-Range Communication (DSRC)

DSRC is an 803.11p-based wireless communication technology used for vehicle to
infrastructure (V2I) and vehicle to vehicle (V2V) communication to aid and support ADAS
and autonomous driving technologies. This communication technology can be used to
transfer software updates between fixed infrastructure or vehicles [47-49]. However,
the primary issue with DSRC and automotive software updates is the relatively short time
frames involved in V2I and V2V, especially when vehicles are travelling in the opposite
direction.

3.3.2. Cellular Networks

In contrast to DSRC, cellular network technology (3G, 4G, and 5G) can provide a
stable high bandwidth communication mechanism. Software updates are downloaded
by connecting to a particular cell tower within range, regardless of vehicle speed and
travel direction. However, coverage may be restricted due to geographical limitations.
Nevertheless, by using the extensive scope of cellular networks, future automotive software
updates can be transmitted and downloaded to the target vehicle regardless of that vehicle’s
location. New software, when released, can also be downloaded.

3.3.3. Fixed Location Wireless Local Area Network (WLAN)

This is another potential option for receiving software downloads. Updates can be sent
to the target vehicle while parked, for example, at home or at work. Tesla has been using
this OtA update mechanism from 2017 by using P2P wireless connections to download
software from Tesla servers to target vehicles [50].

Whichever form of OtA update mechanism is chosen, requires a vehicle connectivity
solution. There are three modes of connectivity operation, depending upon the connection
hardware type employed in the vehicle:

* Mirrored—applications stored on a paired portable smart device are replicated onto
the vehicle’s HMI unit. The application processing is usually performed on the smart
device with screen updates sent to the HMI via a physical or wireless connection [5].

® Tethered—this type of connection uses the paired device’s communication technology.
Applications are installed to the vehicle’s HMI unit and application data processing is
performed within the car.

¢ Embedded—a vehicle with this type of connectivity does not rely on a paired smart
device but uses its own connectivity hardware and installed applications.

There has been a widespread introduction of Long-Term Evolution (LTE) technology
within the motor vehicle using one of the three aforementioned connectivity types in
recent years.

4. The Significance of OtA Software Updates

There are several benefits associated with OtA software updates, making it a promis-
ing technology for the automotive industry. Through using lightweight virtualisation
technology and OtA software updates can provide several specific benefits:

* Reduction in vehicle recalls and associated costs.

® Vehicles can be updated in locations other than a dealership or maintenance garage.

* Centralised software—software updates can be distributed directly to the target
vehicles without distributing to dealers and maintenance garages.

Electronics 2021, 10, 739

8of 17

e Time to market—new software can be distributed as and when required rather
than waiting for the customer to return the vehicle or waiting for periodic main-
tenance schedule.

¢ Convenience—updates can be performed at the customer’s desired location and
discretion, reducing vehicle downtime.

¢ Mandatory updates—new and updated software, especially where safety is concerned,
can be pushed to the target vehicle without waiting for customer participation.

e Increase in safety—OtA software updates can reduce the time a vehicle is operated
under faulty conditions.

* Proven technology—OtA updates are widespread in the telecommunication industry,
which has provided users with new updated software via OtA mechanisms.

Reference [51] has predicted that vehicle connectivity could be available in all new
motor vehicles by 2025. In 2015, [21] suggested OtA software updates were an attractive
technology for the OEM and the customer, with cost savings expected to reach $35 billion
by 2022.

5. Current Automotive Software Re-Flashing Techniques

The current practice of updating automotive ECUs involves software flashing or re-
flashing techniques [20,52,53]. The operating system and functional software of an ECU are
generally held within embedded FLASH memory. Depending upon the model, modern
motor vehicles can have hundreds of megabytes of FLASH memory spread across their
ECUs. Under the return or recall mechanism, flashing or re-flashing software is often
completed by authorised personnel requiring the vehicle to be offline. New software is
delivered to the target ECU in one of two formats—full binary and diff/Delta file [32].

5.1. Full Binary Re-Flashing

ECU firmware is updated in its entirety through a process known as re-flashing, which
conforms to ISO 14229-3/UDS and ISO 15765-2/DoCAN. As part of this process, the entire
ECU software image is replaced with a newer version and the time taken to update the
software can often take hours to complete. This in part depends on the size of the software
update, the destination memory, protocol and whether encryption is used. The previously
installed software has no relevance on the new update, which can be beneficial if the
previous version requires replacing in its entirety rather than upgrading specific parts.
The size of the image binary impacts the time taken to transmit and download the file.
The new updated software image must also be stored within the target ECU, which requires
redundant storage, potentially of an undetermined fixed amount in order to accommodate
any future software update.

5.2. Difference/Delta File

Diff/ delta file flashing is a concept that compares the base file with the new version file
and creates a delta or difference file, thus reducing the size of the update [50]. Compared
with a full binary software update, a diff/delta software update is approximately below
10% of the full binary file size. Diff/delta files are much quicker to transmit, decreasing
overall transmission time by up to 90%. This method requires considerably less redundant
storage but it is reliant on the previous ECU software version. A patching algorithm block
erases the old data and writes new data in its place.

6. Container-Based Software Updating

Current software upgrades and bug fixes require the car to be shut down while being
updated and subsequently brought back online when complete. Looking towards the
automotive industry’s future, container-based ECU software can provide a platform to
facilitate software updates [23].

