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Abstract: Human cognitive capabilities are under constant pressure in the modern information
society. Cognitive load detection would be beneficial in several applications of human–computer
interaction, including attention management and user interface adaptation. However, current
research into accurate and real-time biosignal-based cognitive load detection lacks understanding of
the optimal and minimal window length in data segmentation which would allow for more timely,
continuous state detection. This study presents a comparative analysis of ultra-short (30 s or less)
window lengths in cognitive load detection with a wearable device. Heart rate, heart rate variability,
galvanic skin response, and skin temperature features are extracted at six different window lengths
and used to train an Extreme Gradient Boosting classifier to detect between cognitive load and rest.
A 25 s window showed the highest accury (67.6%), which is similar to earlier studies using the same
dataset. Overall, model accuracy tended to decrease as the window length decreased, and lowest
performance (60.0%) was observed with a 5 s window. The contribution of different physiological
features to the classification performance and the most useful features that react in short windows
are also discussed. The analysis provides a promising basis for future real-time applications with
wearable sensors.

Keywords: machine learning; affective computing; cognitive load; psychophysiology; supervised
learning

1. Introduction

In the near future, unobtrusive, reliable, and affordable wearable sensors will enable
cognitive state estimation of a person in real-time. The cognitive state, i.e., a person’s overall
capacity and readiness to meet everyday situations, is affected by various conditions such
as sleep deprivation [1,2], acute stress [3,4], and cognitive load [5] and thus cognitive state
estimation would be beneficial in many application areas, e.g., transportation, industry,
rehabilitation, and education.

In many working environments, the modern technology such as human computer
interaction (HCI) systems impose high cognitive demands for humans, thus increasing the
cognitive load of a person [6]. Real-time assessment of a person’s cognitive load could be
used to identify overload situations where the probability of error is increased. Further,
in the near future, HCI and cyber-physical systems could use the information to optimize
user interface content and interactions to match the imposing workload with the prevailing
cognitive capacity of the user. However, this would require seamless operation between the
HCI system and the users, meaning accurate and real-time (with minimal delay) assessment
of the cognitive load.

Humans respond to external stimuli by adjusting nervous system functions, which
causes physiological reactions that can be detected from different type of biosignals. The au-
tonomic nervous system (ANS) is one of the major neural pathways activated by stress [7]:
the sympathetic branch of the ANS prepares body for an emergency while the parasym-
pathetic branch facilitates recovery [8]. An increase in the heart rate (HR) reflects the
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sympathetic nervous system (SNS) activation while parameters derived from the heart rate
variability (HRV) parameters can capture variations both in the SNS and parasympathetic
nervous system (PNS) activations [9]. Galvanic skin response (GSR) reflects the activity
in the sweat glands, which are solely connected to the SNS. Therefore, the GSR is consid-
ered to be an undisturbed measure of SNS activation [8]. In addition, in acute stress the
SNS triggers peripheral vasoconstriction which reduces the flow in the blood vessels and
reduces the skin temperature (ST) [10]. However, the after a short delay the blood flow
recovers resulting in delayed skin warming [9,11,12].

The changes in the cognitive load are also reflected in various biosignals that can be
measured by using biosensors, e.g., wearable devices [13,14]. For instance, increasing task
difficulty (or cognitive load) and acute stress increases the HR and breathing rate [15],
ST [11] as well as GSR [16] and decreases the HRV [17], number of eye movements [18],
and increases the blink rate [19,20].

Real-time cognitive load estimation means processing a stream of biosignals with
minimal latency. Research on affective, or cognitive state/load, detection systems has
focused mainly on state recognition methodology and optimizing the used sensor set
(see, e.g., [21]). To achieve real-time or continuous monitoring of the cognitive state/load,
the segmentation part (i.e., selection of used window length) of the state detection pipeline
has received little attention and it requires further research.

The cognitive load is estimated from various biosignals and each of these signals has
its own characteristics. For instance, HR could be considered as a periodic signal, whereas
some other biosignals, such as eye movements and GSR reactivity, have a bursty nature
and are more linked to the stimulus or task at hand. Further, the level of some slow-acting
signals, skin temperature and the tonic component of the GSR signal, may increase or
decrease during a cognitive load (e.g., due to changes in alertness). Thus, the varying
nature of the biosignals sets limits to the window lengths: the length must be long enough
to include sufficient variation and periods for the periodic signals but short enough that
bursty events do not average out.

In recent studies the window lengths have varied (see Table 1) from 1 s to 360 s.
In most studies, the window lengths have been selected based on the physiology, task
duration, or previous studies. However, the literature on ultra-short windows (<60 s,
especially <30 s), e.g., in HR and HRV analyses is rather limited (see the review by Shaffer
and Ginsberg [22]) and therefore, there may not be theoretical limits for the physiological
features used in real-time/continuous cognitive state estimation. In addition, there are few
studies where the effect of window length to classification accuracy has been studied (see
Table 1) and even those have mainly used windows with length of 30 s or more.
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Table 1. Previous studies in the affective computing domain with an emphasis on state detection based on physiological variables conducted mostly in constrained or laboratory environ-
ments.

