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Abstract: The security of information is among the greatest challenges facing organizations and
institutions. Cybercrime has risen in frequency and magnitude in recent years, with new ways to
steal, change and destroy information or disable information systems appearing every day. Among
the types of penetration into the information systems where confidential information is processed is
malware. An attacker injects malware into a computer system, after which he has full or partial access
to critical information in the information system. This paper proposes an ensemble classification-
based methodology for malware detection. The first-stage classification is performed by a stacked
ensemble of dense (fully connected) and convolutional neural networks (CNN), while the final
stage classification is performed by a meta-learner. For a meta-learner, we explore and compare
14 classifiers. For a baseline comparison, 13 machine learning methods are used: K-Nearest Neighbors,
Linear Support Vector Machine (SVM), Radial basis function (RBF) SVM, Random Forest, AdaBoost,
Decision Tree, ExtraTrees, Linear Discriminant Analysis, Logistic, Neural Net, Passive Classifier,
Ridge Classifier and Stochastic Gradient Descent classifier. We present the results of experiments
performed on the Classification of Malware with PE headers (ClaMP) dataset. The best performance
is achieved by an ensemble of five dense and CNN neural networks, and the ExtraTrees classifier as
a meta-learner.

Keywords: malware analysis and detection; applied machine learning; mobile security; neural
network; ensemble classification

1. Introduction

Many aspects of society have shifted online with the broad adoption of digital tech-
nology, from entertainment and social interactions to business, entertainment, industry
and, unfortunately, crime as well. Cybercrime is rising in frequency and magnitude in
recent years, with a projection of reaching USD 6 trillion by 2021 (up from USD 3 trillion
in 2015) [1] and also taking on conventional crime both in number and revenues [2]. Ad-
ditionally, these new cyber-attacks have become more complex [3], generating elaborate
multi-stage attacks. By the end of 2018, about 9599 malicious packages appeared per
day [4]. Such attacks also resulted in significant damage and major financial losses. Up
to USD 1 billion was stolen from financial institutions around the world in two years due
to malware [5]. In addition, Kingsoft estimated that between 2 and 5 million computers
were attacked each day [6]. With cybercrime revenues reaching USD 1.5 trillion in 2018 [7]
and cybercrime’s global cost predicted to reach USD 6 trillion by 2021 [8], addressing cyber
threats has become an urgent issue.

Moreover, the COVID-19 pandemic has delivered an extraordinary array of cybersecu-
rity challenges, as most services have moved to online and remote mode, raising the danger
of cyberattacks and malware [9,10]. Especially, in the healthcare sector, cyber-attacks can
lead to compromised sensitive personal patient data, while data tampering can lead to
incorrect treatment, with irreparable damage to patients [11].
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Today, computer programs and applications are developed at high speed. Malicious
software (malware) has appeared and is growing in many formats and is becoming in-
creasingly sophisticated. Computer criminals use them as a tool to infiltrate, steal or falsify
information, causing huge damage to individuals, businesses and even threatening national
security. A generic term generally used to describe all various types of unauthorized soft-
ware programs is malware (malicious software), which includes viruses, worms, Trojans,
spyware [12], Android malicious apps [13], bots, rootkits [14] and ransomware [15]. In
achieving its objectives, malware has been used by cybercriminals as weapons. Malware
has been used to conduct a wide variety of security threats, such as stealing confidential
data, stealing cryptocurrency, sending spam, crippling servers, penetrating networks and
overloading critical infrastructures. While large numbers of malware samples have been
identified and blocked by cybersecurity service providers and antivirus software manu-
facturers, a significant number of malware samples have been created or mutated (e.g.,
“zero-day” malware [16]) and appear to evade conventional anti-virus scanning tools based
on signatures. As these techniques are primarily based on modifications of signature-based
models, this has caused the information security industry to reconsider their malware
recognition techniques.

Malware detection methods can be classified into methods based on signatures and
behavior. Currently, signature-based malware detectors can work effectively with pre-
viously known malware that has already been detected by some anti-malware vendors.
However, it cannot detect polymorphic malware that can change its signatures, as well as
new malware whose signatures have not yet been created. One solution to this problem is
to use heuristic analysis in combination with machine learning techniques that provide
higher detection efficiency. As practice has shown, the traditional approach to the field of
malware detection, which is based on signature analysis [17], is not acceptable for detecting
unknown computer viruses. To maintain the proper level of protection, users are forced to
constantly and timely update anti-virus databases. However, the delay in the response from
the anti-virus companies for the emergence of new malware (its detection and signature
creation) can vary from several hours to several days. During this time, malicious new
programs can cause irreparable damage.

To address this problem, in addition to the signature approach, heuristic analysis is
used. At the same time, the file can be considered “potentially dangerous” with some
probability based on its behavior (dynamic approach) or the analysis of its structure
(static approach). Static analysis generally consists of two main stages: the training stage
and the stage of using the results (detection of virus programs). At the training stage,
a sample of infected (virus) and “clean” (legitimate) files is formed. In the structure of
the files, some signs characterize each of them as viral or legitimate. As a result, a list of
feature characteristics is compiled for each file. Next, the most significant (informative)
features are selected, and redundant and irrelevant features are discarded. At the detection
stage, feature characteristics are extracted from the scanned file. Heuristic algorithms
developed specifically to detect unknown malware are characterized by a high error
rate. Heuristic-based detection uses rules formulated by experts to distinguish between
malicious and benign files. Additionally, behavior-based, model checking-based and
cloud-based methods have performed effectively in malware detection [18].

Modern research in the area of information security aimed at creating such protection
methods and algorithms that would be able to detect and neutralize unknown malware, and
thus not only increase the computer security but also save the user from constant updates
of antivirus software. The size of gray lists is constantly growing with the advancement
of malware writing and production techniques. Intelligent methods for automatically
detecting malware are, therefore, urgently required. As a result, several studies have
been published on the development of smart malware recognition systems using artificial
intelligence methods [19–22].

A prerequisite for creating effective anti-virus systems is the development of artifi-
cial neural network (ANN)-based technologies. The ability of such systems to learn and
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generalize results makes it possible to create smart information security systems. Arti-
ficial intelligence (AI) has several advantages when it comes to cybersecurity: AI can
discover new previously unknown attacks; AI can handle a high volume of data; AI-based
cybersecurity systems can learn over time to respond better to threats [23].