Containers, as depicted in Figure 3, represents a newer virtualisation technology which
differs from conventional hosted (Type 2) and bare-metal (Type 1) virtualisation technolo-

Electronics 2021, 10, 739

9of 17

gies. Individual functionality can be provided by small programs hosted within multiple
containers that do not require the heterogeneity provided by full system virtualisation
which comes at a cost when considering small scale embedded computing devices.

App App App

Guest Guest Guest
App 1 App 2 App 3

0s 0s 0s

Host Hardware Host Hardware

Figure 3. Full System Virtualisation and Container Architectures.

Using ECU container virtualisation in conjunction with OtA updates can address
the problems associated with customer disruption and the intrinsic delay between the
availability of a new software update and the deployment of that update to the target
vehicle. Through vehicle connectivity, new automotive software updates can be pushed or
pulled to the target vehicle at any time. For example, a software update pull request could
be initiated by the consumer as part of an aftermarket software upgrade or additional
automotive functionality. A push update could be applied by the Original Equipment
Manufacturer (OEM) or vehicle manufacturer, to resolve an identified software bug or
vulnerability thus circumventing the return/recall process and the inherent delays this
entails. However, the current primary focus of OtA is on applying a new update when
the vehicle is solely offline. The modern motorcar is a system which operates using
many subsystems of mixed-criticality. When in operation, there are numerous safety-
critical and continual service systems that require a real-time response, for example, engine
management and occupant safety systems. The criticality of the software-related issue often
determines the required type of software update response. This research has identified three
distinct container-based automotive software update modes: offline, online and dynamic.

6.1. Offline Update

Offline updates are initialised when the vehicle is powered down. Once the software
update verification and initial container creation are complete, any updates applied are
available when the vehicle is next started, similar to a system proposed by [54]. This process
mirrors the current return or recall procedure but does not incur any associated disruption
to the manufacturer or consumer, or recall costs [19,20,55]. Furthermore, this type of
update mechanism can be used for multiple system updates, which may affect numerous
subsystems across different automotive domains or involve safety-critical systems that
cannot be updated safely with the vehicle in operation.

6.2. Online Update

New software updates can be pushed or pulled to the vehicle using onboard connec-
tivity and applied while the vehicle is powered up but not in operation. The update process
is initiated and a new container is created from the new updated image. The affected
subsystem is then temporarily shut down before the new container’s initialisation with the
updated software. This update method could be applied to any automotive system but only
where a system’s required initialisation does not incur long time delays. For example, small
and frequent periodic updates and software security patches would be ideal candidate
systems and functions.

Electronics 2021, 10, 739

10 of 17

6.3. Dynamic Update

DSU do not require the system to be taken offline [56]. As such, they provide an
essential service where systems must offer a 100% uptime [57,58]. Taking a system offline to
fix bugs, improve system performance, or extend functionality causes delay and disruption.
Driverless vehicular technology promises non-stop long-haul trucks and round-the-clock
lift-hailing rides and therefore the window to administer software updates become shorter
and downtime is a significant disruption [59-61]. For the purposes of this research, a DSU
refers to a vehicle sub-system that can be updated and made available once completed,
without the vehicle requiring shut down and while it is still in a mode of operation. This
type of automotive update is suited ideally to any automotive function which is not
involved in vehicle operation or safety. Potential systems could include security software
updates and patches, any software relating to autonomous driving functions which are
not in operation and passenger-related systems relating to comfort, heating and occupant-
vehicle interaction.

7. Implementation and Evaluation of Container-Based Software Updating

Containers offer many benefits to current and future automotive E/E architectures [23].
For example, they provide a standardised environment that can facilitate automotive
embedded software updates and their hardware is not fixed to a particular version or type
of software. Consolidation is a crucial benefit of container ECUs where multiple containers
operate on larger, more resource capable embedded hardware platforms. Containers are
constructed from images based on a layered architecture, image layers represent specific
data, software, hardware and network configuration parameters.

A container image incorporates one or more layers (as can be seen in Figure 4), which
define all required software, libraries and binaries, and configuration settings for any
subsequent containers created from that image. Therefore, a container-based ECU must
also conform to the three principles of safety, security and transparency:

e Safety—new software containers can be rolled back to the ‘last known good’ image
and known safe containers can be reinstated.

* Security—new container images can be either pulled from an authorised repository to
the target vehicle or pushed by the manufacturer. All image layers use, for example,
SHA256 encryption and the checksum’s validation before the image goes ‘live’.

¢ Transparency—new container images, once validated, can be checked within a sand-
box area of the vehicle’s automotive E/E architecture before deploying live containers,
ensuring the updated system’s safe and continued service.

’,-———{ Container Image ‘---‘_
i

[

\\\

Laysr 5 —:—b‘ Configuration ‘ ":

|
Layer 4 ——P“ Software(Application) ‘
Layer 3 ——b‘ Software (Security Patch) ‘
Laysr 2 ——b‘ Configuration ‘
Layer 1 ——p‘ Software (Base 03) ‘

;

K

Figure 4. Container Image Layers.

Multiple containers can be created from the same image, which consists of several
read-only layers. Any change to the image is specific to a particular layer. If a change is
made within the image this alteration is contained within the appropriate layer the change
refers to. Small image configuration changes or an update to a specific piece of software

Electronics 2021, 10, 739

11 0of 17

within the image will prompt the system to download only the layers which pertain to
those particular changes. A further benefit of this layered approach is the ability to share
image layers between separate images. Multiple images that share common layers promote
efficiency. A layered design boosts image download speed and minimises the overall image
footprint and storage requirements.