Study Signals (Sampling Rate in Hz) Window
Lengths Used

Overlap Optimal Window
Length

Model Classification Performance

Cognitive state detection
[9] GSR (1000), ST (1000), HRV ** 30–300 s 0–90% 30 s/60 s LDA, kNN,

QDA, SVM
97% accuracy (binary)

[14] ST (1), GSR (1), HR (1), HRV (1) 30 s - - Bagging,
XGB

68% and 82% accuracy (binary, two datasets)

[23] EOG (250) 1–10 s - 10 s LDA 87% accuracy (binary)
[20] HR **, HRV **, EOG (1000) 45 s 15 s - XGB, SVM 86% accuracy (three classes)

97% accuracy (binary)

Stress detection
[24] ST (4), GSR (4), HR (1), HRV * 30–360 s 5–275 s 300 s SVM 73% accuracy (three classes)
[25] ST (32), GSR (32), HR **, HRV **, RESP (32) 30 s 29 s - dBN 85% mean of sensitivity and specificity (binary)
[26] HRV ** 30–300 s - 300 s kNN 94% accuracy
[27] GSR (32), HRV ** 50 s 30 s - SOM 79% mean of sensitivity and specificity (binary)

Emotion detection
[28]F ACC (NA), GSR (4), HR (NA) 60–300 s - - DT, BN 51% error rate on detecting arousal
[29] EEG (256), HRV ** 90 s - - SVM 75% and 82% accuracy (valence and arousal, binary)
[30] HRV ** 90 s - - SVM 71% accuracy (positive or negative emotion)
[31] EEG (256) 1 s - - LDA 73% accuracy (positive or negative emotion)

Stress / emotion detection
[32] ACC (32), ST (4), GSR (4), HR (1), HRV * 15–120 s 0.25 s

window slide
120 s LDA 84% accuracy (binary)

[33] ACC (32), ST (4), GSR (4), HR (1), HRV * 60 s 0.25 s
window slide

- RF 76% accuracy (three classes)
88% accuracy (binary)

Odor pleasantness classification
[34] EEG (250), HRV ** 6 s - - LDA 0.46 Cohen’s kappa

F Field study. * Interbeat intervals used to derive HRV were obtained on-device from blood volume pulse signal sampled at 64 Hz; ** Interbeat intervals used to derive HR/HRV were obtained
from an electrocardiogram sampled at 200 Hz [30], 250 Hz [34], 256 Hz [25,27,29], and 1000 Hz [9,20]. Abbreviations: ACC: acceleration, (d)BN: (dynamic) Bayesian network, DT: decision tree, EEG:
electroencephalogram, EOG: electro-oculogram, GSR: galvanic skin response, HR: heart rate, HRV: heart rate variability, kNN: k-nearest neighbors, LDA: linear discriminant analysis, NA: not available,
QDA: quadratic discriminant analysis, RESP: respiration, RF: random forest, SOM: self-organizing map, ST: skin temperature, SVM: support vector machine, XGB: extreme gradient boosting.
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Healey et al. [28] attempted emotion detection in a field study in windows of 60 s,
180 s, and 300 s, but the best window length was not reported since each one showed poor
performance. Gjoreski et al. [24] experimented with window lengths between 30 s and 360 s
in a laboratory study of stress detection, and selected the 300 s window for a continuation
study with field data. Anusha et al. [9] found that a 30 s window performed the best
for ST, and a 60 s window for GSR in cognitive state detection; however, window length
experiments were not conducted for HRV. Marshall [23] detected the cognitive state based
on eye movements and found that a 10 s window provided highest detection accuracy.
Siirtola [32] studied stress detection in a laboratory with window lengths between 15 s
and 120 s. It was found that whereas the 120 s window performed the best, a 15 s window
performed better than a 30 s window and almost the same as a 60 s window, which shows
that window lengths shorter than 30 s have the potential to perform well despite containing
less data than longer windows.

In a related context, Kroupi et al. [34] detected odor pleasantness in 6 s windows
based on electroencephalogram and HRV measurements. Moreover, Kreibig [8] reports
on multiple studies using shorter than 30 s averaging periods for physiological responses.
However, the goal in those studies was to observe the effects emotions have on functions
of the autonomous nervous system, rather than classifying between emotional/cognitive
states based on those effects.

Thus, the existing research on cognitive state recognition has not focused on the
segmentation part of the state detection pipeline. Even when experiments with different
window lengths have been conducted, they have focused on rather long window lengths,
despite the fact that shorter window lengths have been considered in related contexts.
The novelty in this study is on performing a systematic comparison of ultra-short win-
dows (30 s or less) in terms of the classification performance for cognitive load detection.
An analysis of the contribution of different features is also presented, and the variation of
the most useful features between tasks is discussed. Further, individual differences related
to the optimal window length and feature variation between the study subjects as well as
the effect of optimizing classifier hyperparameters are studied.

2. Materials & Methods
2.1. Dataset

The CogLoad dataset from [14] was used in this study. The dataset includes 23 partici-
pants (7 females, mean age 29.5 years with a standard deviation of 10.1 years) who solved
cognitive tasks of varying difficulty. In the first part, the participants solved N-back tasks,
i.e., 2-back and 3-back tasks, with a three-minute rest after each of them, and answered
questions to determine their personality. In the second part, six elementary cognitive
tasks (ECT) each with three difficulty levels were presented: the Gestalt Completion test
(GC), the Hidden Pattern test (HP), Finding A’s test (FA), Number Comparison test (NC),
Pursuit test (PT), and Scattered X’s test (SX), with a rest period between them. After each
task, the participants were asked to fill in the NASA-TLX questionnaire to determine their
subjective cognitive load, however, those questionnaires were not utilized here. Further
details on the study protocol and tasks can be found in [14].

