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Abstract: Electric power systems are currently confronted with a fundamental paradigm change
related to its planning and operation, mainly caused by the massive integration of renewables. To
allow higher penetration of them within existing grid infrastructures, the “smart grid” makes more
efficient use of existing resources by integrating appropriate information technologies. Utilising the
benefits of such smart grids, it is necessary to develop new automation architectures and control
strategies, as well as corresponding information and communication solutions. This makes it
possible to effectively use and manage a large amount of dispersed generators and to utilise their
“smart” capabilities. The scalability and openness of automation systems currently used by energy
utilities have to be improved significantly for handling a high amount of distributed generators.
This will be needed to meet the challenges of missing common and open interfaces, as well as the
large number of different protocols. In the work at hand, these shortcomings have been tackled
by a conceptual solution for open and interoperable information exchange and engineering of
automation applications. The approach is characterised by remote controllable services, a generic
communication concept, and a formal application modelling method for distributed energy resource
components. Additionally, the specification of an access management scheme for distributed energy
resources, taking into account different user roles in the smart grid, allowed for a fine-grained
distinction of access rights for use cases and actors. As a concrete result of this work, a generic and
open communication underlay for smart grid components was developed, providing a flexible and
adaptable infrastructure and supporting future smart grid requirements and roll-out. A proof-of-
concept validation of the remote controllable service concept based on this infrastructure has been
conducted in appropriate laboratory environments to confirm the main benefits of this approach.

Keywords: smart grid; information and communication technologies; networking infrastructure;
automation; control application; renewable energy; system integration; overlay networks

1. Introduction

In recent years, the electric power grid had to face enormous challenges on the way to
a more environmentally friendly infrastructure, supporting decarbonisation and higher
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shares of renewables. This is a world-wide political goal; for example, in the year 2009,
the European Union defined a set of target values for the energy industries, commonly
known as 20-20-20 goals [1]. The objective was to reduce the emission of greenhouse
gases, increase the share of renewable energy sources and improve energy efficiency by
20% each by the end of 2020. Renewables for power generation include technologies, like
photovoltaics (PV) and wind energy plants. Since these technologies are very volatile and
can only be predicted to limited extent, grid control becomes significantly more laborious
and complex. Especially for PV, the use of small roof-top generation sites is very common
nowadays; thus, they are feeding electricity into low voltage (LV) grids. This causes severe
stability problems for LV grids, as they are massively distributed, i.e., control applications
are needed for the coordination of a large number of participating nodes using respective
communication means [2]. Furthermore, system maintenance (e.g., in case of security
audits, technical updates, functional outages) and the need for adaptation to changing
and locally different regulatory and legal conditions result in additional effort. Semi-
automatic management, which can be done remotely, may alleviate the required amount of
effort significantly.

Thus, the work at hand intends to contribute to an information and communication
technology (ICT) infrastructure useful for smart grids, i.e., power grids with additional
means to exchange, store, interpret, and edit data and to use it for control purposes [3].
This data may be used for control commands (switching consumers or producers on and
off, etc.), measurement values (instantaneous power, or energy consumption in a 15-min
slot, etc.), additional relevant information (price curves, weather forecasts, etc.), as well as
the deployment of software components (for updates or new functions). The large number
of different stakeholders (consumers, producers, network operators, facility owners, device
manufacturers, maintenance engineers, authorities, certification bodies, sales organisations,
etc.) generates high demands regarding openness and interoperability but also regarding
the security of this infrastructure. A proof-of-concept prototype has been developed, which
provides functionalities, such as a unified application programming interface (API) for
control applications, a management interface for integrating new or updating existing func-
tions, an engineering tool for developing control functions, a communication subsystem
containing adapters for common smart grid protocols, easy to use integration of physical
interfaces (sensors, actuators), and a role-based access control (RBAC) system for users
and applications, including a policy enforcement point, providing necessary security and
privacy of the operated data.

The basic ideas of this work have been previously published in Reference [4]. There,
the concept and the prototype architecture have been outlined. Partial solutions have been
also shown in Reference [5], where security by design aspects of the prototype architecture
have been explored, or in Reference [6], where extensible messaging and presence proto-
col (XMPP) communication has been integrated into a distributed, standard-compliant
control environment. For the engineering of control applications in such environments,
Reference [7] applies a model-based system engineering (MBSE) approach. Anyhow,
the present work introduces the whole concept with all corresponding details. It also
provides a comprehensive discussion about the achieved results which goes far beyond
the content of the aforementioned papers where mainly high-level ideas and first proof-of-
concepts have been outlined.

This paper is organised in the following way: Section 2 describes the related work and
state-of-the-art in the targeted field of smart grid information architectures. In addition,
existing technologies and solutions which are potentially useful for the work at hand
are outlined. Section 3 recapitulates our approach to overcome existing shortcomings,
including the architecture of the developed prototype. A special focus on interfaces,
address formats, and protocols, as well as the applied communication logic, is given
in Section 4. After describing the realisation of the proof-of-concept prototype and the
validation scenarios in Section 5, the gained results from conducting the respective tests
are discussed in Section 6. Finally, Section 7 concludes the paper.
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2. Related Work

The massive roll-out of distributed energy resources (DER), like wind turbines, PV
systems, small hydro power plants, biomass generators, etc., over the last decades has led
to a fundamental paradigm change in terms of operation and planning of the electric power
system [8]. As a consequence, the electricity generated from renewable sources has become
visible in power transmission and distribution systems, creating additional challenges
for the management of the power system, mostly due to the large numbers of systems,
the variable power output and uncoordinated response to changing conditions of the
power grid [9]. In some regions of the world, the deployment of renewable energy sources
(especially PV) has been reaching or even exceeding the hosting capacity of distribution
grids. In order to solve this issue, an effective integration into the power system is required,
which becomes even more critical for the development of future DER components [7].

2.1. Meta-Models for ICT Architectures

The so-called smart grid [10] constitutes a very promising solution to use existing
grid infrastructure more efficiently, which allows a higher degree of deployment of renew-
ables [11]. All components (generators, loads, storage facilities, lines, substations, on-load
tap change transformers, DER, measurement devices, smart meters, etc.) in the smart grid
are interconnected via a powerful communication network and corresponding automation
infrastructure in order to monitor, manage, and optimise the electric infrastructure in a
more intelligent manner. To be able to fully utilise the benefits of smart power grids, it
will be necessary to develop new control strategies. These strategies will make it possi-
ble to manage the large number of dispersed generators more effectively and to better
utilise their “smart” capabilities, such as the ones that can be provided by inverter-based
DER. For example, an overview of various research and development activities in the
area of smart grids and DER integration on European and American level is discussed in
Reference [12,13]. Here, ICT plays a key role for the implementation of such a smart and
coordinated system approach [14]. In the dynamically evolving field of ICT solutions for
smart grids, the development of standards is of crucial importance mainly due to interop-
erability requirements. Several standardisation organisations and various international
projects have analysed this topic already [15,16].

On an international level, the International Electrotechnical Commission (IEC) pro-
vides a collection of common rules for the planning and operation of smart grids. Thus,
the “IEC Smart Grid Standardization Roadmap” [10] suggests core standards to be used for
the realisation of smart grids. This includes standards for data models, like the common
information model (CIM), as defined in IEC 61968 and IEC 61970 [17], for power utility
automation (e.g., IEC 61850 [18]), and many more. Gungor et al. [19] provide an overview
of relevant smart grid standards, as well as roadmaps for further development. An impres-
sive visualisation of standards is given in Reference [20]. The smart grid typical interaction
of energy technology and ICT was specifically focused on in Reference [21].

In the smart grid domain, several proposals for organising ICT contributions have been
made. The 3-dimensional smart grid architecture model (SGAM) model [22] is probably the
most popular among these structuring meta-models. It includes not only interoperability
layers but also zones (which refer to the parts of the automation pyramid) and domains
(which incorporate the electricity grid’s value-chain from bulk generation to customer
premises). An older model for interoperability layers (1-dimensional, but more granu-
lar) is the “Gridwise interoperability context-setting framework” [23] from the GridWise
architecture council (GWAC). Figure 1 shows a comparison of these models. The lower
layers of these models (up to the “Semantic Understanding” GWAC layer) are further-
more covered by the International Organisation for Standardisation (ISO) open systems
interconnection (OSI) reference model [24] for computer networks.
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Figure 1. GridWise architecture council (GWAC) and smart grid architecture model (SGAM) layer
models (adopted from [22]).