To evaluate the benefits of the proposed approach, a test system which closely resem-
bles a typical ECU hardware architecture is required. Previous research into embedded
systems and engine management has successfully used the ARM processor-based Rasp-
berry Pi to simulate an ECU [62,63] . The Raspberry Pi version 3B hardware specification
used is suitably equipped to host the container software [64-66]. The ECU testbed operat-
ing system was Raspbian Lite which used Docker, a container virtualization technology.
The high level-programming language chosen is Python as it provides flexibility in access-
ing the GPIO pins of the Raspberry Pi.

The following test case illustrates how container-based ECUs can promote software
update efficiency through image layer duplication. Layer duplication in this context refers
to any container image which has the same software version or set of configurations. In this
test case two separate image downloads are presented with and without layer duplication.
The following results when layer duplication is used show a reduction in time to download
and required storage footprints in a potential future automotive software update procedure.

7.1. Individual Container Image Downloads

The example in Figures 5 and 6 illustrates two separate alpine-python images that
consist of three individual layers which define the configuration and required software for
any container created from that image. The two images alpine-python2 and alpine-python3,
both of which share a common Linux based OS (alpine), can be seen in the unique identifier
layers cbdbe7a5bc2a and 136e07eeald6. However, each image has a different version of
application software (python2 and python3) with the unique identifier layers {890c681a889
and 1a5281d561d0 respectively.

Figure 7 displays the time taken to download and extract both of the alpine images
including the total size on disk the two images require in MB. This individual image
download is a standard procedure in full binary software updating. If both images are
downloaded independently, each image is downloaded in its entirety and bears no re-
lationship with the other image, even though they both share the same underlying OS
(alpine).

----- ‘{ alpine-python2 |—-——- -----*{ alpine-python3 ‘--——-

‘ Y i 5
I cbdbe7aSbc2a I cbdbsTaSbc2a
! . :
'] | :
) ‘ 136e07scaldé | | ‘ 136e07sealds ‘
| . :
' : | :
i £890cEB81a889 i 1a5281d561d0
| i | :

Figure 5. Independent Image Download Layers.

Electronics 2021, 10, 739

12 of 17

Using default tag: latest

ckdbeTaSbec2a: Pull complete
136e07eealdd: Pull complete

£390c681a289%: Pull complete

docker.ic/digitalgenius/alpine-python2-pg:latest

latest: Pulling from digitalgenius/alpine-python2-pg

master(l: ~fimages docker pull digitalgenius/alpine-python2-pg

Digest: sha256:c4cfflld2c5%cl3fb729c153bb3091594fb469bc28117e70b535bI43d4aaciade

Status: Downloaded newer image for digitalgenius/alpine-python2-pg:latest

Using default tag: latest

chdbeTaSko2a: Pull complete
136e07eealdé: Pull complete

1a5281d4561d0: Pull complete

latest: Pulling from digitalgenius/alpine-python3-pg

masterll: ~/imagesg docker pull digitalgenius/alpine-python3-pg

Digest: sha256:0b1512a41129f127Tbd51215858732351e88cdd4Tadb32856cif4badaeflb9821b

Status: Downloaded newer image for digitalgenius/alpine-python3-pg:latest

docker.io/digitalgenius/alpine-python3-pg:latest

Figure 6. Independent Image Download.

< Compressed =l I S El R Additionaldownload
ImageMName | Version E after download and download and i =
Imagesize z £ time required
extraction extract image

Ipii h 2 23.4335

i 115.2MB 3
B83MB

alpine-python 3 153.53MB 31.3837s 7.9502s

Figure 7. Image Download, Extraction Times and Storage Requirements.

7.2. Container Image Sharing Downloads

The following test case uses the same alpine-python images. However, before a new
image is downloaded, the container host will examine all locally stored images and check
each image layer unique ID key which was generated during image creation. Any duplicate
layers that share the same image layer ID are ignored. Only those unique layers relating
to the new image are downloaded. In this test, an existing image contains two identical
layers in common with the new image. Therefore, only one layer of the new image is
downloaded, which is observed in Figure 8 (layers indicated by the red outlines in the

figure) and Figure 9.

5 et alpine-python2 [-—---- -

|
‘ £890cEB81a889 ‘ i
|

alpine-python3

‘ cbdbe7abbc2a «#— pDuplicate layer — cbdbe7abba2a

136e07esaldé <+— Duplicate layer —*

136e07esaldb

1a5281d5614d0

Figure 8. Image Repository Comparison Download.

Electronics 2021, 10, 739

13 0f 17

masterll: ~/images/alpine-python2-pg

default tag: latest

latest: Pulled from digitalgenius/alpine-pyvthonZ2-pg

cbdbeVaibc2a:

136el7eealdb:

£5390co8ladss:

Digest: sha256:c4cff01d2c59c13fbT729¢158kb309194fb469bc281172T70b535bE48d4aaci2de
Status: Current stored image from digitalgenius/alpine-python2-pg:latest

docker.io/digitalgenius/alpine-python2-pg:latest

masterll: ~/images$ docker pull digitalgenius/alpine-pythoni-pg
Using default tag: latest
latest: Pulling from digitalgenius/alpine-python3-pg

cbdbeVaSbc2a: Already exists

136e07eeald6: Already exists

1a5281d561d0: Pull complete
Digest: sha256:0b1512a41129£127bd5121858732351e89%cd647a6b32856c3fdbadasflby921k
Status: Downloaded newer image for digitalgenius/alpine-python3-pg:latest

docker.io/digitalgenius/alpine-python3-pg:latest

Figure 9. Image Repository Comparison Download.