While doing the tasks, the participants’ physiological response was measured with
a wrist device (Microsoft Band). The measurements included the HR, R-to-R intervals
(RR), GSR, ST and 3-axis acceleration, which was not used in this study. The open-sourced
dataset contains the data re-sampled to a frequency of 1 Hz. However, the HR and RR were
derived on-device from an optical sensor and the raw measurements used to obtain those
two signals were not available. Thus, the rate at which the HR and RR were measured was
truly not constant but dynamic, and depended on when the heartbeats occurred.

Figure 1 depicts the steps taken in analyzing the dataset and evaluating the results.
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Figure 1. Pipeline followed in data processing and evaluating the results.

2.2. Data Preprocessing, Segmentation and Feature Extraction

The main focus in this study was on evaluating the classification performance of
cognitive load at different window lengths of less than 30 s in duration. Window lengths
selected were 5 s, 10 s, 15 s, 20 s, 25 s, and 30 s in duration, and a 50% window overlap was
employed to increase the amount of data.

The time taken by the participants to complete the tasks varied between 18 s and 190 s.
If a task lasted for a shorter time than window length, that single task was removed from
the experiment with the specific window length to make sure that a shorter actual task
length would not skew the results; approximately 4% of all tasks were completed in less
than 30 s. In addition, it was noted that sometimes the data had been filled by carrying the
last observation forward, i.e., a signal was constant for a period of time. As many features
could not be calculated if there was not enough variation, segments with less than 25%
unique values in the RR-, HR-, or GSR-signal were removed.

Next, features were extracted at each window length. According to [21,35], features
that are usually extracted from the signals used here contain the statistics of each signal,
heart rate variability from the RR-signal, and skin conductance response analysis for the
GSR signal.

In this study, the statistical features of the RR, HR, GSR, and ST and their first and
second derivatives were computed. The statistical features included the mean, standard
deviation, minimum, maximum, difference between minimum and maximum, lower and
upper quartile, interquartile range, and coefficient of variation.

A skin conductance response (SCR) analysis was conducted for the GSR signal to
extract additional features. Like in the original paper using the same dataset [14], the signal
was first preprocessed with a sliding mean filter, and then fast-acting (phasic) and slow-
acting (tonic) components were extracted. Normally, the SCR analysis is used especially
to extract features from the phasic component and SCR peaks [21,35]. In this analysis,
however, it often happened that a segment did not contain any SCR peaks, especially with
shorter window lengths. Therefore, the features extracted from the phasic component
included the number of SCR peaks and the statistics (mean, standard deviation, median,
lower and upper quartile, minimum and maximum) of its first and second derivative,
and the total time the first derivative of the phasic component was positive (rise-time) and
negative (descend-time). The features extracted from the tonic component included its
mean, standard deviation, minimum, maximum, ratio of maximum and minimum, and its
correlation with time.

Additionally, heart rate variability (HRV) features were extracted from the R-to-R
intervals. Following [22,36], the HRV features extracted included the mean, median,
and range of normal-to-normal intervals, standard deviation of normal-to-normal intervals
(SDNN) and successive differences, percentage and number of normal-to-normal intervals
differing by more than 20 ms and 50 ms, root mean square of successive differences
(RMSSD), ratio of SDNN and mean normal-to-normal intervals (CVNNI), ratio of RMSSD
and mean normal-to-normal intervals (CVSD), power in very low, low and high frequency
bands, total power, ratio of low and high frequency power, normalised low and high
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frequency power, triangular index, (modified) cardiac sympathetic index, cardiac vagal
index, and Poincaré plot indices SD1, SD2, and SD1/SD2.

A total of 157 features were extracted and they are listed in Table 2. Afterwards,
a sanity check was conducted for the features computed. Some features had a significant
amount of missing or infinite values, or showed little variation. Thus, features with missing
values, infinite values, or variance below 0.01 were removed for each window length.
The number of remaining features was 93 at window lengths from 20 s to 30 s, 91 at
window lengths of 10 s and 15 s, and 82 at a window length of 5 s.

Table 2. List of computed features. Abbreviations used later in text and in figures are in parenthesis.

Category Features

Statistical features for each
signal (d0) and their first (d1)
and second (d2) derivatives

mean, standard deviation (std), minimum (min), maximum (max), difference between
minimum and maximum (range), lower (lq) and upper quartile (uq), interquartile
range (iqr), and coefficient of variation (cv)

Heart rate variability (HRV) mean, median, and range of normal-to-normal intervals (mean, median, range nni),
standard deviation of normal-to-normal intervals (sdnn) and successive difference
(sdsd), root mean square of successive differences (rmssd), ratio of sdnn and mean
nni (cvnni), ratio of rmssd and mean nni (cvsd), signal power in very low (vlf), low
(lf), and high (hf) frequency bands, total power, ratio of lf and hf, normalised lf and hf
(lfnu, hfnu), triangular index, cardiac sympathetic index (csi), modified csi, cardiac
vagal index (cvi), and Poincaré plot features (SD1, SD2, ratio of SD1 and SD2)

Skin conductance response
(SCR)

phasic component: number of peaks (npeaks), time first derivative was positive
(risetime) and negative (dectime), and mean, std, median, lq, and uq of first (diff1)
and second (diff2) derivatives
tonic component (scl): mean, std, min, max, ratio of max and min (slope), and its
correlation with time (corrwithtime)

According to the criteria stated above, features that were removed most often were the
HRV parameters CVSD and CVNNI, coefficient of variation of the HR and its derivatives,
statistical features of the derivatives of the phasic component of the GSR signal, standard
deviation of the tonic component of the GSR signal, and statistical features of the derivatives
of the ST signal across the different window lengths. Additionally, several HRV parameters
were removed from the shortest window length.