This study aims to implement an ensemble of neural networks for the detection of
malware. The novel contributions of this paper are the following:

(1) The detailed experimental analysis and verification of machine learning and deep
learning methods for malware recognition performed on the Classification of Malware
with PE headers (ClaMP) dataset;

(2) A novel ensemble learning-based hybrid classification framework for malware detec-
tion with a heterogeneous batch of convolutional neural networks (CNNs) as base
classifiers and a machine learning algorithm as a final-stage classifier, which allows
us to achieve the improvement of malware detection accuracy;

(3) An extensive ablation study to select CNN model architectures and a machine learning
algorithm for the best overall malware detection performance.

The other parts of this study are structured as follows. In Section 2, related works
are discussed including the presentation of adequate criticism of existing methods and
approaches. Section 3 describes the methodology used in this paper. Section 4 discusses
the implementation and results obtained. Section 5 presents the conclusion of the study.

2. Related Works

Malware search algorithms are divided into two classes based on the method of
collecting information—dynamic and static. In static analysis, suspicious objects are
considered without starting them, based on the assembly code and attributes of executable
files [24]. Dynamic analysis algorithms work either with already running programs or
run them themselves in an isolated environment, exposing the information that has arisen
in the course of work: they analyze the behavior of the program, sections of code and
data and monitor resource consumption [25]. According to the type of objects detected,
malware search algorithms are divided into signature and anomalous ones. Signature
programs tend to highlight the signatures of malware. Anomaly detection algorithms seek
to describe legitimate programs and learn to look for deviations from the norm.

At the same time, machine learning is also widely used as a powerful tool for security
experts to identify malicious programs with high accuracy, when the number of malicious
programs is high enough, and their options have become diverse. Among the main
methods is the Windows Portable Executable 32-bit (PE32) file header analysis [26]. For
example, Nisa et al. [27] transformed malware code into images and applied segmentation-
based fractal texture analysis for feature extraction. Deep neural networks (AlexNet
and Inception-v3) were used for classification. Previously, the use of ensemble methods,
such as random forest and extremely randomized trees, allowed the improvement of the
performances of machine learning models in detecting malware in internet of things (IoT)
environments [28] and Wireless Sensor Networks (WSN) [29].

Many studies are being performed to analyze malware to curb the increase in mali-
cious software [30]. The existing deep learning-based malware analysis methods include
convolutional neural networks (CNN) [31], deep belief network (DBN) [32], graph convo-
lutional network (GCN) [33], LSTM and Gated Recurrent Unit (GRU) [34], VGG16 [35] and
generative adversarial networks (GAN) [36]. However, it is not possible to guarantee the
generalization potential of artificial neural network-based models [37].

To solve the above-mentioned problems, more general and robust methods are, there-
fore, required. Researchers are creating numerous ensemble classifiers [38–42] that are less
susceptible to malware feature collection. Ensemble methods [43] are a class of techniques
that incorporate several learning algorithms to enhance the precision of overall prediction.
To minimize the risk of overfitting in the training results, these ensemble classifiers inte-
grate several classification models. In this way, the training dataset can be more effectively
used, and generalization efficiency can be increased as a result. While several models of
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ensemble classification are already developed, there is still space for researchers to im-
prove the accuracy of sample classification, which would be useful for improving malware
detection.

Therefore, this paper proposes an ensemble earning-based approach for using fully
connected and convolution neural networks as base learners for malware detection.

3. Materials and Methods

Malware developers are primarily focused on targeting computer networks and
infrastructure to steal information, make financial demands or prove their potential. The
standard approaches for detecting malware were effective in detecting known malware.
Via these approaches, however, new malware can never be blocked. The latest machine
learning platform [44] has significantly enhanced the identification capability of models
used for malware detection. It is possible to detect malware using machine learning
methods in two steps, namely, extracting features from input data and choosing important
ones that best represent the data, and classifying/clustering. The technology proposed is
focused on machine learning that can learn and discern malicious and benign files, as well
as make reliable forecasts of new files that have not been seen before.

The phases involved in achieving the final solution are (1) data processing and feature
selection and (2) model engineering, which includes the following steps: data selection
and scaling, reduction in dimensionality, ANN model exploration and meta-learner classi-
fier selection, ensemble model development, model testing and performance evaluation.
Figure 1 indicates the flow to the model evaluation stage of the stages involved in the
system methodology, beginning with data selection, which is described in more depth in
the following subsections.

Figure 1. Outline of malware detection methodology.

3.1. Data Collection and Processing

For machine learning to be a success, the selection of a representative dataset is
necessary. This is because it is important to train a machine learning algorithm on a dataset
that correctly represents the conditions for the model’s real-world applications.

For this model, the dataset gathered contains malicious and benign data from the
Classification of Malware with PE headers (ClaMP) dataset, obtained from GitHub. We
used the ClaMP_Integrated dataset, which has 2722 malware and 2488 Benign instances.
The dataset has 69 features, which include, among others, the following features:

- DOS image header: e_cp–pages in file, e_cblp–bytes on the last page, e_cparhdr–size
of header, e_crlc–number of relocations, e_cs–initial CS value, e_csum - checksum,
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e_ip–initial IP value, e_lfanewe_lfarlc, e_magic–Magic number, e_maxalloc–maximum
extra paragraphs, e_minalloc–minimum number of extra paragraphs, e_oemid–OEM
ID, e_oeminfo–OEM information, e_ovno–overlay number, e_res and e_res2–reserved
words, e_sp–initial SP value, e_ss–initial SS value.

- File header features: CharacteristicsCreationYear, Machine, NumberOfSections, Num-
berOfSymbols, PointerToSymbolTable, SizeOfOptionalHeader.

- Other raw features: AddressOfEntryPoint, BaseOfCode, BaseOfData, CheckSum,
DllCharacteristics, FileAlignment, ImageBase, LoaderFlags, Magic, MajorImageVer-
sion, MajorLinkerVersion, MajorOperatingSystemVersion, MajorSubsystemVersion,
MinorImageVersion, MinorLinkerVersion, MinorOperatingSystemVersion, MinorSub-
systemVersion, NumberOfRvaAndSizes, SectionAlignment, SizeOfCode, SizeOfHead-
ers, SizeOfHeapCommit, SizeOfHeapReserve, SizeOfImage, SizeOfInitializedData,
SizeOfStackCommit, SizeOfStackReserve, SizeOfUninitializedData, Subsystem.

- Derived features: sus_sections, non_sus_sections, packer, packer_type, E_text, E_data,
filesize, E_file, fileinfo.

However, we used only 68 features (all numerical), because one feature “packer_type”
is a string, which was not used. The numerical features were scaled using the standard
scaling method. These features, along with the class label (0 for benign and 1 for malicious),
were used to build the ensemble classification model.