During the alpine-python3 image download, the two duplicate layers (cbdbe7a5bc2a
and 136e07eeald6) are not downloaded. These two layers represent the alpine OS which
both python images share. Only the updated python version layers £890c681a889 and
1a5281d561d0 are pulled from a repository. A repository in this context could be the manu-
facturer, third party supplier, or one which is stored locally within the vehicle similar to the
container image distribution acceleration mechanism proposed by [67-69]. The benefits
of layer sharing between container images include reducing the download time for any
software update and minimising overall image footprint. Using the performance monitor-
ing tools within the container software the results in Figure 10 highlight the reduced size
on disk of both images, which was observed at 44.96%. A reduction in download times
between the alpine-python3 images was 5.6346 s across the two tests. Reducing storage
requirements for individual software images benefits automotive systems by minimising
associated storage hardware costs. Furthermore, layer sharing promotes quicker download
speeds which reduces the impact on OtA bandwidths.

Size onDiskafter| =
ImageName |Version Layer Layer Size| download and Time Taken to Download Addl_tlonalDo\fmload
extraction and Extract Image Time Required
cbdbe7aSbc2a | 2.81MB
alpine-python 2 136e07eealds | 38.92MB 2343355
fB90c681aBB9 | 73.4TMB Aeolie
alpine-python 3 1a5281d561d0 |111.80MB 25.7491s 5.63465

Figure 10. Shared Image Layers Size on Disk and Download Times.

7.3. Image Update: Result and Discussion

The test cases in Section 7 examines the benefits surrounding software update size and
speed of download. The two alpine-python images share a common OS (alpine); however,
the application software within each image comprises of different versions. The test case
first examined the specific download and extract times for each image when downloaded

Electronics 2021, 10, 739

14 of 17

independently. The total download and extract time for the two images was 54.8172 s.
The overall size on disk for the two images was recorded at 883 MB. These results provided
a baseline for a standard software version upgrade, which is similar to full binary re-
flashing techniques. The second part of the test used the same two images but used image
layer sharing provided by the container software. There were similarities between the two
images as they were both built using the same OS (alpine). As such, because both images
share two of the three image layers. Due to layer duplication the OS layers of the new
image were not downloaded. This reduced the overall download time by 5.6346 s, which
was a 10.28% reduction in total overall download and extraction times. Furthermore, when
using container layer sharing, overall storage requirements were reduced considerably by
397 MB or 44.96% when compared with independent image downloads

With each new vehicle model, more and more software are included, adding to the
burden of addressing software-related problems. Automotive software update practices
have followed the same vehicle recall procedure as when a physical component fails. How-
ever, the recall process incurs consumer inconvenience, system downtime, high monetary
costs for the manufacturer and potentially reduced brand reputation and customer loy-
alty. The motor industry is attempting to address the limited available options regarding
automotive software updates by using new automotive enabled connectivity.

To illustrate the benefits of container-based software updating, the image download
test outlined in Sections 7.1 and 7.2 was conducted. As new software is made available
it can be pulled from a remote central software repository. It is envisaged that any future
software download would be conducted through automotive connectivity using a static or
mobile-based communication network and the Internet, or a central repository which is
either hosted with the vehicle manufacturer or third-party supplier.

Consideration has been given to develop the experimental setup to represent an actual
ECU hardware environment. The necessary container image layers used within this test
case were downloaded over the existing University Internet connection media. Hence,
the reported time to download is as it would be in a real scenario using ground /location-
based WiFi. However, it is envisioned that vehicular on-board connectivity solutions
could be used to connect to other communication technologies including DSRC or the LTE
network (4G and 5G). These could be used to provide a mobile connection and download
method. Furthermore, within this test-case scenario, bandwidth is not a primary considera-
tion as any future software download can take place over a time-period, unless in certain,
very rare, safety critical scenarios, which is not within the scope of the proposed approach.
Container-based software image layers have minimum storage overhead compared to
the traditional ECU architecture-based updates, as only layers pertaining to the update is
downloaded as opposed to all the layers within the new software image. The efficiencies
provided by container image layers and layer duplication can minimise the size require-
ments of redundant storage associated with future software updates, given that component
costs can escalate sharply due to high vehicle production numbers and the lifespan of a
vehicle model, both of which are an important consideration in ECU design.

8. Conclusions

Container-based ECUs, as proposed and evaluated within this paper, can promote au-
tomotive software updates, particularly OtA software updates in conjunction with vehicle
connectivity. This can reduce significantly the need to recall vehicles when encountering
a software-related problem because the new software can be deployed to a target vehicle
remotely, as and when required. Notably, by using containers in this way, overall vehicle
security can be maintained and any potential software vulnerabilities can be addressed.
This has significant implications for the automotive industry.