The features were normalized using within-subject standardization, meaning that each
feature was transformed by subtracting its mean and dividing by its standard deviation
separately for each participant. Person-specific standardization was conducted instead of
person-independent standardization, since it has shown improved performance in earlier
work in similar contexts [14,20,37].

2.3. Model and Experimental Protocol

The classification task was formulated as binary classification between a cognitive
load and a rest class. All data segments during a cognitive task (N-back task or one of
the six ECTs) were annotated as a cognitive load, and all the rest periods were anno-
tated as rests. The segments during which the participant answered the questionnaires
were removed from the data. The number of instances in both classes at each window
length are reported in Table 3. Because the number of samples in each class is reasonably
balanced (approximately 46% rests and 54% cognitive loads for each window length),
the classification performance was assessed in terms of accuracy, the percentage of correctly
classified samples.
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Table 3. Number of instances in cognitive load and rest classes at each window length.

30 s 25 s 20 s 15 s 10 s 5 s

Cognitive load 1654 2110 2840 4055 6336 12,763
Rest 1406 1791 2407 3437 5393 10,937

Extreme Gradient Boosting [38] (XGB) was selected as the classification model for the
following reasons: the classifiers from the random forest family and the boosting method
have been shown to be strong classifiers [39], XGB has shown good performance earlier in
similar contexts [14,20] and because XGB is computationally efficient and scales to very
large datasets [38]. XGB is an ensemble of decision trees, each of which splits the data
hierarchically, aiming to contain data originating from a single class in each leaf node.
XGB uses the gradient descent algorithm to construct the trees sequentially so that each
subsequent tree attempts to fix the errors made by preceding trees.

Specifically, XGB aims to minimize the regularized objective function

L(ŷ) =
n

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk), (1)

where Ω( f ) = γT + 1
2 λ||w||2. Here, n is the number of observations, l is a differentiable

convex loss function measuring the difference between the prediction ŷi and the target yi, K
is the number of classification trees, fk are classification tree functions, Ω is a regularization
function penalizing the complexity of the model, T is the number of leaves in a tree, γ
and λ are regularization parameters and w are leaf weights. Assume that IL and IR are the
instance sets of left and right nodes after a split. Then, letting I = IL ∪ IR, the loss reduction
after the split is given by

Lsplit =
1
2

[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ, (2)

where gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) and hi = ∂2
ŷ(t−1) l(yi, ŷ(t−1)) are the first and the second order

gradient statistics of the loss function at the t-th iteration. In practice, the formula above is
used for evaluating the split candidates, and the splits are found either with an exact or
approximate greedy algorithm that are implemented in [38]. So, at each boosting iteration
t, a classification tree ft whose splits are found using a greedy algorithm with Equation (2)
and that most improves the model according to Equation (1) is added to the model.

The performance of the XGB model depends on its hyperparameters that describe the
structure of each tree and that affect the convergence of the loss function. The hyperparam-
eters were optimized using Bayesian optimization (see Section 2.4) but an ablation study
using default hyperparameters was also conducted. The following hyperparameters were
optimized:

• max_depth: the maximum depth of each tree
• n_estimators: the number of estimators in the model
• reg_alpha: L1 regularization term
• reg_lambda: L2 regularization term
• subsample: the ratio training instances used for each boosting iteration
• learning_rate: the step size shrinkage used in each update to prevent overfitting
• gamma: the minimum loss reduction required to make a further split on a leaf node of

the tree
• colsample_bytree: the ratio of the number of features used to create each tree
• colsample_bynode: the ratio of the number of features used at each node (split)
• colsample_bylevel: the ratio of the number of features used at each tree level
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The dataset was published with participants divided into training and testing sets,
with 18 subjects for training and 5 for testing. However, the ablation study without Bayesian
optimization showed significantly higher performance for the test subjects than the training
subjects even though the model had not seen the data of the test subjects. Therefore, test
subjects’ data appeared to be different from the data of the training subjects. So, instead of
using the fixed train-test-split the dataset came with, it was decided to use cross-validation
with both the training and testing subjects in a single pool to validate the modelling results
with Bayesian optimization. Individual differences are further elaborated in Section 3.4.

In general, leave-one-subject-out (LOSO) validation is recommended in the affective
computing domain [21], meaning that each subject is left out in turn for testing and the rest
of the data is used for training the model. Moreover, when tuning hyperparameters, an in-
ternal validation with training data is required to make sure that the best hyperparameters
are selected according to the validation performance, and not the testing performance.