3.2. Dimensionality Reduction

To fix a variety of estimation and classification questions, machine learning meth-
ods are commonly used. Bad machine learning output can be triggered by overfitting
or underfitting the results. Removing the unimportant characteristics guarantees the al-
gorithms’ optimal efficiency and improves pace. Principal Component Analysis (PCA)
was introduced to perform attribute dimensionality reduction. Based on previous studies,
40 features were chosen to be passed into the machine learning model (representing 95%
of the total variability in the dataset), because these features are critical in neural network
learning, whether a file is malicious or benign.

3.3. Deep Learning Models

As deep learning models, we considered fully connected (FC) multilayer perceptron
(MLP) and one-dimensional convolutional neural networks (1D-CNN), which are discussed
in detail below.

3.3.1. Multilayer Perceptron

As a baseline approach, we adopted a simple multilayer perceptron (MLP). Let the
output of the MLP be known y(t) at the input X(t), where X(t) is a vector with components
(x1, x2, . . . , xn), t is the number of the sequence value and t = 1, T (T is predetermined).

To find model parameters w = (w0, w1, . . . , wm) and Vk = (V1k, V2k, . . . , Vnk), hk,
k = 1, m such that the model output F(X, V, w) and the real output of the MLP y(t) would
be as close as possible. The relationship between the input and output of a two-layer
perceptron is established by the following relationships:

Zk = σ(V1kx1 + V2kx2 + . . . Vnkxn − hk), k = 1, m (1)

y = σ(w1Z1 + w2Z2 + . . . wmZm + w0) (2)

The following expression describes a perceptron with one hidden layer, which is able
to approximate any continuous function defined on a bounded set.

m

∑
k=1

wk·σ(V1kx1 + V2kx2 + . . . Vnkxn − hk) + w0 (3)
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Training of MLP occurs by applying a gradient descent algorithm (such as error
backpropagation) similar to a single-layer perceptron.

3.3.2. One-Dimensional Convolutional Neural Network (1D-CNN)

While CNN models have been developed for image processing, where an internal
representation of a two-dimensional input (2D) is learned by the model, the same mech-
anism can be used in a process known as feature learning on one-dimensional (1D) data
sequences, such as in the case of malware detection. The model understands how to extract
features from observational sequences and how to map hidden layers to different types of
software (malware or benign).

ŷ = Φ([x1, . . . , xN ]), (4)

where X : x1, . . . , xN indicates the input of the network, and Y : ŷ is the output. Therefore,
the network learns a mapping from the input space X to the output space Y.

The key block of the convolutional network is the convolutional layer. A group of
trainable filters are the parameters of this layer (scan windows). Each filter operates in size
through a tiny window. The scanning window sequentially traverses the whole picture
during the forward propagation of the signal (from the first layer to the last layer) according
to the tiling principle and measures the dot products of two vectors: the filter values and
the outputs of the chosen neurons. Thus, a two-dimensional activation map is generated
after passing all the shifts in the width and height of the input field, which gives the
effect of applying a particular filter in each spatial area. The network uses filters that are
enabled when there is an input signal of some kind. A series of filters are used for each
convolutional layer, and each generates a different activation map.

xl
j = f

(
M

∑
i=1

xl−1
i ·k

l
ij + bl

j

)
, (5)

where k is the convolution kernel, j is the size of kernels, M is the number of inputs xl−1
i , b, is

kernel bias, f ( ) is the neuron activation function and (·) represents the convolution operator.
The sub-sampling layer is another feature of a convolutional neural network. It is

usually positioned between successive convolution layers, so it may occur periodically.
Its purpose is to reduce the spatial size of the vector gradually to reduce the number of
network parameters and calculations, as well as to balance overfitting. The convolution
layer resizes the feature map, using the max operation most frequently. If the output from
the previous layer is to be fed to the fully connected layer, the flattening layer is used, and
then it needs to be flattened. The layer of the Parametric Rectified Linear Unit (PReLU) is
an activation function that complements the rectified unit with a negative value slope.

The dropout layer is used to regularize the network. It also makes it possible to
be thinner for the network size. The neurons that are less likely to raise the weight of
learning are randomly removed. The practical importance of dropout unit is to prevent
overfitting [45]. This dropout layer, as we have two classes, is succeeded by a fully
linked (dense) layer that reduces the final output vector to two classes, and we expect the
program’s behavior to be either malicious or benevolent. The final activation function is
SoftMax, which shrinks the two outputs to one.

The output of each convolutional layer in 1D-CNN is also the input of the subse-
quent layer. It also represents the weights learned by the convolution kernel from the
training samples.

A unique and essential part of CNNs is the fully connected (FC) layer, which outputs
a final output. The output of the network’s previous layers is reshaped into a single vector
(flattened). Any of them reflects the probability that a class label is a special function. The
final probabilities for each label are supplied by the output of the FC layer.
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3.4. Network Model Optimization

Optimization of neural network hyper-parameters, which rule how the network
operates and governs its accuracy and validity, is still an unsolved problem. Optimizers
adjust the parameters of neural networks, such as weight and learning rate, to minimize
loss. Known examples of neural network optimization algorithms are Stochastic Gradient
Descent (SGD) [46], AdaGrad [47], RMSProp [48] and Adam [49], which usually show
a tradeoff of optimization vs. generalization. This means that higher training speed
and higher accuracy in the training may result in poorer accuracy on the testing dataset.
Here, we adopted the Exponential Adaptive Gradients (EAG) optimization [50], which
combines Adam and AdaBound [51]. During training, it exponentially sums the gradient
in the past and adaptively adjusts the learning rate to address poor generalization of the
Adam optimizer.

3.5. Ensemble Classification

The basic principle of ensemble methods is that training datasets are rearranged in
several ways (either by resampling or reweighting) and by adding a base classifier to
each rearranged training dataset, an ensemble of base classifiers is built. After that, a new
ensemble classifier is developed using the stacked ensemble method by combining the pre-
diction effects of all those base classifiers, where a new model learns how to better integrate
predictions from multiple base models. We used the two-stage stacking technique [52].
First, several models are trained based on a dataset. Then, the output of each of the models
is processed to create a new dataset. The actual value it is supposed to approximate is
related to each instance in the current dataset. Second, the dataset with the meta-learning
algorithm is used to provide the final output.