A special focus for smart grid information architectures should be set on the “middle-
ware” layers, i.e., the “Syntactic Interoperability” and “Semantic Understanding” layers of
the GWAC stack, respectively, the OSI layers 4 to 7. However, if the Internet is not used as
common infrastructure, lower layer technologies have to be taken into account, as well.
An overview of possible technologies for appropriate communication stacks is given in
Section 2.3.

2.2. Architectures, Technologies, and Frameworks

Before considering the communication stack, the technologies for realising smart
grid applications have to be assessed: First, the applications define the requirements on
infrastructure and middleware. Second, the used technologies influence the interface and,
thus, indirectly also the functionalities and the quality attributes of smart grid applications.
Especially control applications are often realised using technologies, such as IEC 61131-
3 [25] or IEC 61499 [26]. IEC 61499 is a promising technology for the smart grid domain,
as it allows for distributed and event-driven control logic [27]. In case of IEC 61499, layer 7
functionality (and due to the hierarchical abstraction of the OSI scheme also the respective
included lower layer services) would be incorporated in so-called service interface function
blocks (SIFBs).

The question here is which communication services and functionalities can be included
into such a function block, and how this can be done (i.e., which architectural approach is
taken for integrating middleware and infrastructure services). When looking at adjacent
domains, similar activities can be identified. In home and building automation (HA/BA),
an “X-Architecture” using a convergence middleware layer has, e.g., been deployed in
Reference [28]. Tooling support with connection to smart grids has been provided, e.g., by
Reference [29]. The automotive domain has come up with a similar middleware architecture
named AutoSAR [30].
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The existing approaches have varying amounts of impact, yet it can be said that, in the
smart grid domain, there are no widely accepted solutions for generic data exchange. In-
stead, a plethora of data standards and protocols has been defined, each of them tailor-made
for a very specific use case, e.g., device language message specification (DLMS)/companion
specification for energy metering (COSEM) [31] is widely used for smart metering and
advanced metering infrastructures (AMI) [32]. These approaches are very useful but lack
the genericity to serve as a basis for a generic interoperable information architecture.

Furthermore, there are numerous approaches for smart grid frameworks, which
can be considered as middleware solutions, as they implement an (X-architecture like)
intermediate tier between applications and hardware/operating system, like OGEMA [29]
or OpenHAB [33]). Many of them deploy Open Services Gateway initiative (OSGi) [34]
as basis, as surveyed by Pichler et al. [35]. This may be traced back to the origins of OSGi,
which can be located in the areas of HA/BA. However, these installations are intended
to work at a local site mainly, although they may be collecting data from remote sources
(like sensors in the field). The main problem is their lack of interoperability [36], i.e., the
collaboration of instances of different frameworks usually fails. Here, the middleware
should embody common notions for data exchange between these instances, i.e., a common
protocol stack.

Still, there are numerous approaches for distributed middleware solutions besides
smart grid related infrastructure, which could be deployed generically, such as the common
object request broker architecture (CORBA) [37]. In the field of industrial Internet of things
(IoT), solutions, such as the data distribution service (DDS) [38] or open process control
unified architecture (OPC UA) [39] (sometimes combined with time sensitive network
(TSN)), are common. Distributed applications based on these technologies are still limited,
as they allow cooperation of distributed partners, but only when these partners are using
the same base technology. Thus, commonly agreed protocols can yield enormous benefits
for all stakeholders, e.g., user rights management could be based on lightweight directory
access protocol (LDAP) [40].

2.3. Communication Concepts and Protocols for Energy Systems

According to the OSI model [24], protocols provide a northbound interface called
service access point (SAP). The SAP of OSI layer 7 protocols (application layer, L7), thus,
provides a generic API for whatever applications of different vendors want to use the
underlying middleware and infrastructure. One of the most widespread realisations
of such a generic API is the email system. The series of actions for sending, querying,
and delivering emails is given by the L7 protocols post office protocol 3 (POP3), Internet
message access protocol (IMAP), and simple mail transfer protocol (SMTP), respectively.
Furthermore, the handling of email attachments is described by the multipurpose Internet
mail extensions (MIME) definition [41], which gives information about the structure of
the data that has to be exchanged. This is a very powerful and flexible system, allowing
for data exchange not only between humans but also for machine communication—for
instance, it can be used for exchanging calendar updates [42].

The success of the email system is its simplicity and genericity; the question is whether
this concept can be transferred to the smart grid domain. Thus, in the following, potential
technologies to be used as basis for such a smart grid information architecture, mainly
covering functionalities located in the layers L4 to L7, will be examined. L7 defines an
application specific series of actions (e.g., for control tasks); this has to be provided via the
aforementioned generic API for the L7 functionality. Just like SMTP provides an L7 SAP to
email clients, this API shall provide a similar point of communication service provision
for smart grid devices and applications. State information may be held in the application
itself, or in the L7 protocol. Application layer protocols, as mentioned, are tailor-made
for the concrete use cases; however, standards, such as IEC 60870 [43] and IEC 61850 [18],
have gained prominence in many smart grid-related data exchanges, predominantly in
the transmission grid infrastructure. IEC 61850 allows for a tree-like data object structure
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(thus also defining L6 functionality). Whereas IEC 61850 is connection-oriented (and
thus stateful), IEC 60870 uses (stateless) telegrams; this is more lightweight but may lack
functionality needed for control applications. As for the semantics of the L7 payload, we
seek a unique data modelling. This could be provided by the mentioned CIM [17], which
has gained importance in the smart grid world over the last few years [44].

Furthermore, L6 technologies are needed which are able to represent the data models
defined by CIM. A good candidate for this is OPC UA [39], which is a common tech-
nology to be used for connecting “nodes” (communicating end systems) in distributed
industrial environments. It constitutes a message-oriented middleware [45], which already
provides service orientation. In addition, the combination of OPC UA and CIM has already
been proven to work well [44]. As for L4/L5, the focus will be set on real-time capable
end-to-end protocols, preferably stateless protocols, as state information will be needed
already for the L7 protocol, and a doubling could be too inefficient for the desired solution.
Session handling could be performed by session initiation protocol (SIP) [46] or XMPP [47].
For the transport layer, user datagram protocol (UDP) [48] might be an alternative to the
predominant transmission control protocol (TCP) [49], especially for use cases involving
strict latency requirements. However, mechanisms to ensure delivery of control commands
have to be defined; automatic repeat request (ARQ) could be inappropriate due to latency
properties—yet reliability is also an important topic for control applications.

Regarding the communication infrastructure (i.e., the lower part of the SGAM Com-
munication Layer), Internet protocol (IP) should be taken as granted. The only question is,
which version is to be used. IPv6 [50] might have advantages over traditional IPv4 [51]
for the huge number of possible addresses, which makes it more suitable to IoT environ-
ments. This applies especially to the smart grid, due to the numerous devices in the field
(e.g., power sensors [52]). However, field devices often face performance problems, which
could be worsened by using 128 bit long addresses—6LoWPAN [53] yet provides IPv6
with header compression. Depending on the requirements of L2, this might be an option.
As for L2, IP support is strongly desired. Thus, IP capable field buses, like Modbus (in
the variants Modbus/TCP and Modbus/UDP) [54], will play an important role. Further-
more, L2 should be real-time capable—so real-time Ethernet variants, such as Ethernet
Powerlink [55], could be considered. This would also define L1 (the physical layer).

2.4. Open Issues and Shortcomings

To summarise, there are a couple of open and unsolved issues when it comes to the
integration of DER units into smart grid solution. From an automation and ICT-point of
view, the most relevant topics for the present work are:

• missing common automation application modelling concepts for power and energy
systems,

• scalability and openness of automation and control applications with a high share of
DER components is only partly addressed,

• lack of common and open communication interfaces in smart grids impede scalable
and distributed automation solutions,

• missing possibilities to update and extend DER services, and
• available proprietary automation concepts in smart grids prevent efficient reuse of

control software; thus, the engineering costs exceed admissible costs by far.

In the following sections, a potential approach that overcomes those issues is intro-
duced and discussed in detail.