Instead of LOSO validation, it was decided to use the leave-two-subjects-out (LTSO)
validation method when tuning hyperparameters because the process is computationally
intensive, especially since it had to be completed for each window size separately, and be-
cause the number of participants in the dataset was relatively large (LOSO validation
would correspond to 23-fold cross-validation). So, each hyperparameter configuration was
evaluated with data of two randomly selected subjects left out for testing, with internal
leave-two-subjects-out validation to select the hyperparameters. This had the effect of
approximately halving the computation time during the Bayesian optimization compared
to using LOSO validation. However, to comply with earlier research the final results are
also reported with LOSO validation for the best hyperparameter configuration.

2.4. Hyperparameter Optimization

Bayesian optimization is a derivative-free search strategy for the global optimization of
functions that are expensive to evaluate. The algorithm starts by setting a prior distribution
over the parameters to optimize and evaluating the function (here, a function value refers
to LTSO validation accuracy with the XGB model) a certain number of times on parameter
values sampled from the prior distribution. Then, for a set number of iterations, posterior
distributions of each parameter over the function are updated using all the available data,
the values maximizing an acquisition function over the current posteriors are sampled,
and the function is evaluated using those values. For more details on the algorithm we
refer to [40].

Table 4 lists the hyperparameters that were optimized and the priors used for each
parameter. Overall, non-informative priors were employed, and the prior distributions
were either discrete uniform distributions on a given interval and step size (parameters
max_depth and n_estimators), continuous uniform distributions on a given interval (parame-
ters reg_alpha, reg_lambda, and learning_rate), or a random choice between a constant or a
number sampled from a continuous uniform distribution on a given interval (parameters
subsample, gamma, colsample_bytree, colsample_bynode, and colsample_bylevel).

Optimization was continued for a total of 300 iterations at each window length.
The number of iterations was selected experimentally. As seen in Section 3.1, the perfor-
mance improved little after 100–150 iterations. Thus, the procedure was continued for twice
that long since it would have been unlikely that scores would improve much after that.
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Table 4. Hyperparameters optimized for the XGB model, and their prior distributions using the hyperopt syntax.

Hyperparameter Prior

max_depth hp.quniform(’max_depth-xg’, 2, 12, 1)
n_estimators hp.quniform(’n_estimators-xg’, 20, 250, 10)
reg_alpha hp.uniform(’reg_alpha-xg’, 0, 1)
reg_lambda hp.uniform(’reg_lambda-xg’, 0, 1)
subsample hp.choice(’subsample’, [1, hp.uniform(’subsample-xg’, 0.7, 1)])
learning_rate hp.uniform(’learning_rate-xg’, 0.01, 0.5)
gamma hp.choice(’gamma’, [0, hp.uniform(’gamma-xg’, 0, 0.05)])
colsample_bytree hp.choice(’colsample_bytree’, [1, hp.uniform(’colsample_bytree-xg’, 0.7, 1)])
colsample_bynode hp.choice(’colsample_bynode’, [1, hp.uniform(’colsample_bynode-xg’, 0.7, 1)])
colsample_bylevel hp.choice(’colsample_bylevel’, [1, hp.uniform(’colsample_bylevel-xg’, 0.7, 1)])

2.5. Statistical Tests

Statistical tests were conducted to determine (1) whether there was a statistically
significant difference in the classification performance between the different window
lengths, and (2) whether hyperparameter optimization provided statistically significantly
more accurate classification (effect of ablating Bayesian optimization). First, subject-by-
subject accuracy was obtained for each subject by training the model with all the other
subjects in training data. Then, paired t-tests were employed for both scenarios. Pairs
were formed from the accuracies observed for each subject at (1) two different window
lengths and (2) for optimized and default hyperparameters. A t-test was selected since
the subject-by-subject accuracies were normally distributed. In all tests, the Benjamini-
Hochberg correction was used to control the false discovery rate, with probability of type I
error set to 0.05.

2.6. Computational Tools

The analysis was completed using the Python programming language. The libraries
employed were scikit-learn (preprocessing and cross-validation implementation) [41], xg-
boost (implementation of XGB model) [38], hrv-analysis (calculating HRV features) [42], neu-
rokit2 (signal processing and SCR analysis) [43], and hyperopt (Bayesian optimization) [44].

3. Results
3.1. Parameter Optimization

Figure 2 shows the evolution of the hyperparameter optimization. It is evident from
the figure that most improvement took place within the first one hundred iterations for
each window length, with only minor improvements afterwards. Overall, 30 s and 25 s
window lengths performed similarly, and the accuracy decreased as the window length
decreased further.

Figure 3 displays the posterior distributions of the max_depth parameter which de-
scribes the depth of each tree in the XGB model. The distribution of each window length
is similar to the Gamma distribution truncated between 2 and 12 (since the prior was
truncated between 2 and 12). Most of the probability mass was located between the depths
from 2 to 6, and the best value found (black vertical lines) are located at depths 2 and 3 for
all window lengths except for 25 s, which achieved its best performance at a maximum
depth of 6.

Similar figures of posterior distributions for the rest of the hyperparameters are
available as supplementary material, together with a table of all the tested hyperparameter
configurations and their performance for each window length.
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Figure 2. Progress of the Bayesian parameter optimization, (i) test accuracy obtained at each iteration with leave-two-out
validation (top panel), and (ii) the cumulative maximum accuracy obtained by each iteration (bottom panel).

Figure 3. Posteriors of the max_depth parameter, describing the depth of each tree in the ensemble, after 300 Bayesian
optimization iterations at each window length. Vertical lines denote the best value found.