In the design of a stacking model (Figure 2), base models are often referred to as level-0
models, and a meta-learner (or generalizer) that integrates base model projections, referred
to as a level-1 model, is involved. Models that fit into the training data and are compiled
with forecasts are the base models. The meta-learner (level-1 model) is a classification
model trained to combine the predictions of the base model. The meta-learner is informed
by simple models on the choices made. To train the base models, a new batch of previously
unused data is used and predictions are made, and the input and output value pairs of
the training dataset are used to fit the meta-learner, along with projected outputs given by
these predictions.

Figure 2. Schematics of ensemble classification approach.
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The ensemble learner algorithm consists of three stages:

1 Set up the ensemble:

(a) Select N base learners;
(b) Select a meta-learning algorithm.

2 Train the ensemble:

(a) Train each of the N base learners on the training dataset {X1, X2, . . . , XM}, where
M is the number of samples;

(b) Perform the k-fold cross-validation on each of the base learners and record the
cross-validated predictions {y1, y2, . . . , yN};

(c) Combine cross-validated predictions from base learners to form a new feature matrix as
follows. Train the meta-learner on the new data (features x predictions from base-level
classifiers) {(X1, X2, . . . , XM, y1), (X1, X2, . . . , XM, y2), . . . , (X1, X2, . . . , XM, yN)}.
Combine base learning models and the meta-learner to generate more accurate predic-
tions on unknown data.

3 Test on new data:

(a) Record output decisions from the base learners;
(b) Send base-level decisions to the meta-learner to make ensemble decision.

On the training dataset, stacking capitalizes over every single best learner. Usually,
the greatest gains are made when base classifiers used for stacking have high variability
and uncorrelated outputs predicted values. As base models, we used the following neural
networks: fully connected MLP with one hidden layer (Dense-1), fully connected MLP with
two hidden layers (Dense-2) and one-dimensional CNN (1D-CNN). The configurations of
neural networks are summarized in Table 1.

Table 1. Model configuration of neural networks with their parameters. FC—fully connected.
Conv1D—one-dimensional convolution. PReLU—Parametric Rectified Linear Unit.

Dense-1 Network Dense-2 Network 1D-CNN Network

Parameters

X—number of neurons
in 1st hidden layer

X—number of neurons in 1st
hidden layer

Y—number of neurons in 2nd
hidden layer

F—number of filters in
convolutional layers

N—number of neurons in dense
layer

Input layer of 40 × 1 features

1 FC layer (X neurons) 1 FC layer (X neurons) 2 Conv1D layers
(F 2 × 2 filters)

PReLU PReLU Max-pooling layer
Dropout layer (p = 0.3) Dropout layer (p = 0.3) 2 Conv1D layers (F 2 × 2 filters)
1 FC layer (2 neurons) 1 FC layer (Y neurons) Max-pooling layer

Softmax output layer

PReLU 1 FC layer (N neurons)
Dropout layer (p = 0.3) Dropout layer (p = 0.5)
1 FC layer (2 neurons) 1 FC layer (2 neurons)
Softmax output layer Softmax output layer

The examples of neural network architectures are presented in Figure 3.



Electronics 2021, 10, 485 9 of 23

Figure 3. Example of architectures used as base learners: (a) Dense-1 network architecture, (b) Dense-
2 network architecture and (c) 1D-CNN network architecture.

The role of the meta-learner is to find how best to aggregate the decisions of the base
classifiers. As meta-learners, we explored K-Nearest Neighbors (KNN), Support Vector
Machine (SVM) with linear kernel, SVM with radial basis function (RBF) kernel, Decision
Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), AdaBoost Classifier, Extra-
Trees (ET) classifier, Isolation Forest, Gaussian Naïve Bayes (GNB), Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (LR), Ridge
Classifier (RC) and stochastic gradient descent classifier (SGDC). Here, KNN is a model
that classifies unknown input data based on having the most similarity (least distance) to
known input data. SVM is a supervised learning method that constructs a higher dimen-
sional hyperplane to separate input data belonging to various classes while maximizing
the data input distance to the hyperplane. The DT classifier creates a decision tree by
splitting according to the feature which has the highest information gain. RF fits many
DT classifiers on different sub-samples of the dataset and uses averaging to improve the
prediction accuracy. AdaBoost fits a classifier on the dataset and performs weighting of
incorrectly classified instances to improve accuracy. Isolation Forest performs classification
based on identified anomalies in data. GNB performs classification based on the probability
distributions of features and classes. The ET Classifier [53] creates a meta-estimator that fits
multiple decision trees on the training dataset sub-samples and uses averaging to improve
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precision and over-fitting management. The goal of LDA is to find a linear combination
of input characteristics that distinguishes two or more input data groups. A quadratic
decision surface is used by QDA to distinguish two or more groups of input data. LR is a
linear regression-like statistical approach that predicts a result for a binary output variable
from an input variable. RC converts the label data to (−1,1) and fixes the regression method
problem. As a target class, the greatest value of prediction is admitted. SGDC is a learning
algorithm for stochastic gradient descent that finds the decision boundary with a linear
hinge loss.

3.6. Evaluation of Malware Detection Results

To measure the classification potential of the proposed ensemble learning model,
the performance of the proposed model was evaluated using the Leave-One-Out Cross-
Validation (LOOCV) with a 10-fold cross-validation method.

The true labels were compared against the predicted labels and the true positive (TP),
true negative (TN), false positive (FP) and false-negative (FN) values were calculated. The
recall, precision, accuracy, error rate and F-score values were calculated (we assumed the
binary classification problem, where a positive class is labeled by +1 and a negative class is
labeled by −1):

False positive rate (FPR) (also specificity):

FPR =
∑m

i=1[a(xi) = +1][yi = −1]
∑m

i=1[yi = −1]
(6)

here [·] is the Iverson bracket operator.
True positive rate (TPR) (also sensitivity and recall):

TPR =
∑m

i=1[a(xi) = +1][yi = +1]
∑m

i=1[yi = +1]
(7)

False negative rate (FNR):

FNR =
∑m

i=1[a(xi) = −1][yi = +1]
∑m

i=1[yi = +1]
(8)

Here, a(x) is the classifier with inputs Xm =
(

x1, . . . , xm
)
, and

(
y1, . . . , ym

)
are outputs.