3. Approach and Architecture

In order to overcome the mentioned shortcomings, a concept for the desired ICT
infrastructure has been developed, and a proof-of-concept prototype has been implemented
and validated. This section outlines the elicitation of requirements on the solution and
the design of an appropriate information architecture, as well as the basic functionalities
covered by the prototype components.
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3.1. Use Cases and Requirements

Potential application scenarios of the approach at hand have been defined and anal-
ysed on the basis of a use case analysis in order to derive respective functional requirements.
This use case methodology is widely used in ICT engineering and provides a structured
approach to identify requirements for a system under design in a technology independent
way. In addition, in the domain and energy systems domain, the usage of such a method-
ological approach becomes more and more important. The “IntelliGrid Methodology
for Developing Requirements for Energy Systems”—which is covered by the IEC 62559
standard [56]—defines a corresponding approach for defining use cases and deriving
requirements especially for the smart grid. This very well known methodology usually
separates the concepts of user requirements from technical specifications; therefore, user
requirements define what is needed without taking any specific designs or technologies
into account. On the other side, technical specifications define how the specified systems
have to be realised in order to fulfil the user requirements.

The definition of actors is one of the crucial parts in the process. An actor is an
entity having a defined behaviour when interacting with the system under discussion.
In principle, actors can be humans, organisations, (technical) components, and systems
(or even systems of systems). The identification of actors has already been carried out
in various smart grid related activities so far (DKE [57], M/490 [58], etc.). Therefore,
a survey of existing projects has been carried out and relevant actors have been collected
and evaluated. Useful actor definitions have been included in a use case management
repository hosted at DKE [57]. On that basis, 25 relevant use cases in 6 use case clusters as
visualised in Figure 2 have been collected and analysed. Hereby, the operational use cases
cover some intended control applications, whereas the process-oriented use cases describe
the interaction with the proposed system itself.

Use Cases 

Operational 
Use Cases

Process-Oriented
Use Cases

Off-Grid 
Applications

DER Plant 
Operation

Grid Operation
Energy Market 

Operation
EngineeringCommunication

Figure 2. Overview of identified use case clusters.

The process-oriented use cases yielded up to about 40 requirements, categorised into
rights management, communication, and application requirements, as depicted in Figure 3.
Finally, validation scenarios have been derived (see Section 6), which cover one or more of
the mentioned use cases, as well as validation environments, which hosted the tests for
these validation scenarios.
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Security
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what to what extent)
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manipulable by Apps
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Model Checking

Simulations & 
Emulations 
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Fallback

Changelogs

Complete Transfer to 
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Varying Interfaces
(RS485/Ethernet/...)

Management-Interface
for Configuration of

Network Functionality

Access Rights on
Network Resources

Proof of Identity

Security by Design

Secure Data 
Transmission

Availability

End Device Integrity

Sandboxing

Memory Management

Abstraction of
Hardware Access

Limitation of allowed
Apps on a Device

(e.g. vendor certified 
only)

Figure 3. Overview of derived requirements.

3.2. Overall Concept and System Architecture

Based on the aforementioned requirements, a prototypical solution has been designed
and implemented in order to serve as a proof-of-concept. The overall system architecture of
this prototype is depicted in Figure 4. Hereby, the power flow (solid lines) and the data flow
(dotted lines) between different intelligent electronic devices (IEDs)—be it transformers,
DERs, remote terminal units (RTUs), or any other kind of IED—are visualised. Each IED
comprises hardware and a middleware named “SmartOS”, as well as “remote controllable
services (RCSs)”. The SmartOS again contains hardware control, security and access
management, as well as connectivity functions. The RCSs access the middleware via a
defined API only, and again provide functionality, such as voltage measurements, needed
by smart grid applications, like Volt/var control. These services have been designed to run
in sandboxes; thus, they can communicate with their environment only via the middleware.

In case such RCSs want to communicate with other RCSs on different IEDs, the Smar-
tOS has to provide the connection to a remote IED via an appropriate connectivity module.
Figure 5 shows the respective module for external communication in the context of the
overall system architecture depicted above. One of the main goals of the proposed architec-
ture is to provide flexibility with regard to the integration of different smart grid-related
protocols since there is currently no unified solution available. Typically, protocols, like
Modbus, DNP3, or IEC 61850, are used, and the proposed approach allows to integrate all
of them concurrently, as depicted in Figure 5.
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Figure 5. Elements of the connectivity module.

The main parts of this module are:

1. a common application layer (L7) protocol called “open application layer protocol
(OpenALP)” (see Section 4.3) providing a unique access point (L7 SAP) to connectivity
functionality for RCS,

2. legacy protocols widely used in the power and energy systems domain,
3. adapters for missing functionality of these protocols (e.g., for keeping state informa-

tion),
4. existing network infrastructures (e.g., on the basis of the TCP/IP/Ethernet stack), and
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5. network management functionality to provide the possibility of (re-)configuration
during runtime.

3.3. Subsystems and Functionalities

An overview of the software within one IED is given in Figure 6. Each IED contains
the SmartOS middleware, which serves as container for hardware control (e.g., access to
sensors and actuators), connectivity (communication to other IEDs), and security (especially
access control to restrict functionality to users with respective rights), as well as a registry
for services (in an OSGi-like manner) and users (based on LDAP [40]). Despite its name,
the SmartOS, thus, actually constitutes a middleware rather than an operating system (OS).

IED

                                               SmartOS

Virtual Functional Bus

IED

Component

Ethernet

Configure Program

UART

   Sandbox

SW 
Component

   Sandbox

SW 
Component

Ethernet

Basic functions
- DER/Inverter functions

Registry
- Service listing
- Privileges
- Users, Groups
- Data points

Security
- Authentication
- Rights management
- Access management

Connectivity
- Communication s tack
- Encryption
- Adapters

Engineering
(DSO/Plant Operator)

Application layer protocol

API

SED

MODBUS

UART

1

2 3
Basic Component

4

5

Figure 6. SmartOS and Virtual Functional Bus (VFB) (adopted from Reference [4]).

3.3.1. The Virtual Functional Bus

The core subsystem of the SmartOS is the “virtual functional bus (VFB)”, which
provides intra-IED communication for different RCSs denominated as “software compo-
nents”. This is done via the specifically developed OpenALP (see Section 4.3). Furthermore,
the VFB connects the SmartOS modules, which are described in more detail in Section 3.3.2.
The numbers shown in Figure 6 relate to the interfaces provided by the VFB. As only excep-
tion, interface 4 connects the basic component (which is a pre-defined software component
encapsulating direct hardware access) to its respective basic functions, i.e., sensor and actua-
tor access. To fulfil the requirements, the VFB needs to provide an ecosystem which is acting
as a message oriented middleware (MOM) designed for a highly distributed environment.

Consequently, IEDs and their software components, as shown in Figure 6, will exclu-
sively be provided with a predefined address scheme (see Section 4.1) for communication.
They do not require information about the location of their communication partners or the
appropriate protocol and physical adapter needed for communication. Such an infrastruc-
ture can be provided by a classical messaging system, which is explained in more detail in
the following. Furthermore, the VFB represents the central point for dispatching messages
by querying the registry and security modules and finally forwarding the messages to the
correct recipient(s).
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The messaging system is the basic functionality of the VFB. As such, it must provide
a level of functionality similar to message queues, where each possible component is
provided its own input and output queue. They need to be based on classical first in
first out (FIFO) mechanisms which can be filled with a specific number of messages and
ensure sequential delivery. Messages are received and sent by the VFB itself, by software
components, or by the connectivity module.

The SmartOS middleware allows adding RCSs on a plugin basis. Ideally, they can be
deployed as a package without the need for copying many different files. Third parties
should be able to develop such software packages and they should be reviewed and
certified by the hardware manufacturer of the device they are intended to run on. When
certified for the brand/device, such software components ideally are signed by the owner
and by the company reviewing the software component, using a commonly known and
established signature methodology. Signed software components finally receive standard
permissions on a device to run in the sandboxed context of the VFB, which limits system
access to the provided VFB API described in Section 4.

The design of the software component plugin system should allow hot-plug features,
such that new applications can be loaded and updated dynamically during runtime. As the
VFB is based on a messaging system, a software component needs to be able to access
this system. To achieve this, the VFB infrastructure provides the mentioned common
API (interface number 1 shown in Figure 6), which is accessible to internal components
(e.g., the basic component), as well as to the loaded third-party applications. Furthermore,
communication should be restrictable for an individual or a group of communication
parties. This has to be conducted according to the permission system handled by the
security module and the device registry. However, the VFB itself acts as the respective
policy enforcement point (PEP) which processes or discards the messages accordingly.