The number of vehicles recalls in the U.S. associated with a software fault has risen
dramatically by 1400% since 2010. Vehicle recalls are highly disruptive to the consumer,
expensive for the manufacturer and can, in some cases, reduce brand reputation. It is
estimated that resolving a software-related error post-sale is 30 times more expensive than

Electronics 2021, 10, 739 15 0f 17

compared with fixing the same issue during the early stages of the SDLC. Compounding
this, the current automotive software update practices and procedures are not keeping
pace with the rapid increase in the number of lines of software code. The research findings
presented in this paper demonstrate that these problems may be overcome by using
container-based ECUs, whereby errors, bugs and vulnerabilities cannot only be addressed
promptly and effectively, but also throughout the vehicle’s lifetime. Additionally, container-
based OtA software updates can significantly reduce disruption to consumers. Consumers
are also able to incorporate additional or new functionality into a container-based ECU,
which can generate additional revenue for the manufacturer in terms of their aftermarket
sales. The proposal holds promise of a paradigm shift in the automotive E/E architecture
and the way software update is performed.

Author Contributions: Conceptualization, N.A. and L.D.; methodology, N.A., L.D. and D.P,; soft-
ware, N.A ; validation, N.A., L.D. and D.P;; investigation, N.A.; data curation, N.A.; writing—original
draft preparation, N.A.; writing—review and editing, N.A., L.D. and D.P; visualization, N.A_; super-
vision, L.D. and D.P; project administration, L.D.; funding acquisition, L.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding. The submitted research is part of N.A.’s PhD
thesis and the PhD Bursary has been funded internally by De Montfort University, UK.

Data Availability Statement: Data available on request due to restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bereisa, J. Applications of Microcomputers in Automotive Electronics. IEEE Trans. Ind. Electron. 1983, 30, 87-96. [CrossRef]

2. Haghighatkhah, A ; Banijamali, A.; Pakanen, O.P; Oivo, M.; Kuvaja, P. Automotive software engineering: A systematic mapping
study. J. Syst. Softw. 2017, 128, 25-55. [CrossRef]

3. Petri, R; Springer, M.; Zelle, D.; McDonald, I; Fuchs, A.; Krau88, C. Evaluation of lightweight TPMs or automotive software
updates over the air. In Proceedings of the World’s Leading Automotive Cyber Security Conference, Detroit, MI, USA, 1-2 June
2016.

4. Breitschwerdt, D.; Cornet, A.; Kempf, S.; Michor, L.; Schmidt, M. The Changing Aftermarket Game and How Automotive Suppliers can
Benefit from Arising Opportunities; McKinsey & Company: New York, NY, USA, 2017.

5. Coppola, R.; Morisio, M. Connected car: Technologies, issues, future trends. ACM Comput. Surv. 2016, 49, 1-36. [CrossRef]

6. Riggs, C.; Rigaud, C.E.; Beard, R.; Douglas, T.; Elish, K. A Survey on Connected Vehicles Vulnerabilities and Countermeasures.
J. Traffic Logist. Eng. 2018, 6, 11-16. [CrossRef]

7. Levitt, J. Complete Guide to Preventative and Predictive Maintenance, 1st ed.; Industrial Press: New York, NY, USA, 2003.

8. Hangal, S.,; Lam, M.S. Tracking down software bugs using automatic anomaly detection. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, Orlando, FL, USA, 25 May 2002; pp. 291-301.

9. Onuma, Y,; Terashima, Y.; Nozawa, M. Improved Software Updating for Automotive ECUs. Atlanta 2016, 2, 319-324.

10. Noergaard, T. Embedded Systems Architecture A Comprehensive Guide for Engineers and Programmers; Elsevier: Oxford, UK, 2005.

11. Ebert, C.; Jones, C. Embedded software: Facts, figures, and future. Computer 2009, 42, 42-52. [CrossRef]

12. Heiser, G. Hypervisors for consumer electronics. In Proceedings of the 2009 6th IEEE Consumer Communications and Networking
Conference, Las Vegas, NV, USA, 10-13 January 2009; pp. 1-5.

13. Sax, E.; Reussner, R.; Guissouma, H.; Klare, H. A Survey on the State and Future of Automotive Software Release and Configuration
Management; KIT: Amsterdam, The Netherlands, 2017; pp. 1-19.

14. Martyn, A. Automatic Braking Systems in Some Nissan Rogues are Going Rogue. 2019. Available online: https://www.
consumeraffairs.com/news/automatic-braking-systems-in-some-nissan-rogues-is-going-rogue-safety-group-says-032719.html
(accessed on 12 March 2021).

15. Buckland, K. Toyota Issues Second Prius Recall in a Month on Crash Risk. 2018. Available online: https://www.bloomberg.com/
news/articles/2018-10-05/toyota-issues-second-prius-recall-in-a-month-on-crash-risk (accessed on 23 January 2021).

16. Shepardson, D. Fiat Chrysler Recalls 5.3 Million Vehicles for Cruise Control Defect. 2018. Available online: https://www.reuters.
com/article/us-fiat-chrysler-recall / fiat-chrysler-recalls-4-8-million-u-s-vehicles-for-cruise-control-defect-idUSKCN1IQ1QY (ac-
cessed on 14 January 2021).