Precision is calculated as:

Precision =
TPR

TPR + FPR
(9)

To compute F-score, the following equation is used:

F− score = 2
Precision× Recall
Precision + Recall

(10)

The Matthews Correlation Coefficient (MCC) is calculated as:

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

The Cohen’s Kappa statistic (shortly, kappa) is

k = 1− 1− p0

1− pe
(12)

where p0 represents the ratio of correct agreement in the test dataset, and pe is the ratio of
agreement that is expected by random selection.
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In this study, performance was calculated using 10-fold cross-validation. According
to F1-score, instead of checking the performance of the model with accuracy alone, we
selected the best model. The accuracy can be a confusing metric in datasets where a major
class imbalance occurs. For a highly imbalanced sample, a model would correctly guess
the value of the majority class for all predicted outcomes, and achieve a high performance
in classification but making erroneous predictions in the minority and main classes. The
F1-score discourages this type of action by computing the metrics for each mark and finding
its unweighted average. We also consider area under curve (AUC) as a measure of binary
classification consistency, which is known as a balanced metric that can be used even
though there are classes of very different sizes in the dataset. Furthermore, the performance
of the proposed model on a binary dataset is represented using the confusion matrix.

We used the performance outcomes achieved from the results from each fold of the
10-fold cross-validation for statistical analysis. We adopted the non-parametric Friedman
test followed by the post-hoc Nemenyi test to compare the findings and measure their
statistical value. Second, both strategies were ranked based on the selected performance
measures (we used accuracy, AUC and F1-score). Then, each method’s mean ranks were
determined. If the difference between the mean ranks of the methods was less than the
critical difference obtained from the Nemenyi test, the difference between method outputs
was assumed not to be significant.

4. Implementation and Results
4.1. Experimental Settings

The machine learning models were trained on the features acquired from the dataset
using Python’s Scikit-learn libraries. All experiments were performed on a laptop computer
with 64-bit Windows 10 OS with Intel® Core™ i5-8265U CPU @ 1.60 GHz 1.80 GHz with
8 GB RAM (Intel, Santa Clara, CA, USA).

4.2. Results of Machine Learning Methods

The results from using classical machine learning models are summarized in Table 2,
while their confusion matrices are summarized in Figure 4. The best results were obtained
by the ExtraTrees (ET) model, achieving an accuracy of 98.8%. As can be seen from Table 2
and Figure 3, the ET model generated very good results for the precision, recall, F1 and
accuracy of the two classes. This agrees with the low FPR and FNR of 0.8% and 1.4%
obtained by the ET model.

Table 2. Summary of results of machine learning models. Acc–Accuracy. Prec–Precision. Rec–Recall. Spec–Specificity.
FPR–False Positive Rate. FNR–False Negative Rate. AUC–Area Under Curve. MCC–Matthews Correlation Coefficient.
SVM–Support Vector Machine. RBF–Radial Basis Function. LDA–Linear Discriminant Analysis. SGDC–Stochastic Gradient
Descent Classifier.

Meta-Learner Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

Nearest Neighbors 0.973 0.973 0.973 0.973 0.029 0.025 0.973 0.973 0.946 0.946
Linear SVM 0.954 0.954 0.954 0.954 0.045 0.047 0.954 0.954 0.908 0.908

RBF SVM 0.924 0.924 0.924 0.924 0.012 0.132 0.924 0.928 0.856 0.849
Decision Tree 0.933 0.933 0.933 0.933 0.107 0.032 0.933 0.93 0.866 0.864

Random
Forest 0.931 0.931 0.931 0.931 0.08 0.059 0.931 0.93 0.861 0.861

Neural Net 0.977 0.977 0.977 0.977 0.021 0.025 0.977 0.977 0.954 0.954
AdaBoost 0.962 0.962 0.962 0.962 0.041 0.036 0.962 0.961 0.923 0.923
ExtraTrees 0.988 0.988 0.988 0.988 0.008 0.014 0.988 0.989 0.977 0.977

LDA 0.936 0.936 0.936 0.936 0.08 0.05 0.936 0.935 0.871 0.871
Logistic 0.959 0.959 0.959 0.959 0.039 0.043 0.959 0.959 0.917 0.917
Passive 0.933 0.933 0.933 0.933 0.037 0.094 0.933 0.935 0.867 0.866
Ridge 0.936 0.936 0.936 0.936 0.08 0.05 0.936 0.935 0.871 0.871
SGDC 0.958 0.958 0.958 0.958 0.035 0.049 0.958 0.958 0.915 0.915
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Figure 4. Confusion matrices of machine learning models.

4.3. Results of Neural Network Classifiers

To select the base classifiers, first, we performed an ablation study to find the best rep-
resentatives of Dense-1, Dense-2 and 1D-CNN models in terms of their performance with
respect with different values of hyperparameters. The results are presented in Tables 3–5.
Note that in all cases, we used sparse categorical cross-entropy loss function and an Adam
optimizer. For the training of Dense-1 and Dense-2 models, we used 100 epochs, while for
the training of 1D-CNN models, we used 20 epochs. In all cases, 80% of data were used for
training and 20% for testing.

Table 3. Malware detection performance with different number of neurons in hidden layer of Dense-1 model. Best models
are shown in bold.

No. of Neurons in 1st Layer Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

5 0.956 0.956 0.956 0.956 0.035 0.052 0.956 0.956 0.912 0.912
10 0.962 0.962 0.962 0.962 0.043 0.033 0.962 0.962 0.924 0.924
15 0.965 0.965 0.965 0.965 0.034 0.036 0.965 0.965 0.929 0.929
20 0.971 0.971 0.971 0.971 0.026 0.033 0.971 0.971 0.941 0.941
25 0.977 0.977 0.977 0.977 0.023 0.023 0.977 0.977 0.954 0.954
30 0.977 0.977 0.977 0.977 0.022 0.024 0.977 0.977 0.954 0.954
35 0.980 0.980 0.980 0.980 0.022 0.019 0.980 0.979 0.959 0.959
40 0.979 0.979 0.979 0.979 0.023 0.019 0.979 0.979 0.958 0.958



Electronics 2021, 10, 485 13 of 23

Table 4. Malware detection performance with different number of neurons in hidden layers of Dense-2 model. Best models
are shown in bold.