3.3.2. Modules

The SmartOS architecture contains two main important modules which are:

Connectivity Module

IEDs may communicate with other IEDs or RTUs via the connectivity module, us-
ing various kinds of protocols. The connectivity module has the ability to establish new
connections or handle in-coming messages from established servers (instantiated by the
VFB) via communication technologies, such as Ethernet, serial connections, or field busses,
like controller area network (CAN) bus. To do this, the connectivity module is aware of
the necessary adapters and protocols; these are determined via registry entries. Further-
more, adapters are implemented in a way to allow non-blocking operation and multiple
simultaneous connections, if the respective protocols require such functionalities.

If the connectivity module establishes a connection, some mapping needs to take place
to check if there is already an open channel for that particular communication partner to
continue communicating on that channel. This is handled via a simple lookup-table. When
reconnecting on the other hand, an adapter and a protocol need to be chosen; this is done
by translating the system address into an adapter address. Finally, it is possible to execute
protocol specific tasks to prepare the open channel for communication. This is achieved by
the respective protocol adapters. When receiving new connections, the adapter and the
protocol need to be pre-defined because an incoming request is handled by the particular
server implementation of the adapter. Thus, an incoming message needs to be verified (if
applicable) and forwarded to the VFB.

Security Module and Registry

The security module is one of the central elements ensuring security within the
infrastructure at hand. Therefore, it needs to be able to impose a permission strategy on
the messaging system, thus serving as a policy decision point (PDP). It has also to restrict
loading only to signed software components and to provide the necessary information to
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the sandbox in order to allow or deny a specific function call. Additionally, the security
module needs to know which functions and configuration parameters are accessible and
to which extent. An important pre-condition to provide an appropriate rights and access
management is to authenticate requesting modules and their respective users in cooperation
with the registry. On each SmartOS capable device, a persistence and configuration layer
needs to be maintained by a central authority. This part is referred to as the registry. It needs
to contain a variety of information required for the normal operation of the device. These
configuration entries include the following types of information:

1. Device: Device name, device interface, application folder,
2. Address: All accepted outbound and inbound addresses,
3. Registered applications: Registered running applications, including their data points,
4. Data points per application: Manually registered data points,
5. Adapter: All adapter implementations which run as a server thread,
6. Users: All registered human or machine users and their respective access rights, and
7. Permission: Permissions based on (at least) a 3-tuple of sender, recipient, and commu-

nication type, supporting wildcards.

3.3.3. Internal Interfaces

Here, the most important interfaces between the various components internal to the
IED are considered. Internal in this case refers to the fact that under normal circumstances,
they will not be particularly relevant to any third parties implementing software com-
ponents or adapters for the connectivity module. The internal interfaces are accessed by
the VFB only, i.e., they connect the VFB to a functional module. The interface between
the VFB and the security module (interface 5 in Figure 6) can essentially be limited to a
single function call: For any message arriving via the connectivity module, the VFB must
query the security module (which in turn must query the local database and/or a central
permission store, such as an LDAP server), for existence of the appropriate permission. If a
corresponding entry is found, true should be returned and the message can be passed on
by the VFB. Otherwise, the message has to be discarded by the VFB.

The VFB and the connectivity module (interface 3 in Figure 6) should be linked in a
sequential and non-blocking way, e.g., via a set of message queues. Communication needs
to be completely encapsulated and only possible over the messaging system specified
above from and to the connectivity module. In order to enable software components to
register and de-register data points, the VFB needs to be able to access the registry (interface
2 in Figure 6) as persistent data storage. Furthermore, since the VFB acts as a PEP, it must
be able to indirectly accesses the registry via the security module which, in turn, acts as a
PDP relying on the corresponding entries in the permission table.

3.4. Engineering Approach

Besides the prototypical realisation of an IED-based ICT infrastructure, an appropriate
tooling was also necessary to provide. This tooling had the task to support engineering of
smart grid applications from design over implementation and testing up to deployment
and maintenance. Thus, this engineering environment should support the whole product
lifecycle, e.g., by hot plug&play of new or modified services and applications in an OSGi-
like manner, but tailor-made for the smart grid domain, rather than for HA/BA.

The SmartOS concept of RCS sandboxing (see Figure 6) in combination with access
right enforcement allows for using services in the intended flexible way. Thus, access
to system resources is granted via a controlled access way only but can yet be modified
easily during runtime. However, these modifications have to be performed solely by
system services in order to be done again under complete access control (it has no sense to
enforce access control rights for applications, when these rights can be manipulated without
control), while being easily invoked by legitimate users. This means system services are
engineered the same way as energy services.
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Energy services can then be utilised to engineer higher order applications, as for
instance Volt/var control in LV grids (see Section 6). To enable engineering in an easy to
use way, as well as for allowing reuse of existing functionalities, a model-driven architecture
(MDA)-based approach has been chosen, as given in Reference [7]. According to MDA,
the platform independent model (PIM) is created using a domain specific language (DSL),
here called the power system automation language (PSAL). PSAL is intended as a tool for
SGAM compatible use case design and at the same time it provides a basis for further code
generation. Thus, PSAL is also the starting point for all design activities in the provided
engineering methodology. As an example, in Reference [7], IEC 61499 function blocks (FBs)
are used to realise a Volt/var control application, engineered with the help of PSAL.

Since SGAM is already divided into different layers, it makes sense to keep this
structure in PSAL, as well. When studying the SGAM layers, it is clear that the component
layer and the communication layer are more “static” (in the sense of related to existing
infrastructures) than the information, function, and business layers. According to this,
PSAL was divided into one static and one dynamic model, the latter also called the
functional model. A graphical representation of the main parts of PSAL is provided
in Figure 7. In the static part, the component layer and the communication layer are
represented, whereas, in the dynamic part, the information layer, the function layer, and the
business layer are represented.

System Application

Device : Component

Resource

Module

Component PhysicalInterface

Interface

Attribute

Operation

Function

Function

Function

definitionmapping

Connection

Figure 7. Elements of the Power System Automation Language (PSAL) [4].

Another important requirement is platform independence. An application or func-
tionality should be independent from its possible execution platform. Expressed in SGAM,
this would correspond to using the same business, function, and information layers, while
using different communication and component layers. From a user perspective, this means
that it must be possible to define a functional model independently from the static model.

According to Reference [7], the static model is represented by the system, a container
for components and connections. Together, these can be used to describe the ICT system, as
well as the electrical power system. In this work, the emphasis is on ICT and automation
equipment. Examples of ICT equipment are routers and switches, while automation
equipment is mainly represented by IEDs and embedded controllers. Each device contains
one or more physical communication interfaces. Part of the device is also the resource,
a function container similar to the logical devices (LDs) used in IEC 61850. By means of
multiple resources, it is possible to logically group functionality of a device. To complete
the component layer, devices can be connected to each other through connections. Each
connection can be defined through a number of attributes (e.g., communication protocol and
performance requirements). With the system, the component layer and the communication
layer of SGAM are modelled.

The functions are defined in the application, the dynamic model of PSAL as discussed
in Reference [7]. Here, the exchanged information is also defined. Using the SGAM
methodology, it is possible to roughly describe functionality in different unified modelling
language (UML) diagrams. Use case, activity, and sequence diagrams are tools that are
often used for this purpose [22]. However, in order to automatically generate code from the
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use case description, more details are needed in the descriptions of the functions. In PSAL,
this is modelled by the functions, which are defined through a software component model,
a containment model that supports different levels of detail. The component model was
developed with focus on the function layer rather than on the business layer. Each function
is a component that can contain other functions. This allows the developer to choose the
level of detail that is necessary for the use case. Furthermore, each function can provide
or request services that are defined by an interface. The information of an interface is
defined using attributes and operations. The application represents the business, function,
and information layers of SGAM.

According to Reference [7], the connection between the system and the application
is realised by a function-resource mapping. By performing such a mapping, all provided
and requested services of the respective function are also available on the interface of the
resource. Consequently, these services are also available on the physical interface of the
device. One of the advantages of using a textual syntax is that comments can be used
anywhere in the source code. As a result, the documentation of the constructed use case
is simplified. A major part of SGAM is the placement into domains and zones. However,
this placement is mainly intended for documentation purposes and does not directly affect
the implementation. For the execution of code, it is not important if a device is located in
a station or a field zone. With a textual DSL, the definition of domains and zones can be
achieved through the use of annotations (e.g., @DER and @Station).