3.2. Classification Results

Table 5 presents the classification accuracies obtained for each window length with
the LTSO validation used during the Bayesian optimization, and with the LOSO validation
with optimized and default model parameters. The results for statistical tests for the
performance with default and optimized hyperparameters, and the different window
lengths, are shown in Tables 6 and 7, respectively.

There were no differences in the mean classification performance between the LTSO
and LOSO validation strategies (less than 1% difference at each window length), but LTSO
validation seemed to underestimate standard deviations compared to LOSO validation.
Since standard deviations were calculated from the overall accuracy and not the subject-
specific accuracy across the folds, the distribution was drawn towards the mean when there
were two subjects in a fold, which resulted in a lower standard deviation. LOSO validated
measures using the optimized hyperparameters yielded a statistically significantly higher
classification accuracy than with the default parameters. The difference between the default
and optimized parameters was 2–3% at higher window lengths (20–30 s) and 3–4% at lower
window lengths (5–15 s).
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Table 5. The classification accuracy (%) for each window length, with leave-two-out validation
with optimized parameters (LTSOopt), and leave-one-out validation with optimized parameters
(LOSOopt) and default model parameters (LOSOdef). Standard deviations in parenthesis.

30 s 25 s 20 s 15 s 10 s 5 s

LTSOopt 66.9 (4.9) 67.4 (4.5) 66.1 (5.2) 64.1 (4.1) 62.6 (4.3) 60.8 (3.5)
LOSOopt 67.2 (9.0) 67.6 (8.6) 65.4 (8.0) 63.6 (7.7) 62.2 (7.6) 60.0 (6.4)
LOSOdef 65.0 (7.5) 64.5 (8.3) 63.5 (6.6) 60.1 (6.6) 58.5 (6.5) 56.4 (5.7)

Table 6. Results for the Benjamini-Hochberg corrected paired t-tests between the default and optimized hyperparameters
with LOSO validation.

30 s 25 s 20 s 15 s 10 s 5 s

t p t p t p t p t p t p

−2.40 0.03 −4.13 <0.001 −2.62 0.02 −3.63 <0.001 −5.09 <0.001 −6.12 <0.001

Table 7. Results for the Benjamini-Hochberg corrected paired t-tests between accuracies for different
window lengths.

30 s 25 s 20 s 15 s 10 s

t p t p t p t p t p

25 s −0.64 0.53
20 s 1.95 0.07 2.38 0.03
15 s 3.48 0.003 3.82 0.002 3.25 0.005
10 s 4.2 0.001 4.26 0.001 4.78 <0.001 3.3 0.004
5 s 5.58 <0.001 5.69 < 0.001 7.19 <0.001 6.92 <0.001 5.84 <0.001

According to Table 7, there was no statistically significant difference whena window
length of 30 s was compared to window lengths of 25 s and 20 s, but all other tests showed
significant differences (at significance level α = 0.05). Thus, apart from the longest window
length, a shorter window always resulted in weaker classification performance.

3.3. Feature Contribution Results

The feature importance for the different window lengths was assessed as the normal-
ized total reduction of the Gini impurity brought by that feature in the optimized XGB
model. This is visualized in Figure 4. Regardless of the window length, the most important
features seem to be related to the heart rate variability and R-to-R intervals statistics, and to
the statistics of the derivatives of the GSR signal.

Partial dependence plots of a few features selected from the top-20 witha window
length of 25 s are shown in Figure 5. The figure for the 25 s window features was selected
since that option provided the highest classification performance, and the six features
included were selected from the top-20 features so that each feature category or signal
was included. Partial dependence plots display the effect that each feature has on the
classification outcome when all other variables are kept constant. The scale of each feature
is relative to each subject’s feature value, since the features were normalized person-
specifically.

For both HRV variables included, it seems that there is a sudden drop in partial
dependence when the feature value approaches zero, i.e., the subject-specific mean, which
suggests that both features were used near or at the root of the tree to split the whole of
the data in half. The higher RR (rr_d0_lq), higher ST (st_d0_uq), and lower range of the
second derivative of the GSR (gsr_d2_range) seem to be related to a higher chance of being
classified in the cognitive load class. The mean HR shows a small effect on the outcome
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overall, but it seems that a higher HR is related to a lower chance of being classified in a
cognitive load class.

Figure 4. Importance of the top-20 features for each window length.

Figure 5. Partial dependency plots of selected features for the model with 25 s window length.

3.4. Individual Differences

In an ablation study, the performance of the XGB model was inspected with default
hyperparameters without Bayesian optimization. The results for different window lengths
and individuals are shown in Figure 6, with the means and confidence intervals com-
puted across individuals in the train- and test-splits that the dataset came with. Overall,
the mean accuracy increased as the window length increased until a window length of 25 s,
and slightly decreased for the longest window length. The mean accuracy for the test-split
was systematically higher than for the training-split, but the training accuracy was still
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within the confidence interval of the testing accuracy. However, the confidence interval of
the mean test-split accuracy was obtained by bootstrapping five observations, so it is likely
to be somewhat biased.

On an individual level, the accuracy between window lengths varied, but most users’
individual accuracy (i.e., test accuracy when that individual was in the test fold during the
LOSO validation) was at its maximum with a 25 s window length.