17. Drolia, U.; Wang, Z.; Pant, Y.; Mangharam, R. AutoPlug: An automotive test-bed for electronic controller unit testing and

verification. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Washington, DC, USA, 5-7 October 2011; pp. 1187-1192.

http://doi.org/10.1109/TIE.1983.356715
http://dx.doi.org/10.1016/j.jss.2017.03.005
http://dx.doi.org/10.1145/2971482
http://dx.doi.org/10.18178/jtle.6.1.11-16
http://dx.doi.org/10.1109/MC.2009.118
https://www.consumeraffairs.com/news/automatic-braking-systems-in-some-nissan-rogues-is-going-rogue-safety-group-says-032719.html
https://www.consumeraffairs.com/news/automatic-braking-systems-in-some-nissan-rogues-is-going-rogue-safety-group-says-032719.html
https://www.bloomberg.com/news/articles/2018-10-05/toyota-issues-second-prius-recall-in-a-month-on-crash-risk
https://www.bloomberg.com/news/articles/2018-10-05/toyota-issues-second-prius-recall-in-a-month-on-crash-risk
https://www.reuters.com/article/us-fiat-chrysler-recall/fiat-chrysler-recalls-4-8-million-u-s-vehicles-for-cruise-control-defect-idUSKCN1IQ1QY
https://www.reuters.com/article/us-fiat-chrysler-recall/fiat-chrysler-recalls-4-8-million-u-s-vehicles-for-cruise-control-defect-idUSKCN1IQ1QY

Electronics 2021, 10, 739 16 of 17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

Lonn, H.; Freund, U. Automotive architecture description languages. In Automotive Embedded Systems Handbook; CRC Press:
Boca Raton, FL, USA, 2009.

Furst, S.; Bechter, M. AUTOSAR for connected and autonomous vehicles: The AUTOSAR adaptive platform. In Proceedings of
the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W), Toulouse,
France, 28 June-1 July 2016; pp. 215-217.

Onuma, Y.; Nozawa, M.; Terashima, Y.; Kiyohara, R. Improved software updating for automotive ECUs: Code compression.
In Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, GA, USA,
10-14 June 2016; Volume 2, pp. 319-324.

Braun, L.; Armbruster, M.; Gauterin, F. Trends in vehicle electric system design: State-of-the Art Summary. In Proceedings of the
2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 19-22 October 2015; pp. 1-6.

Rouse, M. OTA Update (Over-the-Air Update). 2018. Available online: https://searchmobilecomputing.techtarget.com/
definition/OTA-update-over-the-air-update (accessed on 4 November 2019).

Ayres, N.; Deka, L.; Passow, B. Virtualisation as a Means for Dynamic Software Update within the Automotive E/E Architec-
ture. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World /SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19-23 August 2019; pp. 154-157.

Steinkamp, N.; Levine, R.; Roth, R. Automotive Defect and Recall Report, Stout Risius Ross. 2019. Available online: https:
/ /www.stout.com/zh-cn/insights/report/2019-automotive-defect-and-recall-report (accessed on 19 February 2021).

Lions, J.L.; Luebeck, L.; Fauquembergue, J.L.; Kahn, G.; Kubbat, W.; Levedag, S.; Mazzini, L.; Merle, D.; O’Halloran, C. Ariane 5
Flight 501 Failure Report by the Inquiry Board. 1996. Available online: http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
(accessed on 15 January 2021).

Lin, P-S.; Wang, Z.; Guo, R. Impact of Connected Vehicles and Autonomous Vehicles on Future Transportation; ASCE Library: Hsinchu,
Taiwan, 2016.

Thati, V.B.; Vankeirsbilck, J.; Pissoort, D.; Boydens, J. Hybrid Technique for Soft Error Detection in Dependable Embedded
Software. In Proceedings of the 2019 IEEE XXVIII International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 12-14
September 2019.

Miller, C.; Valasek, C. Adventures in Automotive Networks and Control Units; DEF CON: Las Vegas, NV, USA, 2013.

Woo, S.; Jo, H.].; Kim, LS.; Lee, D.H. A Practical Security Architecture for in-vehicle CAN-FD. IEEE Trans. Intell. Transp. Syst. 2016,
17,2248-2261. [CrossRef]

Automotive IQ. Automotive Software Development Reliability and Safety. 2017. Available online: https://www.automotive-iq.
com/electrics-electronics/reports/automotive-software-development-reliability-safety-1 (accessed on 21 February 2021).
Boucherat, X. Make it Safe, Make it Profitable: The Writing’s on the Wall for the Connected Car. 2016. Available online:
https:/ /www.automotiveworld.com/articles/make-safe-make-profitable-writings-wall-connected-car/ (accessed on 10 January
2021).

Howden,].; Maglaras, L.; Ferrag, M.A. The Security Aspects of Automotive Over-the-Air Updates. Int. |. Cyber Warf. Terror. 2020,
10, 64-81. [CrossRef]

Happel, A.; Ebert, C. Security in Vehicle Networks of Connected Cars; Springer: Wiesbaden, Germany, 2015.

Alam, M. The Software Defined Car: Convergence of Automotive and Internet of Things. In Wireless World in 2050 and Beyond: A
Window into the Future! Springer Series in Wireless Technology; Springer: Berlin, Germany, 2016; pp. 83-92.

Chowdhury, T,; Lesiuta, E.; Rikley, K.; Lin, C.W.; Kang, E.; Kim, B. Safe and Secure Automotive Over-The-Air Updates. In Computer
Safety, Reliability and Security; Springer: Cham, Switzerland, 2018; pp. 172-187.