4. Data Semantics and Interface Definition

To realise a concept as stated above, some data semantic issues have to be considered.
In addition, some formal definitions have to be given, especially when it comes to the inte-
gration with external (system context) components. In the concrete prototype environment,
addressing objects uniquely within in the whole envisaged system is a crucial precondition
to allow for wide area communication. Furthermore, defining the data semantics when
exchanging or processing data is inevitable. However, in order to allow for integrating
elements of different legacy, adapters to the used mnemonics have to be used. Thus, this
section intends to document all the necessary working conditions for the prototype being
able to proceed.

To reduce the complexity of software components, a specific “OpenALP”, along with
an address scheme, has been developed. It is intended to enable software components to
communicate with other devices or software components with little or no knowledge about
the various possible protocols which may be involved in cross-device communication. First
of all, the specification of the developed “OpenAddress” format is provided.

4.1. Address Format

The following definition, which is formulated in extended Backus Naur form (EBNF),
shows how device addresses are formed in the work at hand:

OpenAddress = Device "/" Namespace ("." Namespace)* "$" Variable ("$"
Variable)*

Hereby, the terms describe the following semantics:

Device The name of the target device
Namespace A namespace within a device—Namespaces are defined by the software

components; each namespace typically corresponding to one software com-
ponent.

Variable The address of a data point (which can be a simple variable but also a
structure) within a namespace—Variables are also defined by the software
components.
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The following example shows a complete address in OpenAddress format:

IED1/Measurements.POC.Voltages$PhaseToNeutral$phsA

4.2. Mapping between OpenAddress Format and Legacy Addresses

To be able to translate an OpenAddress into a hardware address which can be used
by a protocol adapter, an address mapping needs to be created and stored as an address
mapping entry in an address translation table. In theory, several available routes with
different adapters may be possible, so each address mapping allows for the declaration of
multiple adapters. The corresponding EBNF definition is as follows:

AddressMapping = OpenAddress ":" "{" AdapterName "[" AdapterAddress
"]" ("," AdapterName "[" AdapterAddress "]")* "}"

Again, the meaning of the terms is as follows:

OpenAddress The OpenAddress of a data point; see above.
AdapterName The name of the corresponding adapter (e.g., “MODBUS”, “IEC61850”).
AdapterAddress The internal address of a data point within the adapter/protocol.

The syntax of AdapterAddress is adapter specific, two examples are specified below:

AdapterAddress = ModbusAdapterAddress | Iec61850AdapterAddress | ...

The ModbusAdapterAddress is the address scheme for the MODBUS [54] adapter,
which is defined as follows:

ModbusAdapterAddress = ModbusEntity "," ModbusAddressRange
ModbusEntity = "Coils" | "DiscreteInputs" | "HoldingRegisters" |
"InputRegisters"
ModbusAddressRange = INTEGER (".." INTEGER)?

Here, the ModbusEntity specifies the register type of the given address, whereas the
ModbusAddressRange is the range of valid addresses.

The Iec61850AdapterAddress denotes the address scheme for the IEC 61850 [18]
adapter and is defined as follows:

Iec61850AdapterAddress = LDevice "/" LN "." DO "." DA ("." BDA)*

Here, the adapter address consists of an IED name, a logical node, and several hierar-
chical structures of datapoints.

To aid comprehension, the following examples show complete addresses in OpenAd-
dress format and how the contained variables are derived from adapter datapoints:

IED1/Measurements.POC.Voltages$PhaseToNeutral$phsA
: {MODBUS[HoldingRegisters, 4523], IEC61850[DERCtrl/
MMXU1.PNV.phsA.cVal.mag.f]}
IED1/Measurements.POC.Voltages$PhaseToNeutral$phsB :
{MODBUS[HoldingRegisters, 4524..4525], IEC61850[DERCtrl/
MMXU1.PNV.phsB.cVal.mag.f]}

4.3. Open Application Layer Protocol

The prototype specific L7 protocol OpenALP is the second key element to ensure
low development overhead within software components. In combination with the Ope-
nAddress format, software components require little or no knowledge about the various
possible protocols which may be involved in cross-device communication. Regarding
OpenALP, this property is achieved by abstracting the generic communication patterns
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from the underlying communication protocols which are considered to be required within
the prototype architecture. These communication patterns form the basis for the API,
which is provided to the RCS by means of the SmartOS (see Section 3).

• Push 1:1: Refers to a message being transferred to a single destination software
component or device. This functionality may be used, e.g., for setting values, thereby
influencing the operation of a remote system. A real-world analogy is the shipment of
a letter.

• Push 1:N: Is very similar to Push 1:1, the only difference being that with Push 1:N, more
than one recipient may be specified. This functionality is an abstraction from broadcast
or multicast messages, which exist in several protocols. It may be used, e.g., for setting
values in multiple devices simultaneously or for transmitting notifications which
concern more than one device. A real-world analogy is the shipment of bulk mail.

• Request/Response: Describes the generic process of requesting information from
a target. The request is sent and a response containing the requested information,
or at least an error message, is expected. It may, for example, be used to retrieve data
relevant to local control decisions, such as measurement values or price information,
from a remote system. The most similar real-world analogy is a registered letter.

• Publish/Subscribe: This communication pattern is used whenever automatic updates
about a data point are desired, the requesting entity being denoted as subscriber and
the entity sending the updates as publisher. The conditions under which messages
are published may vary. Typically, a message is sent whenever the subscribed value
changes, but minimum and maximum time intervals between messages may be
defined. A minimum time interval may be used to prevent excessive traffic, while
a maximum time interval may serve as notification of continued availability of the
publishing party. The most similar real-world analogy is a newspaper or magazine
subscription.

5. Prototype, Testbed, and Validation

Following the definition of the conditions and the system context of the intended pro-
totypical solution, a proof-of-concept implementation has been performed. The prototype
has then been used in an appropriate testing environment. This section informs about
both the prototypical implementation, as well as the testbed environment in which the
prototype has been used and tested.

5.1. Prototypical Implementation

A platform specific prototypical implementation of the SmartOS framework has been
performed in order to provide a test environment suitable for validating the approach
(see Figure 8). In the scope of the work at hand, this test environment has been developed
based on Java, as Java allows for a maximum of platform independence and many useful
libraries, for example, for serialisation and queuing functionalities or for legacy protocols,
are available. In addition, in combination with OSGi, Java has been used for multiple
platforms in HA/BA, as well as in smart grid environments [35].

While the prototype is not a fully-fledged implementation suitable for productive use,
it provides all of the functionality required for validating the approach (see Section 5.3). It is
designed to conceptually cover all aspects of the presented architecture, thereby ensuring
the viability of the envisioned solution.

In order to meet the previously defined requirements and provide as much flexibility
as possible, a highly modular design approach has been taken. Figure 8 provides an
overview of the different components and the respective interfaces of the implemented
prototypical software.
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Figure 8. Platform specific implementation of the SmartOS.

5.2. Testing Environment

The environment used for testing, simulation and validation is based on a VMware
vSphere hypervisor running various CentOS and Debian virtual machines. The hardware
consists of a compact laboratory server which has been assembled using then state-of-
the-art hardware (4 Core Intel Xeon CPU, 16 GB RAM, 512 GB SSD storage) and is used
exclusively for the work at hand.

Testing, simulation and validation have largely been carried out using a number
of virtual machines running the various prototypes as sending and receiving elements
(representing the various involved devices and stakeholders). In order to provide a more
realistic environment, a network infrastructure, including several virtual routers and
switches, has been set up. The network topology, including the various virtual machines,
is illustrated in Figure 9. This was complemented by temporary virtually private network
(VPN) infrastructure allowing external and/or remote devices from another lab to remotely
connect to any of the subnets as needed.

vSphere allows the link speed of virtual switches to be defined in 1 KB/s steps, which
makes it possible to simulate connections with low bandwidth, such as legacy powerline
communication (PLC) networks. Furthermore, OMNeT++ and Mininet were conceptually
considered to simulate more complex intermediate transmission paths and connections
with high load (denoted Transmission Path Simulator in Figure 9), but extensive simulation
and performance evaluation was ultimately deemed beyond the scope of this work.

On the machine denoted credential store, enterprise JavaBeans certificate author-
ity (EJBCA) has been used in combination with open lightweight directory access pro-
tocol (OpenLDAP) to provide a public key infrastructure (PKI), as well as the necessary
user and rights management capabilities. Both products are widely used and actively
maintained state-of-the-art open source solutions that may be used similarly in a produc-
tion environment.
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Figure 9. Realised testbed for validation and testing.