No. of Neurons
in 1st Layer

No. of Neurons
in 2nd Layer Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

5 5 0.954 0.954 0.954 0.954 0.057 0.036 0.954 0.953 0.908 0.908
5 10 0.958 0.958 0.958 0.958 0.046 0.039 0.958 0.958 0.915 0.915
5 15 0.960 0.960 0.960 0.960 0.032 0.047 0.960 0.960 0.919 0.919
5 20 0.964 0.964 0.964 0.964 0.039 0.033 0.964 0.964 0.928 0.928
5 25 0.961 0.961 0.961 0.961 0.042 0.036 0.961 0.961 0.922 0.922
5 30 0.965 0.965 0.965 0.965 0.038 0.033 0.965 0.965 0.929 0.929
5 35 0.963 0.963 0.963 0.963 0.040 0.034 0.963 0.963 0.926 0.926

10 5 0.963 0.963 0.963 0.963 0.042 0.033 0.963 0.963 0.926 0.926
10 10 0.969 0.969 0.969 0.969 0.031 0.032 0.969 0.969 0.937 0.937
10 15 0.965 0.965 0.965 0.965 0.036 0.033 0.965 0.965 0.931 0.931
10 20 0.968 0.968 0.968 0.968 0.030 0.034 0.968 0.968 0.936 0.936
10 25 0.971 0.971 0.971 0.971 0.028 0.030 0.971 0.971 0.941 0.941
10 30 0.971 0.971 0.971 0.971 0.028 0.030 0.971 0.971 0.941 0.941
10 35 0.972 0.972 0.972 0.972 0.024 0.030 0.972 0.973 0.945 0.945
15 5 0.958 0.958 0.958 0.958 0.055 0.029 0.958 0.958 0.917 0.917
15 10 0.972 0.972 0.972 0.972 0.026 0.030 0.972 0.972 0.944 0.944
15 15 0.972 0.972 0.972 0.972 0.034 0.023 0.972 0.972 0.944 0.944
15 20 0.969 0.969 0.969 0.969 0.028 0.034 0.969 0.969 0.937 0.937
15 25 0.971 0.971 0.971 0.971 0.024 0.033 0.971 0.971 0.942 0.942
15 30 0.977 0.977 0.977 0.977 0.026 0.021 0.977 0.977 0.954 0.954
15 35 0.980 0.980 0.980 0.980 0.022 0.019 0.980 0.979 0.959 0.959
20 5 0.967 0.967 0.967 0.967 0.035 0.032 0.967 0.967 0.933 0.933
20 10 0.976 0.976 0.976 0.976 0.016 0.032 0.976 0.976 0.951 0.951
20 15 0.972 0.972 0.972 0.972 0.028 0.027 0.972 0.972 0.945 0.945
20 20 0.973 0.973 0.973 0.973 0.027 0.027 0.973 0.973 0.946 0.946
20 25 0.980 0.980 0.980 0.980 0.023 0.018 0.980 0.979 0.959 0.959
20 30 0.978 0.978 0.978 0.978 0.023 0.022 0.978 0.978 0.955 0.955
20 35 0.978 0.978 0.978 0.978 0.022 0.022 0.978 0.978 0.956 0.956
25 5 0.970 0.970 0.970 0.970 0.030 0.030 0.970 0.970 0.940 0.940
25 10 0.974 0.974 0.974 0.974 0.024 0.027 0.974 0.974 0.949 0.949
25 15 0.974 0.974 0.974 0.974 0.022 0.030 0.974 0.974 0.947 0.947
25 20 0.975 0.975 0.975 0.975 0.028 0.022 0.975 0.975 0.950 0.950
25 25 0.980 0.980 0.980 0.980 0.023 0.017 0.980 0.980 0.960 0.960
25 30 0.980 0.980 0.980 0.980 0.023 0.018 0.980 0.979 0.959 0.959
25 35 0.980 0.980 0.980 0.980 0.024 0.017 0.980 0.979 0.959 0.959
30 5 0.976 0.976 0.976 0.976 0.031 0.017 0.976 0.976 0.953 0.952
30 10 0.978 0.978 0.978 0.978 0.015 0.029 0.978 0.978 0.955 0.955
30 15 0.974 0.974 0.974 0.974 0.024 0.027 0.974 0.974 0.949 0.949
30 20 0.979 0.979 0.979 0.979 0.024 0.018 0.979 0.979 0.958 0.958
30 25 0.980 0.980 0.980 0.980 0.024 0.017 0.980 0.979 0.959 0.959
30 30 0.981 0.981 0.981 0.981 0.022 0.017 0.981 0.981 0.962 0.962
30 35 0.983 0.983 0.983 0.983 0.013 0.019 0.983 0.984 0.967 0.967

Table 5. Malware detection performance with different number of filters in convolutional layers and neurons in the final
fully connected layer of 1D-CNN model. Best models are shown in bold.

No. of Filters No. of Neurons Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

32 10 0.957 0.957 0.957 0.957 0.045 0.041 0.957 0.957 0.914 0.914
32 15 0.960 0.960 0.960 0.960 0.055 0.027 0.960 0.959 0.919 0.919
32 20 0.964 0.964 0.964 0.964 0.036 0.036 0.964 0.964 0.927 0.927
32 25 0.960 0.960 0.960 0.960 0.053 0.028 0.960 0.960 0.921 0.920
32 30 0.961 0.961 0.961 0.961 0.058 0.022 0.961 0.960 0.922 0.922
32 35 0.964 0.964 0.964 0.964 0.049 0.026 0.964 0.963 0.927 0.927
32 40 0.966 0.966 0.966 0.966 0.039 0.029 0.966 0.966 0.932 0.932
32 45 0.967 0.967 0.967 0.967 0.042 0.026 0.967 0.966 0.933 0.933
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Table 5. Cont.

No. of Filters No. of Neurons Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

48 10 0.967 0.967 0.967 0.967 0.032 0.033 0.967 0.967 0.935 0.935
48 15 0.965 0.965 0.965 0.965 0.039 0.032 0.965 0.965 0.929 0.929
48 20 0.972 0.972 0.972 0.972 0.020 0.035 0.972 0.972 0.944 0.944
48 25 0.962 0.962 0.962 0.962 0.032 0.043 0.962 0.963 0.924 0.924
48 30 0.969 0.969 0.969 0.969 0.016 0.045 0.969 0.969 0.938 0.937
48 35 0.970 0.970 0.970 0.970 0.018 0.041 0.970 0.971 0.940 0.940
48 40 0.972 0.972 0.972 0.972 0.019 0.036 0.972 0.972 0.944 0.944
48 45 0.971 0.971 0.971 0.971 0.026 0.033 0.971 0.971 0.941 0.941
64 10 0.961 0.961 0.961 0.961 0.053 0.027 0.961 0.960 0.922 0.922
64 15 0.965 0.965 0.965 0.965 0.020 0.047 0.965 0.966 0.931 0.931
64 20 0.980 0.980 0.980 0.980 0.019 0.022 0.980 0.980 0.959 0.959
64 25 0.972 0.972 0.972 0.972 0.040 0.017 0.972 0.971 0.944 0.943
64 30 0.974 0.974 0.974 0.974 0.016 0.035 0.974 0.974 0.948 0.947
64 35 0.969 0.969 0.969 0.969 0.046 0.017 0.969 0.969 0.939 0.938
64 40 0.979 0.979 0.979 0.979 0.022 0.021 0.979 0.979 0.958 0.958
64 45 0.974 0.974 0.974 0.974 0.023 0.029 0.974 0.974 0.947 0.947