Quain, J.R. With Benefits and Risks Sofwtare Updates are Coming to the Car. 2018. Available online: https:/ /digitaltrends.com/
cars/over-the-air-software-updates-cars-pros-cons/ (accessed on 16 February 2021).

Parnas, D.L. Software aging. In Proceedings of the 16th International Conference on Software Engineering, orrento, Italy, 16-21
May 1994; pp. 279-287.

Breitschwerdt, D.; Cornet, A.; Michor, L.; Miiller, N.; Salmon, L. Performance and disruption—A perspective on the automotive
supplier landscape and major technology trends. Hg. v. McKinsey and Company, zuletzt gepriift am 2016, 7, 2018.

Holmes, F. Over-the-Air Updates Moving from ‘Nice to Have’ to “Vital’. 2018. Available online: https:/ /www.automotiveworld.
com/articles/over-the-air-updates-moving-from-nice-to-have-to-vital/ (accessed on 11 January 2021).

Halder, S.; Ghosal, A.; Conti, M. Secure over-the-air software updates in connected vehicles: A survey. Comput. Netw. 2020, 178,
107343. [CrossRef]

NHTSA. National Highway Traffic Safety Administration. 2020. Available online: Https://nhtsa.org (accessed on 10 January
2021).

Mckenna, D.; Automotive, B.U.; Semiconductors, N.X.P. Making Full Vehicle OTA Updates a Reality. NXP. 2016. Available online:
http:/ /www.nxp.com/automotivesecurity (accessed on 4 March 2021).

Odat, H.A.; Ganesan, S. Firmware over the air for automotive, fotamotive. In Proceedings of the IEEE International Conference
on Electro/Information Technology, Milwaukee, WI, USA, 5-7 June 2014; pp. 130-139.

Broy, M. Challenges in Automotive Software Engineering; ACM: Shanghai, China, 2006; pp. 33—42.

Kopetz, H. Design Principles for Distributed Embedded Applications; Springer: New York, NY, USA, 2011.

https://searchmobilecomputing.techtarget.com/definition/OTA-update-over-the-air-update
https://searchmobilecomputing.techtarget.com/definition/OTA-update-over-the-air-update
https://www.stout.com/zh-cn/insights/report/2019-automotive-defect-and-recall-report
https://www.stout.com/zh-cn/insights/report/2019-automotive-defect-and-recall-report
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
http://dx.doi.org/10.1109/TITS.2016.2519464
https://www.automotive-iq.com/electrics-electronics/reports/automotive-software-development-reliability-safety-1
https://www.automotive-iq.com/electrics-electronics/reports/automotive-software-development-reliability-safety-1
https://www.automotiveworld.com/articles/make-safe-make-profitable-writings-wall-connected-car/
http://dx.doi.org/10.4018/IJCWT.2020040104
https://digitaltrends.com/cars/over-the-air-software-updates-cars-pros-cons/
https://digitaltrends.com/cars/over-the-air-software-updates-cars-pros-cons/
https://www.automotiveworld.com/articles/over-the-air-updates-moving-from-nice-to-have-to-vital/
https://www.automotiveworld.com/articles/over-the-air-updates-moving-from-nice-to-have-to-vital/
http://dx.doi.org/10.1016/j.comnet.2020.107343
Https://nhtsa.org
http://www.nxp.com/automotivesecurity

Electronics 2021, 10, 739 17 of 17

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; Savage, S. Comprehensive Experimental Analyses of Automotive
Attack Surfaces; USENIX: San Francisco, CA, USA, 2011.

Guo, J.; Balon, N. Vehicular Ad Hoc Networks and Dedicated Short-Range Communication; University of Michigan: Ann Arbor, MI,
USA, 2006.

Vegni, A.M.; Biagi, M.; Cusani, R. Smart Vehicles, Technologies and Main Applications in Vehicular Ad hoc Networks. 2013.
Available online: https:/ /www.intechopen.com/books/vehicular-technologies-deployment-and-applications/smart-vehicles-
technologies-and-main-applications-in-vehicular-ad-hoc-networks (accessed on 2 March 2021).

Patterson, A. The Evolution of Embedded Architectures for the Next Generation of Vehicles. AT Zelektronik Worldwide 2017, 12,
26-33. [CrossRef]

Stegar, M.; Boano, C.A.; Niedermayr, T.; Karner, M.; Hillebr, J.; Roemer, K.; Rom, W. An Efficient and Secure Automotive Wireless
Software Update Framework. IEEE Trans. Ind. Informatics 2017, 14, 2181-2193. [CrossRef]

Gissler, A. Automotive World Ltd, The Auto Industry must Get Connected to Fend Off Marginalisation. 2016. Available
online: https://www.automotiveworld.com/articles/auto-industry-must-get-connected-fend-marginalisation/ (accessed on 15
December 2020).

Habermas, C.S. General Motors Corporation. Method and System for Remote Reflash. U.S. Patent 7,366,589 B2, 29 April 2008.
Link, M.C.; Hughes Telematics, Inc. Methods and Systems for Software Upgrades. U.S. Patent US 2009/0119657 A1, 7 May 2009.
Tobolski, T.; Esselink, C.E.; Westra, M.R.; Ellis,]J.T. Silent in-Vehicle Software Updates. U.S. Patent No. US10140109B2, 27
November 2018.