The individual variation in feature values is shown in Figure 7, which displays the
boxplots of differences of the mean feature values between the cognitive load and resting
state observed for each individual. The features selected to display were the same features
as in Figure 5. The figure shows that usually the heart rate variability was higher (and,
consequently, the RR was lower) while resting than when in the cognitive load state, the HR
varied between individuals but was mostly higher in the resting state, the range of the
second derivative of the GSR was higher in the resting state, and the skin temperature was
lower in the resting state. In addition, the distribution of each variable contained positive
and negative values: the physiological response to a cognitive load between individuals
did not differ only in magnitude but also in the direction of the different responses.

Figure 6. Classification accuracy observed with the dataset’s default train-test split using the XGB model with default
hyperparameters (ablating Bayesian optimization). Solid lines denote mean accuracy with confidence regions obtained by
bootstrapping around them. Dashed lines depict the validation (training-split) and dotted lines the test (test-split) accuracy
of a single subject.
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Figure 7. Difference of selected mean feature values between cognitive load and rest sessions across each individual,
computed with 25 s window length. Positive values denote that the feature value was higher in cognitive load. Differences
of rr_d0_lq and hrv_pnni_20 were scaled by dividing by 100, and hr_d0_mean by dividing by 10 to show the distribution of
each feature better.

4. Discussion

The objective in this study was to compare the cognitive load detection performance
at different ultra-short window lengths. Six window lengths of less than or equal to 30 s in
duration were analyzed using a personalized approach with the XGBoost classifier and
Bayesian hyperparameter optimization.

In terms of the overall classification accuracy, shorter windows showed lower perfor-
mance and the best performance was found for windows of 25 s and 30 s with a statistically
insignificant difference between the two. However, even if the differences between other
window options were statistically significant, they were modest in absolute terms (lowest
accuracy 60% vs. highest accuracy 67.6%). There were also large individual differences
and person-specific factors which affected which samples were correctly and incorrectly
classified. The individual accuracies ranged from 51% to 80% at a 25 s window length and
the individual-specific optimal window length varied between 10 s, 20 s, 25 s, and 30 s.

Although earlier studies that have conducted experiments with different window
lengths have not tested for statistical significance and they have mainly used window
lengths above 30 s, the overall impression has been similar: longer windows tend to
provide better performance. In [32], the best performance was found with a 120 s window
and with one exception (15 vs. 30 s) the performance increased as the window length
increased. The differences between the window lengths were small in [24], but still, longer
windows performed better with nearly all of the tested classifiers.

Compared to the related work mentioned in Table 1, the classification accuracy in this
study was rather low at each window length. Still, the highest accuracy (67.6%) at 25 s was
almost the same as in the original paper [14] using the same dataset with a 30 s window
(68.2%) and higher than in [45] (63.3%) and [46] (62%) using a subset of the same dataset
and a 30 s window. The low performance is likely related to large individual differences
and the tasks used in the dataset to elicit the cognitive load, which are discussed below.

The six elementary cognitive tasks (ECT) were selected based on [47], where they iden-
tified three relevant cognitive capabilities in the ubiquitous computing domain: flexibility
of closure (HP), speed of closure (GC) and perceptual speed (FA, NC, PT, SX). However,
the ECT refers to any range of basic tasks that require only a small number of mental
processes and they have been originally designed to demonstrate individual differences
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between more than two participant groups (e.g., patients vs. healthy controls) [47]. There-
fore, the cognitive load of these six tasks may have been mild compared to the N-back,
the working memory task. Table 8 shows the task-wise accuracy for each of the tasks and
despite the fact that there were less samples from N-back tasks than the other tasks, they
were relatively well-recognized as a cognitive load.

In relation to real-life applications, however, eliciting a relatively mild cognitive load
offers a more realistic situation. In real-life, extreme reactions (deep relaxation or high
cognitive load) tend to occur rarely and reactions are milder than in laboratory protocols
designed to elicit a high cognitive load or stress. All in all, the varying task difficulty
between the seven different tasks, the three different task difficulty levels (low, moderate,
high) used in the study, as well as the individual differences in cognitive performance and
physiological reactions may have affected the varying classification results.

Table 8. The proportion of samples correctly classified as cognitive load during each cognitive task,
and the number of windows for each task at a window length of 25 s.

FA GC HP NC PT SX n2 n3

Proportion 0.723 0.469 0.845 0.750 0.638 0.747 0.839 0.730
Windows 382 207 336 388 210 245 168 174

Radüntz et al. [48] suggested that biomarkers, especially heart rate features, exhibit
themselves on different timescales in cognitively demanding tasks. They found that the
heart rate responded earlier to workload changes than frequency domain HRV parameters.
This is in line with the findings in this paper that the most important variables for detecting
a cognitive load were statistics of the RR intervals and HRV features from the time- and
non-linear domain. Frequency domain variables were among top-20 only at a window
length of 30 s, which may indicate that frequency domain measures respond slower than
HR-related features from other domains. A similar notion was given in [22], who report
that ultra-short frequency domain norms are from 20 to 180 s, and generally windows of
60 s and up to 24 h should be used.