128 10 0.978 0.978 0.978 0.978 0.013 0.029 0.978 0.979 0.957 0.956
128 15 0.980 0.980 0.980 0.980 0.022 0.018 0.980 0.980 0.960 0.960
128 20 0.975 0.975 0.975 0.975 0.011 0.038 0.975 0.976 0.950 0.950
128 25 0.980 0.980 0.980 0.980 0.022 0.019 0.980 0.979 0.959 0.959
128 30 0.979 0.979 0.979 0.979 0.020 0.022 0.979 0.979 0.958 0.958
128 35 0.985 0.985 0.985 0.985 0.018 0.013 0.985 0.985 0.969 0.969
128 40 0.983 0.983 0.983 0.983 0.019 0.015 0.983 0.983 0.967 0.967
128 45 0.979 0.979 0.979 0.979 0.013 0.028 0.979 0.979 0.958 0.958

4.4. Results of Ensemble Learning

Based on the ablation study, we selected one Dense-1 (with 35 neurons) model, two
Dense-2 (with (40,40) and (40,50) neurons) models and two 1D-CNN (with (25,25) and
(30,35) neurons) models as base learners based on their kappa and F1-score performance.
We performed classification with several different meta-learner classification algorithms.
For KNN, the number of nearest neighbors was set to 3. For linear SVM, C was set to 0.025.
For RBF SVM, the C parameter (which performs regularization by applying a penalty to
reduce overfitting) was set to 1, and gamma was set to 2. For DT and RF, the max depth
was set to 5. In all cases, 10-fold cross-validation was used, where each cross-validation
fold was made by randomly selecting 80% of samples, and the remaining 20% were used
for testing. The results are presented in Table 6.

Table 6. Ensemble learning results with different meta-learners: mean values from 10-fold cross-validation. Best values are
shown in bold.

Meta-Learner Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

Nearest Neighbors 0.984 0.984 0.984 0.984 0.014 0.018 0.984 0.984 0.967 0.967

Linear SVM 0.974 0.974 0.974 0.974 0.029 0.023 0.974 0.974 0.948 0.948

RBF SVM 0.979 0.979 0.979 0.979 0.021 0.022 0.979 0.979 0.958 0.958

Decision Tree 0.987 0.987 0.987 0.987 0.002 0.023 0.987 0.987 0.973 0.973

Random Forest 0.991 0.991 0.991 0.991 0.008 0.009 0.991 0.991 0.983 0.983

Neural Net 0.974 0.974 0.974 0.974 0.029 0.023 0.974 0.974 0.948 0.948

AdaBoost 0.997 0.997 0.997 0.997 0.006 0 0.997 0.997 0.994 0.994

ExtraTrees 0.999 0.999 0.998 1.000 0.000 0.002 0.999 0.999 0.999 0.999

Naive Bayes 0.968 0.968 0.968 0.968 0.027 0.036 0.968 0.969 0.937 0.936

LDA 0.975 0.975 0.975 0.975 0.027 0.023 0.975 0.975 0.95 0.95

QDA 0.974 0.974 0.974 0.974 0.029 0.023 0.974 0.974 0.948 0.948
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Table 6. Cont.

Meta-Learner Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

Logistic 0.973 0.973 0.973 0.973 0.031 0.023 0.973 0.973 0.946 0.946

Ridge 0.971 0.971 0.971 0.971 0.049 0.011 0.971 0.97 0.943 0.942

SGDC 0.975 0.975 0.975 0.975 0.027 0.023 0.975 0.975 0.95 0.95

The average performance results are visualized in Figures 5–7, whereas the results
from the 10-fold cross-validation are shown as boxplots in Figures 8–10. The results
demonstrate that the ExtraTrees meta-learner achieved the highest performance in terms of
accuracy, AUC and F1-score measures.

Figure 5. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: accuracy.

Figure 6. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: F1-score.
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Figure 7. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: AUC.

Figure 8. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: accuracy.
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Figure 9. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: area under curve.

Figure 10. Malware detection performance of deep learning ensemble model by final stage meta-
learner classifier: F1-score.
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Finally, we present the confusion matrix of the best ensemble model (with the ET
classifier as the meta-learner) in Figure 11.

Figure 11. Confusion matrix of the best ensemble model (with the ET classifier as meta-learner).

4.5. Statistical Analysis

To perform the statistical analysis of the experimental results, we adopted the Fried-
man test and the Nemenyi test. The results are presented as critical difference (CD)
diagrams in Figures 12–14. If the difference between the mean ranks of the meta-learners
is smaller than the CD, then it is not statistically significant. The results of the Nemenyi
test again show that the ExtraTrees meta-learner allows us to achieve the best perfor-
mance; however, the performance of AdaBoost and Decision Tree meta-learners is not
significantly different.

Figure 12. Comparison of mean ranks of meta-learners based on their accuracy performance: results of Nemenyi test.

Figure 13. Comparison of mean ranks of meta-learners based on their AUC performance: results of Nemenyi test.
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Figure 14. Comparison of mean ranks of meta-learners based on their F1-score performance: results of Nemenyi test.

4.6. Ablation Study of the Ensemble

We also conducted the ablation study to evaluate the contribution of the individual
parts in the proposed ensemble classification base framework for malware recognition.
We compared and analyzed the impact of the ensemble size of the classification results.
We analyzed the following ensembles, consisting of a smaller number (4) of neural net-
works models:

1. Case ENSEMBLE1: two Dense-2 (with (40,40) and (40,50) neurons) models and two
1D-CNN (with (25,25) and (30,35) neurons) models;

2. Case ENSEMBLE2: one Dense-1 (with 35 neurons) model, one Dense-2 (with (40,40)
neurons) model and two 1D-CNN ((25,25), and (30,35) neurons) models;

3. Case ENSEMBLE3: one Dense-1 (with 35 neurons) model, two Dense-2 (with (40,40)
and (40,50) neurons) models and one 1D-CNN (with (30;35) neurons) model.

The results are summarized and compared in Table 7. In all cases, the ExtraTrees
Classifier was used as a meta-learner. The Full Model here corresponds to the five-model
ensemble with PCA scaling of data. The results show that the best performance was
achieved by the full five-model ensemble with data scaling using PCA and ExtraTrees as
the meta-learner.

Table 7. Comparison of ensemble models. Best values are shown in bold.