Herberth, R.; Korper, S.; Stiesch, T.; Gauterin, F.; Bringmann, O. Automated Scheduling for Optimal Parallelization to Reduce the
Duration of Vehicle Software Updates. IEEE Trans. Veh. Technol. 2019, 68, 2921-2933. [CrossRef]

Seifzadeh, H.; Abolhassani, H.; Moshkenani, M.S. A survey of dynamic software updating. J. Softw. Evol. Process. 2013, 25,
535-568. [CrossRef]

Neamtiu, I.; Hicks, M.; Stoyle, G.; Oriol, M. Practical dynamic software updating for C. ACM Sigplan Not. 2006, 41, 72-83.
[CrossRef]

Hayden, C.M.; Smith, E.K.; Hardisty, E.A.; Hicks, M.; Foster, J.S. Evaluating Dynamic Software Update Safety Using Systematic
Testing. IEEE Trans. Softw. Eng. 2012, 28, 1340-1354. [CrossRef]

Horl, S. Agent-based simulation of autonomous taxi services with dynamic demand responses. Procedia Comput. Sci. 2017, 109,
899-904. [CrossRef]

Shankwitz, C. Long-haul Truck Freight Transport and the Role of Automation: Collaborative Human—Automated Platooned Trucks Alliance
(CHAPTA); Western Transport Institute: Bozeman, MT, USA, 2017.

Simpson,].R.; Mishra, S.; Talebain, A.; Gollias, M. An Estimation of the Future Adoption Rate of Autonomous Trucks by Freight
Organizations. Res. Transp. Econ. 2019, 76, 100737. [CrossRef]

Walter,].; Fakih, M.; Griittner, K. Hardware-based real-time simulation on the raspberry pi. In Proceedings of the 2nd Workshop
on High Performance and Real-time Embedded Systems, Vienna, Austria, 20 January 2014.

Vaughan, A.; Bohac, S.V. An extreme learning machine approach to predicting near chaotic HCCI combustion phasing in real-time.
arXiv 2013, arXiv:1310.3567.

Krylovskiy, A. Internet of things gateways meet Linux containers: Performance evaluation and discussion. In Proceedings of the
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14-16 December 2015; pp. 222-227.

Hurst, W.; Shone, N.; El Rhalibi, A.; Happe, A.; Kotze, B.; Duncan, B. Advancing the micro-CI testbed for IoT cyber-security
research and education. Cloud Comput. 2017, 2017, 139.

Johnston, S.J.; Cox, S.J. The Raspberry Pi: A Technology Disrupter, and the Enabler of Dreams. Electronics 2017, 3, 51. [CrossRef]
Suarez, A.].; Windsor, S.K.; Hayrapetyan, N.; Gerdesmeier, D.R.; Prakash, PK.; Amazon Technologies Inc. Software Container
Registry Container Image Deployment. U.S. Patent 10,002,247, 19 June 2018.

Suarez, A.].; Windsor, S.K.; Hayrapetyan, N.; Gerdesmeier, D.R.; Prakash, PK.; Amazon Technologies Inc. Software Container
Registry Service. U.S. Patent 10,261,782, 16 April 2019.

Zhao, A; Cao, Y,; Peng, L.; Junping, Z.H.A.O.; Durazzo, K.; EMC IP Holding Co LLC. Container Image Distribution Acceleration.
U.S. Patent 10,291,706, 14 May 2019.

https://www.intechopen.com/books/vehicular-technologies-deployment-and-applications/smart-vehicles-technologies-and-main-applications-in-vehicular-ad-hoc-networks
https://www.intechopen.com/books/vehicular-technologies-deployment-and-applications/smart-vehicles-technologies-and-main-applications-in-vehicular-ad-hoc-networks
http://dx.doi.org/10.1007/s38314-017-0017-2
http://dx.doi.org/10.1109/TII.2017.2776250
https://www.automotiveworld.com/articles/auto-industry-must-get-connected-fend-marginalisation/
http://dx.doi.org/10.1109/TVT.2019.2895109
http://dx.doi.org/10.1002/smr.1556
http://dx.doi.org/10.1145/1133255.1133991
http://dx.doi.org/10.1109/TSE.2011.101
http://dx.doi.org/10.1016/j.procs.2017.05.418
http://dx.doi.org/10.1016/j.retrec.2019.100737
http://dx.doi.org/10.3390/electronics6030051

	Introduction
	Automotive E/E Architecture: Software Associated Issues
	Software Bugs and Errors
	Software Associated Security Threats
	Ageing and Out of Date Code
	Aftermarket Sales and Additional Functionality

	Automotive Software Updating
	Software Update Mechanism: Manufacturer-Initiated Recall Process
	Software Update Mechanism: Guided User Intervention
	Software Update Mechanism: Over the Air (OtA) Update
	Dedicated Short-Range Communication (DSRC)
	Cellular Networks
	Fixed Location Wireless Local Area Network (WLAN)

	The Significance of OtA Software Updates
	Current Automotive Software Re-Flashing Techniques
	Full Binary Re-Flashing
	Difference/Delta File

	Container-Based Software Updating
	Offline Update
	Online Update
	Dynamic Update

	Implementation and Evaluation of Container-Based Software Updating
	Individual Container Image Downloads
	Container Image Sharing Downloads
	Image Update: Result and Discussion

	Conclusions
	References