Thus, the tasks were short enough that not all features could respond before the state
changed again, which may have affected the feature importances and the direction where
the features changed during the tasks. As evidenced in Figure 7, the direction of change
between features and individuals varied, and e.g., the HRV was lower in the resting state
than in the cognitive load state for some participants. Again, this may be a symptom of
the tasks producing a mild cognitive load, but also in the way the resting and cognitive
load states were defined. In this study, the states were defined as in the original paper,
and the resting state was a combination of all resting periods before and between the
cognitive tasks. However, the rest sessions located between the tasks are not similar to the
resting state measured as a baseline before the tasks, or at the very end of the measurement
protocol. Because people do not recover instantaneously, physiological reactions caused
by cognitive tasks are still ongoing when the rest session begins, which likely affected the
classification performance. A significantly higher classification performance was found,
e.g., in [20], where the resting condition represented a baseline measurement conducted at
the beginning and the end of the measurement protocol. However, these kinds of baseline
rest periods have not been recorded in this dataset.

An analysis of confusion matrices revealed that errors made by classifying cognitive
load periods as resting was quite stable for all the window lengths (between a minimum
of 26.2% at 5 s and a maximum of 28.9% at 15 s) whereas the number of errors made by
classifying resting as a cognitive load increased as the window length decreased (38.3% at
25 s and increasing to 53.8% at 5 s). Therefore, it seems that the classifier made the most
errors when the person was recovering from a cognitive load and that the effect of the used
division for cognitive load and resting state may have been especially strong for the shorter
window lengths. Analyzing the dynamics of state detection in short windows might reveal
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more reasons why shorter windows had inferior performance, however, it is beyond scope
of this text and is left for future work.

In this study, overlapping was used to utilize the available data more efficiently. Since
each task lasted for as long as it took for the subject to complete it, the task length varied
between tasks and individuals: easier tasks were completed faster and some subjects were
quicker than others. All in all, approximately 34% of the tasks were completed in less than
60 s (needed to have two windows at a 30 s window length without an overlap), 16% in
less than 45 s (needed to have two windows at 30 s window length with a 50% overlap),
and 23% were completed in less than 50 s (needed to have two windows at a 25 s window
length without an overlap) and 10% in less than 37.5 s (needed to have two windows at
a 25 s window length with a 50% overlap). So, especially for the longer window lengths,
overlapping increased the amount of available data and prevented disregarding data either
from the beginning or the end of each task. Although overlapping is often employed in
feature extraction (see Table 1) and a 50% overlap is commonly used in signal processing
for spectral density estimation [49], its effect on the classification performance in cognitive
state detection [9] and human activity recognition [50] has been found to be insignificant.
However, overlapping can update the output incrementally and more efficiently than fixed
windows [9] and thus it has potential value for future real-time systems with continuous
state estimation.

The focus in this study was on cognitive load detection, which is methodologically
closely related to affect, or emotion, recognition, where rather long windows are also often
employed. Since an affective state tends to last for a very short time [21], shorter feature
windows also for affect recognition should be investigated in future studies.

5. Conclusions and Future Work

Cognitive load assessment could serve multiple applications, e.g., in human–computer
interaction to recognize and adapt to human overload issues. The future direction in as-
sessing cognitive load is in real-time analysis and detecting the state in a streaming mode.
In this study, a step towards more timely, real-time cognitive load detection was taken by
analyzing the effect that ultra-short window lengths (30 s or less) have on detection perfor-
mance.

The results on this dataset showed that longer windows perform better with statisti-
cally significant differences. The best performance of 67.6% was observed at a 25 s window
length and the accuracy decreased to 60.0% at a 5 s window length. The optimal window
length varied on an individual level, and whereas longer windows performed better on
average, shorter windows were better for some individuals. Compared to earlier works
using longer windows, the classification accuracies obtained were low, but the accuracy on
the longer windows tested was similar or higher to those obtained earlier with the same
dataset in [14,45,46] using a 30 s window.

The tasks used in the dataset produced rather mild cognitive load, which is closer to
real-life circumstances but more difficult to detect than a higher load. Moreover, shorter
windows contain less data, and some physiological features could not react on time to
changes in the cognitive load and thus were not useful for state detection. R-to-R interval
statistics as well as time- and non-linear domain HRV features had the fastest response to
changes in cognitive load, followed by GSR statistics and skin temperature.

Short windows allow predicting the state more often, and so they may be more
desirable in applications where more timely state detection is needed. However, shorter
windows contain less data and physiological events, and so it is more difficult to correctly
detect the state with shorter windows than it is with longer windows. Thus, the timeliness
will be achieved on the expense of model accuracy as the results of this study demonstrate.
The performance on a 5 s window was 7.6% behind of the performance on a 25 s window,
despite that it contained five times less data. Although the performance found on this
dataset was rather limited, this motivates future studies for real-time, even streaming,
cognitive load detection.
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Future studies towards this goal would benefit from a larger database to account
for individual differences more effectively, to analyze the effects of window overlapping
in terms of classification performance and continuous state detection, and to be able to
use a larger set of different window lengths. Additionally, the analysis of the effect of
short windows could be extended to other state detection tasks within affect recognition,
to address similar issues in a broader context.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-929
2/10/5/613/s1. The following supplementary files are available: posterior_distributions. pdf (figures
similar to Figure 3 for all XGB hyperparameters), bayes_opt_results.csv (data generated containing
information on each completed iteration of Bayesian optimization), and individual_accuracies.csv
(subject-wise accuracies for each window length). The source code is available on Github at https:
//github.com/jatervon/ultra-short-cognitive-load-detection.
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