Case Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

ENSEMBLE1 0.989 0.988 0.987 0.979 0.011 0.012 0.989 0.989 0.968 0.968

ENSEMBLE2 0.985 0.983 0.985 0.983 0.017 0.014 0.984 0.984 0.967 0.967
ENSEMBLE3 0.985 0.984 0.984 0.985 0.013 0.016 0.986 0.988 0.971 0.970
Full Model 0.999 0.999 0.998 1.000 0.000 0.002 0.999 0.999 0.999 0.999

4.7. Comparison with Related Work.

Finally, we compare our results with some of the related work on classifying benign
and malware files in Table 8 and explain in more detail below. Note that the methods
working on different malware datasets were compared. Alzaylaee et al. [54] explored
2-, 3- and 4-layer fully connected neural networks on a dataset of 31,125 Android apps,
with 420 static and dynamic features, while comparing the results to machine learning
classifiers. The best results were achieved with a three-layer network with 200 neurons in
each layer. Bakour and Ünver [55] suggested a visualization-based approach that converted
software characteristics into grayscale images and then applied local and global image
features as voters in an ensemble voting classifier. Cai et al. [56] used information gain for
feature selection and weight mapping functions derived by machine learning methods,
which were optimized by the differential evolution algorithm. Chen et al. [57] used an
attention network architecture based on CNN to classify apps based on their Application
Programming Interface (API) call sequences. Fang et al. [58] used a DeepDetectNet deep
learning model for static PE malware detection model, and an adversarial generation
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network RLAttackNet based on reinforcement learning, which was trained to bypass
DeepDetectNet. The generated adversarial samples were used to retrain DeepDetectNet,
which allowed the improvement of malware recognition accuracy.

Imtiaz et al. [59] proposed a deep multi-layer fully connected Artificial Neural Net-
work (ANN) that has an input layer, few hidden layers and an output layer. The approach
has been validated with the CICInvesAndMal2019 dataset of Android malware. Jeon and
Moon [60] proposed a convolutional recurrent neural network (CRNN), which uses the
opcode sequences of software as input. The front-end CNN performs opcode compression,
and the back end dynamic recurrent neural network (DRNN) detects malware from the
compressed sequence.

Jha et al. [61] proposed using RNN with feature vectors obtained by skip-grams of
the Word2Vec embedding model for malware recognition. Namavar Jahromi et al. [62]
proposed a modified Two-hidden-layered Extreme Learning Machine (TELM), which was
tested on Ransomware, Windows, Internet of Things (IoT) and other malware datasets.

Narayanan and Davuluru [63] suggested using CNNs and Long Short-Term Memory
(LSTM) networks for feature extraction and SVM or LR for the classification of malware
based on their machine language opcodes. The approach was validated on Microsoft’s
Malware Classification Challenge (BIG 2015) dataset with nine malware classes. Song
et al. [64] proposed a JavaScript malware detection based on the Bidirectional LSTM neural
network. Wang et al. [65] suggested CrowdNet, a radial basis function network, as a
malware predictor. Yen and Sun [66] extracted instruction code and applied hashing to
extract features. Then, the features were transformed into images and used to train a CNN.

Table 8. Comparison with other known deep learning approaches for malware recognition. n/a—data were not provided.

Reference Benign Malware Acc. (%) Prec. (%) Recall (%) F-Score (%)

Alzaylaee et al. [54] 19,620 11,505 98.5 98.09 99.56 98.82
Bakour and Ünver [55] - 4850 98.14 n/a n/a n/a

Cai et al. [56] 3000 3000 96.92 96.75 97.23 96.99
Chen et al. [57] 4596 4596 97.23 98.69 98.69 98.69
Fang et al. [58] 749 726 n/a n/a 98.07 n/a

Imtiaz et al. [59] 5065 426 93.4 93.5 93.4 93.2
Jeon and Moon [60] 1000 1000 96 n/a 95 n/a

Jha et al. [61] 20,000 20,000 91.91 n/a n/a 91.76
Namavar Jahromi et al. [62] - 18,831 99.03 n/a n/a n/a

Narayanan and Davuluru [63] - 7826 99.8 n/a n/a n/a
Song et al. [64] 30,487 29,893 97.71 n/a n/a 98.29
Wang et al. [65] 6375 6375 n/a 94 n/a n/a

Yen and Sun [66] 720 720 92.67 n/a n/a n/a
This paper 2488 2722 99.99 99.99 99.98 99.99

5. Conclusions

There is an increase in demand for smart methods that detect new malware variants,
because the existing methods are time-consuming and vulnerable to many errors. This
paper analyzed various machine learning algorithms and models of neural networks,
which are smart approaches that can be used for malware detection. With neural networks
used as base learners, we proposed an ensemble learning-based architecture and explored
14 machine learning algorithms as meta-learners. As baseline models, we used machine
learning algorithms for comparison. We conducted our experiments on a dataset that
included malware and benign files from Windows Portable Executables (PE).

In this paper, we analyzed and experimentally validated the use of ensemble learning
to combine the malware prediction results given by different machine learning and deep
learning models. The aim of this practice is to improve the recognition of Windows
PE malware. With ensemble methods, it is not required to select any specific machine
learning model. Instead, the prediction capability of each combination of the machine
learning models is aggregated to create a learning procedure that achieves the best malware
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detection performance. We explored our proposed ensemble classification framework with
lightweight fully connected and convolutional neural network architectures, and combined
deep learning and machine learning techniques to learn effective and efficient malware
detection models. We conducted extensive experiments on various lightweight deep
learning architectures and machine learning models within the framework of ensemble
learning under the same conditions for a fair comparison.

The results achieved show that the malware detection ability of ensemble stacking
exceeds the ability of other machine-learning methods, including neural networks. We
showed that the ensemble learning framework based on lightweight deep models could
successfully tackle the problem of malware detection. The results obtained indicate that
ensemble learning methods can be implemented and used as intelligent techniques for
the identification of malware. The classification system with the Extra Trees algorithm as
a meta-learner and an ensemble of dense ANN and 1-D CNN models obtained the best
accuracy value for the classification procedure, outperforming other machine learning
classification methods. Our proposed framework can lead to highly accurate malware
detection models that are adapted for real-world Windows PE malware.

The application of explanatory artificial intelligence (XAI) [67] strategies to interpret
the outcomes of deep learning models for malware detection will be carried out in the
future to provide useful information for malware analysis researchers. We also intend
to explore ensemble learning architectures and run further tests with larger databases of
malware. We strive to improve the classification ability and accuracy of the ensemble
learning model by refining the model architecture and validating it for multiple malware
datasets in future work.
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