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Abstract: Absolute localization of a flying UAV on its own in a global-navigation-satellite-system
(GNSS)-denied environment is always a challenge. In this paper, we present a landmark-based
approach where a UAV is automatically locked into the landmark scene shown in a georeferenced
image via a feedback control loop, which is driven by the output of an aerial image registration.
To pursue a real-time application, we design and implement a speeded-up-robust-features (SURF)-
based image registration algorithm that focuses efficiency and robustness under a 2D geometric
transformation. A linear UAV controller with signals of four degrees of freedom is derived from the
estimated transformation matrix. The approach is validated in a virtual simulation environment,
with experimental results demonstrating the effectiveness and robustness of the proposed UAV
self-localization system.

Keywords: UAV control; SURF; image registration; landmark detection; UAV localization

1. Introduction

Pure inertial navigation systems develop errors that increase with time. For long
duration flights, position update from external sources (e.g., global navigation satellite
system (GNSS) aiding, star tracker celestial localization systems, aerial video tracking of
landmarks) is necessary to bound the inertial errors [1].

Navigation of an unmanned aerial vehicle (UAV) using georeferencing methods other
than GNSS is rather challenging [2]. Available techniques include simultaneous localization
and mapping (SLAM) and video odometry [3–5], also known as video tracking [6,7]. These
techniques extract the vehicle’s relative location from the geometric scene, sometimes
fusing this with the outputs of other coherent sensors onboard (e.g., data from a lidar
or ultrawideband device) to build a live map incrementally via Bayesian filtering [8].
However, external reference is required if navigation is based on a global coordinate
system. The idea behind this work is to implement an online image processing system
that can automatically provide UAV steering controls driving the UAV into a scene of
known location by comparing onboard aerial video frames with a georeferenced image. A
georeferenced image may be acquired, for example, from an aerial landmark image or from
Google Maps, which are prerecorded with help from external reference sources. In the
literature, navigation methods of this type are referred to as vision-based navigation [9,10],
indirect georeferencing [10,11], or landmark georeferencing [4,12]. Such methods aim to
find ground georeference points using onboard aerial image processing and, therefore,
enable the position of a vehicle on a global map to be determined in a GNSS-denied
environment.
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One of the key challenges of building a landmark-based UAV self-localization system
is the requirement of an efficient image registration algorithm. Apart from the robustness
and accuracy for affine transformations, the algorithm should be operationally autonomous
with great computational efficiency, both of which are crucial properties for applications
involving real-time processing. In the proposed system, handling a complex warped scene
is considered less important, with the priority being that the registration algorithm must
be efficient and automated to satisfy the need for real-time control and signal processing.

While area-based image registration techniques are generally more accurate and
robust, their computational complexities are also higher than those of feature-point-based
image registration techniques [13]. Some computationally efficient algorithms such as the
enhanced correlation coefficient (ECC) maximization algorithm [14] and discrete-Fourier-
transformation-based subpixel image registration [15] are also available in the literature. A
more recent work by [16] describes an elastic registration method for dealing with images of
different modalities and nonuniform illumination. These approaches have manifested some
advanced features, such as invariant to photometric distortions in contrast and brightness
that coped with a nonlinear function of parameters. Nevertheless, their overall accuracy
and efficiency are highly dependent on the application and the robustness over mapping
conditions is fragile compared with feature-point-based approaches in our experimental
test. For feature-point-based algorithms, although the scale-invariant feature transform
(SIFT) algorithm [17] may be a good candidate for this work, we found that the algorithm
efficiency needed to be improved; for example, the rotational invariancy was not always
reliable. The speeded up robust features (SURF) algorithm proposed in [18] has greatly
rectified these problems and its efficiency is remarkable.

In this paper, we propose a UAV self-localization system that acquires position infor-
mation by an image-registration-driven control process that recursively steers the UAV to
align with the scene of a georeferenced image. As illustrated in Figure 1, at a sampling
interval, an aerial image is taken by the aerial view camera onboard the UAV and is com-
pared with a georeferenced image for similarity by an online image registration algorithm.
When a common scene between the two images is found via online image registration, we
estimate the associated transformation matrix. The latter contains information on how this
UAV should be steered such that the dissimilarity between the image pair is minimized.
The UAV control signal generator interprets the estimated transformation matrix into a
series of UAV steering controls, which, in turn, drive the UAV toward the scene of the
georeferenced image. The process can be seen as a first order feedback control and will be
terminated if a desired registration quality is stabilized. The UAV of the proposed system
has two flying modes. While in “search mode”, the UAV is navigated by an onboard
inertial navigation system (INS). Once a common scene is detected, the system releases the
UAV steering control to the UAV control signal generator and enters into the “locked-up
self-localization mode”.

In a more generic scenario, the proposed UAV self-localization system may work on
a set of georeferenced images taken on a predefined flight path and use the localization
outcomes to recalibrate the onboard inertial navigation system. It is in favor of those
applications where the georeferenced images contain many distinguishable features, such
as the 3D localization/tracking inside a complex building, or in a low-altitude urban
environment in the absence of GNSS.