5.3. Validation Approach

The validity of the approach finally had to be documented by executing appropriate
test scenarios, gathering the respective results of the conducted tests, and contrasting these
results with the defined requirements, which is discussed in this section.

First, the requirements regarding the proof-of-concept solution have been derived by
analysing the process-oriented and operational use cases outlined in Section 3.1. Opera-
tional use cases cover typical control tasks, which have to be performed by operational
systems; thus, the developed system had to show via a concrete example, that these use
cases can actually be performed. Process-oriented use cases cover functionalities to provide
easy-to-access engineering tools and methodologies, as well as flexible utilisation of a
reliable, secure, and robust communication infrastructure.

Thereafter, the concrete test cases for the system have been defined on basis of a set of
validation goals and requirements, including pre- and post-conditions for successful testing.
Accordingly, the respective test environments have been provided. The test cases have been
conducted as unit tests, e.g., for the Java-based communication infrastructure, appropriate
JUnit tests have been performed in the virtualised network environment described in
Section 5.2.

Having successfully executed the envisaged functionalities in the respective unit test
environments, an integration test has been defined in order to prove, that the participating
building blocks are cooperating as intended. This integration test was performed with
real hardware (i.e., an inverter-based DER provided by Fronius) at the AIT SmartEST
lab [59] and the Fronius system test laboratories to prove the potential of the developed
solution for real world scenarios (see Figure 10). This scenario covered the setting and
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getting of inverter data points by an application engineered with the developed engineering
toolset and utilising the developed communication infrastructure (including the SmartOS
middleware and the OpenALP, as well as the certificate authority (CA) and LDAP-based
security infrastructure).

Figure 10. Test setup for remote controllable services.

The high level goal of the proof-of-concept validation was to prove the viability of the
overall approach and the developed prototype system via concrete test cases. Prior to the
execution of these tests, the test scenarios and the respective test environments to validate
the proof-of-concept realisation needed to be defined.

Since the realisation had been split into three major parts, the test cases have ac-
cordingly been grouped into three major validation scenarios. An additional validation
scenario had been defined in order to test the interoperability of the three parts of the
developed system.

In the following sections, the major requirements of these validation scenarios, as well
as the scenarios themselves and the results, are outlined. However, the application mod-
elling and engineering aspect of the proof-of-concept validation has already been covered
in detail in Reference [7] and is not the focus of this publication; therefore, it is not dis-
cussed here.

6. Performed Experiments and Achieved Results

To ensure targeted experimentation and meaningful results, a set of subsequent
validation requirements (VRs) based on the functional requirements outlined in Section 3.1
was defined for each validation scenario. They are listed at the beginning of each scenario
to give an impression of the intended outcomes.

6.1. Remote Controllable Services

For the basic DER service part of the proof-of-concept validation, the requirements
have been identified as follows:

• VR1-1: Ensure the creation of extended DER services, and
• VR1-2: Ensure the integration of extended DER services in inverter-based DER de-

vices.

The validation of the basic DER services, as well as the remote programmability, was
performed in Fronius’s system test laboratories. The test system comprises several network
routes to connect inverters to each other, as well as to a remote supervisory control and
data acquisition (SCADA) system.

The following two main validation scenarios have been realised:

• PowerLimitChanged: This scenario was used to validate the ability of the DER to
remote control its AC power output. The inverter itself is remotely controlled via
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Modbus/TCP command; the power output is rated in steps of 1 percent of the in-
verter’s nominal AC output power. The power reduction according to the remote
signal was measured via a Dewetron AC network analyser.

• CosPhiChanged: This scenario was used to validate the ability of the DER to control
its percentage distribution between active and reactive power output. The inverter
itself is remotely controlled via Modbus/TCP commands; the power factor cos(φ) is
adjusted in steps of 10-2 between its lower and upper limits. The cos(φ) delimitation
according to the remote signal was again measured via the Dewetron AC network
analyser.

Figure 10 provides an overview of the realised test setup for validating the basic
DER services using 5 solar inverters connected to the Fronius datamanager box (DM-Box)
controller equipped with the SmartOS-compliant prototype.

The solar inverters have been remotely controlled via Sunspec/Modbus messages.
The time difference between Modbus signal and the reaction of the inverters was measured.
Remote commands used for this experiment were startup and shutdown commands,
as well as power reduction and cos(φ) variation. In Figures 11–13 and Tables 1 and 2,
the startup and shutdown measurements are provided along with the key characteristics.

Table 1. Measurement results: startup for 3 phases (P = max, cos(φ) = 1).

Measurement Time [s]

t (P_1) 56
t (P_3) 52
t (P_5) 35

Average 48

Table 2. Measurement results: shutdown.

Measurement t (P_1) [ms] t (P_3) [ms] t (P_5) [ms]

1 725 677 702
2 839 790 815
3 775 757 778
4 794 745 780
5 832 814 838

Median 780

Figure 11. Startup for 3 phases (I).
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Figure 12. Startup for 3 phases (II).

Figure 13. Shutdown scenario.

In summary, it can be said that this validation scenario has successfully proven that the
remote control of DER services enables direct influence of the grid environment. It should
be noted that inverter-based DER units (in this scenario, conjoined PV inverters) controlled
remotely via SCADA can stabilise, but also destabilise, the energy grid. The use of such
functionality must, therefore, be strictly controlled and performed with great care in order
to avoid disturbances of the energy grid.

6.2. Generic and Interoperable Communication

For the communication part of the proof-of-concept validation, the requirements have
been identified as follows:

• VR2-1: Ensure internal communication of applications,
• VR2-2: Ensure communication of applications on different systems (i.e., IEDs)),
• VR2-3: Ensure security (especially confidentiality and integrity) of external communi-

cation,
• VR2-4: Ensure authentication methods and role-based rights management,
• VR2-5: Ensure interoperability with legacy devices (e.g., over Modbus),
• VR2-6: Ensure the seamless cooperation with high level engineering concepts, and
• VR2-7: Ensure flexibility and configurability of the communication subsystem.
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The requirements VR2-3 and VR2-4 show that the request for integrating security
means has been fulfilled appropriately. The approach here was to integrate security
already by design, as described in Reference [5], to allow for the consideration of security
related functionalities in the engineering process. As will be demonstrated, an appropriate
realisation thereof has been developed as well.

Configuration of all communication related parameters (VR2-7) had to be done man-
ually throughout the proof-of-concept validation. This concerns all sub-scenarios listed
below. For obtaining the necessary test results, this is sufficient. For commercial solutions,
a more practicable way of configuring the communication subsystem should of course
be chosen.

The goal of this validation scenario is to demonstrate the functionality of the modular
communication system which has been previously specified and realised. This necessitates
a series of tests in order to involve all relevant components of the SmartOS. An overview
of the involved components is given in Figure 14, where directly involved components are
coloured orange, and indirectly involved components are coloured light orange.
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Figure 14. SmartOS components validated in scenario “Generic and Interoperable Communication” (adopted from
Reference [4]).

Furthermore, an overview of the tested adapters and protocols, which are imple-
mented as a part of the connectivity module, is provided in Figure 15. In order to allow
incoming traffic for TCP/IP, secure TCP/IP and abstract syntax notation one (ASN.1),
server modules are used. For Modbus, this has been omitted because the SmartOS only
acts as a Modbus master in the conducted tests.

For this scenario, a series of increasingly complex tests has been devised, which have
been designed to gradually increase and/or broaden the amount of components involved
with each successive test. This keeps the amount of (added) complexity for each test case
manageable, yet it allows for a systematic test of the entire communication system and a
demonstration of its generic and interoperable nature. The scenarios are as follows:

(a) Two software components communicating locally: This minimal test demonstrates
the basic functionality of the VFB and OpenALP, as well as the security and registry
subsystems.

(b) Two software components on separate IEDs communicating over TCP/IP: Extends
the previous scenario to include the connectivity module and its ancillary TCP/IP
adapter. In addition, the communication pattern is changed from a push message to
a request and the accompanying response.

(c) Two software components on separate IEDs communicating over ASN.1: This
shows the transparency and interchangeability of the underlying protocol.
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(d) Two software components on separate IEDs communicating over secure TCP/IP:
This extends the scope of scenarios b) and c) to include encryption and authen-
tication (the latter utilising the trust centre). Furthermore, it can be shown that
certificate revocation prevents a device from connecting to other devices.

(e) A software component communicating with a legacy device via Modbus/TCP:
Further demonstrates the transparency and interchangeability of the underlying
protocol, as well as the support for legacy devices.
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Modbus 

TCP

Adapter
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Protocol
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Figure 15. Connectivity module parts tested in scenario “Generic and Interoperable Communication”
(adopted from Reference [4]).

The environment for these scenarios comprises a series of tests spanning one or more
projects in the Eclipse integrated development environment (IDE). It is complemented
by VPN access to the virtual testing environment, which hosts required services, such
as the credential store. For test (e), a software-based Modbus slave has been created
containing a process image from which data can be read and to which data can be written
by a software component. Tests with a physical Modbus slave device have also been
successfully performed and have yielded similar results. For test (a), a JUnit test invokes
two software components (VFBAppTalk1 and VFBAppTalk2) running on the same IED.
Upon initialisation, VFBAppTalk1 sends a push message to VFBAppTalk2. The successful
completion of the test is confirmed via JUnit and console output, as can be seen in Figure 16.

For test (b), a JUnit test invokes 2 software components (VFBAppTalk3 and
VFBAppTalk4) on 2 logically separate IEDs (hosted physically on the same machine).
Upon initialisation, VFBAppTalk3 sends a request message (a simulated meter reading) to
VFBAppTalk4, which then returns the appropriate response (a random integer). The suc-
cessful completion of the test is confirmed via JUnit and console output, as can be seen in
Figure 17.
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Figure 16. Test of two software components communicating locally.

Figure 17. Test of two software components communicating remotely.

Test (c) uses an identical setup to test (b), but with a modified device configuration
which prioritises ASN.1 instead of TCP/IP. The modified mapping tables are provided in
Figures 18 and 19 and the successful completion of the test is again confirmed via JUnit
and console output.
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Figure 18. Address mapping on intelligent electronic device (IED)0 during Test (c).

Figure 19. Address mapping on IED1 during Test (c).

Test (d) again uses an identical setup to tests (b) and (c) and the device configuration
has again been modified to prioritise secure TCP/IP. First, valid certificates are used and
the test is successfully completed. Thereafter, the certificate used on IED0 is revoked on
the trust centre. As a result, the incoming request is refused by IED1, and the unit test fails
(see Figure 20), which, in this case, is the expected and desired result.

Figure 20. Refused request due to invalid certificate.

For test (e), the Modbus library Modbus4J has been utilised to provide a Modbus
slave containing a process image from which data can be read and to which data can be
written. Thereafter, a software component (SimpleVFBApp3) has been created to send
a series of messages to the Modbus slave, and the device registry on the IED running
SimpleVFBApp3 has been configured to provide the address and data point of the Modbus
slave as IED4/sampleNamespace$SampleModbusValue. Upon initialisation of the IED,
SimpleVFBApp3 is invoked and sequentially performs three tasks: First, a request message
is sent to read the value of the aforementioned data point. Second, a push message is sent
to set a different value for this data point. Last, a request message is sent once again to
confirm that the value has indeed been set. The successful completion of the test is again
confirmed via JUnit and console output.
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Summarising this scenario, it can be said that all tests could be completed successfully,
and the goals regarding generic and interoperable communication have been achieved.
Although the tests have certainly not been as rigorous as would be required for a market-
ready product, they are sufficient to validate the effectiveness of the solutions that have
been developed for the critical challenges. Further work towards the creation of a final
product would predominantly involve fine-tuning and optimising and is not expected to
encounter any major challenges for which no well-established solutions exist.

6.3. System Integration

The requirements for the system integration test cover in principle all the above
outlined requirements. However, especially for the integration testing of the proof-of-
concept validation, the following additional requirements have been identified:

• VR3-1: Ensure the safe and secure execution of DER services, and
• VR3-2: Ensure the safe and secure execution of energy/DER applications.

The previous scenarios all resulted in successful validations of the main parts of the
proposed approach: (i) the formal application modelling concept (see Reference [7]), (ii)
the remote programmable DER services, and (iii) the generic and interoperable commu-
nication. With these validations as a basis, the final scenario shows a system integration
validation. In other words, the main intention is to use the application modelling ap-
proach to create and use remote DER functions with the help of the generic and modular
communication system.

This scenario is also intended to be a validation of the overall idea of the approach,
as shown in Figure 4 and as it has also been used in Reference [7] for the validation of
the application modelling concept. It is assumed that the overall application has been
modelled using the formal modelling approach. Furthermore, it is assumed that the remote
programmable DER services are available and that the other components of the SmartOS
are operational. The last precondition is, that it is possible to communicate between DERs
using the Connectivity component (i.e., the generic and modular communication concept
tested in Section 6.2). Consequently, what is left to validate is the integration of these
parts with each other. First, it has to be shown, how an application can be deployed,
configured, and started on a DER device, once it has been modelled. Second, it has to
be shown, how the communication between different devices can be implemented and
properly configured.

For this validation, the following test case is used: A voltage change in the grid
of a distribution system operator (DSO) causes the voltage spread to increase above its
allowed threshold. This causes the control algorithm in VoltVArController seen in Figure 21
to calculate a new Volt-var droop curve for the DERController. With the new curve,
the DERController will be more sensitive to voltage deviations. This, in turn, will decrease
the voltage spread.

Figure 21. Implementation of the VoltVArController application in IEC 61499 [7].

Compared to the previous scenarios, this test case shows how the envisioned method is
used to deploy an application to real devices. Furthermore, it also includes communication
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between multiple devices using different communication protocols, which need to be
configured. Finally, the goal is also to validate the implementation of the VoltVArController
function as depicted in Figure 21.

A scheme of the used parts of the AIT SmartEST lab setup is illustrated in Figure 22.
It also shows on which components the different IEC 61499 functions are deployed.
The VoltVArController function, as shown in Figure 21, is deployed on the DSOComputer.

DERController

IEC 61850
Controller 
Hardware

Power 
Hardware

DSOComputer

LVBus1 Line1 (emulation) LVBus2 PV Array 
Simulator

MV/LV
20/0.4 kV

External System

DM-Box

DERGenerator
Fronius Symo 20

~

DERGenerator
Fronius Symo 20

~

R
ES

T

VoltVArContr. DSCADA DistributionRTU DERController

Figure 22. Laboratory setup for the validation use case (adopted from Reference [7]).

The controller hardware used in the laboratory consists of a desktop PC representing
the DSOComputer and a laptop PC running the SmartOS and the DERController App.
The DERGenerator is a commercial off-the-shelf Fronius Symo 20 PV inverter; on the
DC side, it is connected to a PV array simulator, and, on the AC side, to the LV grid.
A line impedance had to be emulated by the laboratory equipment in order to create a
dependency between the voltage and the inverter output. Natively, the inverter offers a
Modbus/TCP control and measurement interface. However, for this test, a representational
state transfer (REST) interface was added to facilitate communication between the inverter
and the SmartOS App. On the laptop, the SmartOS was executed together with 4diac [60].
The setup of the SmartOS is shown in Figure 23.

In order to use the programmability of 4diac, it was integrated with the VFB of the
SmartOS. First, an ASN.1 adapter was created for the Connectivity component. This
adapter allows communication between software components and the 4diac runtime
environment (FORTE). This communication is shown in Figure 23 as a dashed red line.
However, in order to change the reactive power, a command must be sent to the basic
functions component running on the Fronius DM-Box. For this, the next step was to create
a dedicated software component that forwards messages from the FORTE to the DM-Box.
This means that, if the DERController function in the FORTE wants to send a new reactive
power setpoint to the inverter, it is first sent to the 4diac-App using ASN.1 prior to being
forwarded to the basic functions component using the REST protocol (represented as a
dashed blue line in Figure 23). Finally, the DM-Box makes sure that the reactive power
setting is applied by the inverter-based DER.
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Figure 23. Setup of the SmartOS and 4diac on the distributed energy resources (DER) Controller
laptop.

Before the laboratory validation could be started, the application had to be deployed.
The first precondition for this is that the inverter is connected and feeding power to the grid.
Second, the FORTE must be executed on all the components and awaiting a deployment
from the 4diac-IDE. The next step was to deploy the communication configurations.

Next, the communication infrastructure was generated for connections between
IEC 61499 functions running on different devices. Generated were both communica-
tion FBs, as well as communication configurations. For this test case, all the interfaces are
derived from IEC 61850, which results in generation of substation configuration descrip-
tion language (SCL) files for the communication configuration. The resulting IEC 61850
configuration for the DERController is seen in Figure 24. As is seen, the IEC 61850 SCL
configuration adopts information from the IEC 61499 application (e.g., the IEC 61850 IED
is named DERController after the IEC 61499 device).

Figure 24. Generated substation configuration description language (SCL) file for configuration of the IEC 61850 server in
DER Controller [7].
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After this, the SCL files and the IEC 61499 applications are deployed to their com-
ponents according to Figure 22. This is a built-in feature of 4diac and utilises standard
IEC 61499 methods; thus, no new code has to be generated from the IEC 61499 model.
After deployment completion, the application is automatically started; hereby, the SCL files
are loaded and the IEC 61850 communication is initialised. For example, the IEC 61850
client in DistributionRTU connects to the IEC 61850 server on the DERController.

Subsequently, the VoltVArController algorithm can be validated. For this validation,
the inverter is configured to an active power output of 18 kW and a reactive power output
of 0 kVAr. The voltage measured by the inverter (i.e., the DERGenerator) is forwarded
to the VoltVArController at the vDER data output of the gridStatus FB (see Figure 21).
The other voltage measurements (i.e., vVRC, vCBC, and cEOLM) are all emulated and
fixed to 0.9 per unit (p.u.). After stabilisation, this results in a vDER voltage of around
1.004 p.u., and no extra reactive power. This is seen at the beginning of the time series
in the top graph of Figure 25, where Q is the reactive power of the inverter, and U is the
measured voltage by the inverter (i.e., vDER).

An increased voltage spread was emulated to trigger the VoltVArController algorithm,
seen as the first event (i) in Figure 25. At this event, the fixed voltage of vVRC was changed
from 0.9 p.u. to 0.86 p.u. This increases the voltage spread (Umax – Umin, see Figure 25)
above the allowed threshold. This is detected by the VoltVArController’s algorithm. New
Volt/var curve parameters are calculated by the ChangeDeadband FB in Figure 21. The new
curve parameters are sent to the DERController, which results in a new reactive power
set point for the DERGenerator. With the new Volt/var parameters, the inverter starts
producing reactive power. This is shown as event (ii) in Figure 25. However, since the
voltage spread is still too high, a second correction of the Volt/var parameters is performed
by the VoltVArController after 185 s, which is visualised in Figure 25 as event (iii).

(i) (ii) (iii)

Figure 25. Measurements from the laboratory validation [7].
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In general, the results of this experiment indicate a successful integration of the differ-
ent parts of the proposed approach. This scenario shows that even with the prototypical
implementation, it is possible to achieve an open and interoperable ICT solution for the
integration of DERs. For productive use, many adjustments would of course have to be
made to the setup shown in Figure 22 (such as running the SmartOS on the DM-Box and
integrating the FORTE into the 4diac App).

Regarding the results of the test, especially the measurements shown in Figure 25,
more evidence of the prototypical nature of the implementation is seen. In an industrial
implementation, these changes would have to be in the range of milliseconds, whereas
they are in the range of seconds in this case. This can be explained by the suboptimal
test setup shown in Figure 22, as well as a complete absence of code optimisation in that
regard. Nevertheless, the results demonstrate the basic usefulness of the presented concept.
For industrial adoption, the reaction time has yet to be improved to the required level.

6.4. Reflection of Results

The achieved results show that the proposed architecture helps to fill the gaps of
current solutions and approaches, as identified in Section 2.4, in the following way:

• As outlined in Section 3.4 and further explained in Reference [7], this work provides an
approach for a common application modelling concept for power and energy systems
automation applications.

• By supporting a wide range of communication protocols, the developed architecture
provides a unifying method of integrating renewable energy sources into smart grids.
It allows to build open and scalable smart grid automation applications in a hardware
and platform independent way.

• The introduction of RCSs makes it possible to reuse common functionalities and to
update and extend DER services across the entire lifecycle of DER components.

The specific system performance and level of compliance to timing requirements
will depend on code optimisation, as well as the underlying protocols. It will, therefore,
be need to be analysed on a case-by-case basis, if given requirements can be met using
given protocols.

For real-world solutions, safe handling of potential controller conflicts is an essential
requirement. An approach to a potential solution is provided in Reference [61].

Although cyber-security issues have not been the primary focus of the work at hand,
security-by-design principles as outlined in Reference [5] have been applied during the de-
velopment of the architecture, resulting in a fundamentally robust system. As our solution
aims for a maximum of protocol independence, the integration of a more comprehensive
security architecture is easily possible if needed.

The proposed architecture and proof-of-concept prototype is currently being further
developed into an industry grade solution. This entails, among other things, the addition of
support for additional protocols and the realisation of a fully-fledged trust centre/credential
store, as well as code optimisation. Prior to its roll-out and use in real-world scenarios, it
will further have to undergo extensive testing (conformity, security/penetration, deploy-
ment and acceptance tests, etc.).

7. Conclusions

As a summary, it could be demonstrated that the presented approach of an open
ICT infrastructure for the integration of renewable energy sources, especially DER, into a
smart power grid may be used for producing feasible working prototypes. The presented
solution is able to provide necessary means of communication to smart grid applications.
The central aspects here include the definition of a unique addressing scheme, as well as
the provision of an application layer protocol, for control services (OpenALP), which may
again be used by smart grid applications. Hereby, legacy protocols are used as much as
possible; only functionality necessary for the correct working of OpenALP is additionally
provided in the form of protocol wrappers. Furthermore, a tool (PSAL) to facilitate the
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engineering of remote programmable services to be used in the presented ecosystem has
also been provided. To test the approach, the developed prototype has been validated
in a number of concrete validation cases. It was not a goal of the validation to provide a
fully-fledged communication middleware—thus, a prototype containing the minimum
required functions has been realised.

As has been shown, with the open definition of the address scheme in combination
with OpenALP, it is easily possible for vendors of grid related middleware frameworks
to integrate the demonstrated functionalities. Thus, the solution at hand does not intend
to provide yet another framework but to suggest an open ecosystem which may be used
by several vendors. Consequently, the realised testbed was used in order to prove the
concept at hand, rather than to provide an already optimised solution. Nevertheless,
the results demonstrate the feasibility of the approach, even when not optimised regarding
performance. Thus, it can be expected that a fully engineered version of the presented
functionalities would clearly contribute to an efficient and easy to use tooling for integrating
renewables into smart grids, especially dedicated to LV grids. Even more, as the concept
has been set up in a very generic way, without clear bindings on the power and energy
systems domain, it can be expected that the presented solution may provide benefits to
other sectors, as well, especially for those industry domains, where massively distributed
control will play an important role in the near future.
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Abbreviations
The following abbreviations are used in this manuscript:

AMI advanced metering infrastructures

API application programming interface

ARQ automatic repeat request

ASN.1 abstract syntax notation one

CA certificate authority

CAN controller area network

CIM common information model

CORBA common object request broker architecture

COSEM companion specification for energy metering

DDS data distribution service

DER distributed energy resources

DLMS device language message specification

DM-Box datamanager box
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DSL domain specific language

DSO distribution system operator

EBNF extended Backus Naur form

EJBCA enterprise JavaBeans certificate authority

FB function block

FIFO first in first out

FORTE 4diac runtime environment

GWAC GridWise architecture council

HA/BA home and building automation

ICT information and communication technology

IDE integrated development environment

IEC International Electrotechnical Commission

IED intelligent electronic device

IMAP Internet message access protocol

IoT Internet of things

IP Internet protocol

ISO International Organisation for Standardisation

LD logical device

LDAP lightweight directory access protocol

LV low voltage

MBSE model-based system engineering

MDA model-driven architecture

MIME multipurpose Internet mail extensions

MOM message oriented middleware

OPC UA open process control unified architecture

OpenALP open application layer protocol

OpenLDAP open lightweight directory access protocol

OS operating system

OSGi Open Services Gateway initiative

OSI open systems interconnection

PDP policy decision point

PEP policy enforcement point

PIM platform independent model

PKI public key infrastructure

PLC powerline communication

POP3 post office protocol 3

PSAL power system automation language

PV photovoltaics

RBAC role-based access control

RCS remote controllable service

REST representational state transfer

RTU remote terminal unit

SAP service access point

SCADA supervisory control and data acquisition
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SCL substation configuration description language

SGAM smart grid architecture model

SIFB service interface function block

SIP session initiation protocol

SMTP simple mail transfer protocol

TCP transmission control protocol

TSN time sensitive network

UDP user datagram protocol

UML unified modelling language

VFB virtual functional bus

VPN virtually private network

VR validation requirement

XMPP extensible messaging and presence protocol
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