In the proposed system development, we have three major contributions. First, an
autonomous fast speeded-up-robust-features (SURF)-based image registration algorithm
for the underlying application is designed. Second, UAV controls for the localization
process are derived from the estimated transformation matrix under linear mapping. Third,
we implement a virtual aerial camera and build a near-online testing platform using
Google 3D Maps that enables a Monte-Carlo-based simulation to examine the performance
of the proposed UAV self-localization system in terms of effectiveness, robustness, and
localization accuracy. The proposed method differs from existing vision-based approaches,
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as it finds both the vehicle position and attitudes using the entire scene of a georeferenced
image.

Aerial Image Geo-ref.  ImageImage Registration
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Control 
Signal 

Generation 

UAV Steering Control
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Search 

Knowledge Nav.

Localization 

Estimated Trans. 

Figure 1. Illustration of the unmanned aerial vehicle (UAV) self-localization process using landmark
images.

Following the introduction section, the automated SURF-based image registration algo-
rithm design is described in Section 2. The UAV control signal generation is derived from
the outcomes of image registration in Section 3. Registration error analysis and localization
experiment results are presented in Section 4, followed by conclusions in Section 5.

2. Automated Image Registration
2.1. Requirement

For aerial image registration scenarios, the invariance of the algorithm to image
lighting condition, colour, scale, and rotation is highly desirable. In addition, computational
complexity and robustness of performance are of significant importance. Considering the
aerial camera is fairly stabilized when the UAV is in localization mode, we can reasonably
assume that the mapping between aerial images and a reference image can be described by
similarity geometric transformation. The latter is a linear geometric transformation where
lines and parallelism between the image pair are preserved.

Let Ir be a georeferenced image, let Ia be the aerial image, let [xa, ya]′ be a point in the
aerial image coordinate system, and let [xr, yr]′ be the corresponding point in the reference
image, which is in the global coordinate system. The geometric similarity transformation
between the two points in a common scene is given by[

xr
yr

]
= α

[
cos θ − sin θ
sin θ cos θ

][
xa
ya

]
+

[
bx
by

]
(1)

where α is the scale factor, θ is the rotation angle, and [bx, by]′ is the vector of displacement
between the common scene of the image pair.

For a given pair of images, the geometric transformation (1) can be determined once
the four parameters, α, θ, bx, and by, are given. Thus, the image registration algorithm has
two tasks: (1) determine whether there is a common scene between the image pair, and (2)
if there is, find the four parameters.

For the problem of concern, a SURF feature-based image registration is considered.
This choice can be justified by the facts that (1) computational efficiency is a crucial require-
ment for this work and (2) the deformation between the image pair involves geometric
transformation, which can be handled efficiently by a feature-based algorithm. As men-
tioned earlier, we have investigated several image registration algorithms, including the
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enhanced correlation coefficient (ECC) maximization algorithm [14], the scale-invariant-
feature-transform (SIFT-based algorithm [17], and the SURF-based algorithm [18]. We
observed that the SURF-based algorithm provides the best trade-off between computa-
tional efficiency and robustness, as well as being the fastest algorithm.

2.2. SURF-Based Feature Point Matching

The SURF feature point detector adopts a Hessian matrix measure where the Laplacian
of Gaussian is approximated by the difference of Gaussian. Similar to SIFT, SURF uses
a local-based descriptor that describes a distribution of Haar wavelet responses in the
neighbourhood of an interest point that is defined as a salient feature from a scale-invariant
representation. However, the approximations and modifications made by the SURF method
enable it to use the integral of images [19], which can be quickly computed independent of
image size, to replace the majority of computations. We implemented a standard SURF
algorithm for this work, as shown in Figure 2. The preimage processing includes grayscale
filtering to mitigate lighting disturbance and image resizing to match the intrinsic properties
of camera. The SURF algorithm runs autonomously in the proposed UAV self-localization
system. As a compromise for performance and computational efficiency, we restrict the
maximum number of feature points to 2000. Extra care is taken to terminate and thus
exclude inconsistent registration processes. For example, we discard the outcome of an
image registration if the number of matched feature points is less than four or the estimated
transformation matrix is ill-conditioned.

FP Matching via Distance Threshold 

 via Hessian matrix 

FP Detection

via Haar Wavelet

FP Orientation & ID

Pre−image Processing 

 via Hessian matrix 

FP Detection

via Haar Wavelet

FP Orientation & ID

Pre−image Processing 

Transformation Matrix Estimation

Geo−reference ImageAerial Image

Figure 2. Flowchart of the implemented speeded-up-robust-features (SURF)-based algorithm. The
algorithm outputs estimated transformation matrix by solving (2) using feature point pairs if more
than four matched feature points (FP) between image pair are found.

We present two image alignment examples in Figure 3 to demonstrate the robustness
and effectiveness of the implemented algorithm. The scenes of UAV aerial images (middle
column) are partially overlapped with that of reference images (left column) but with
rotation and scale deformation. We also deliberately removed three white cars from the
aerial image in the top row. In both cases, the first five significant feature points, which
are marked in different colours, and their weights are correctly matched. Registration
outcomes are shown in the right column on top of their reference images.
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(a) (b) (c)

Figure 3. Performance of the registration algorithm implemented in this work. Column (a): reference images. Column (b):
Aerial images taken by UAV whose scenes are partially identical to those of reference images. Column (c): registration
results, where the registered images are on top of the corresponding reference images. The first five significant feature
points, which can be distinguished by colour, are marked in both the reference images (a) and aerial images (b).

2.3. Registration Error Analysis

Monte Carlo simulation runs are carried out for testing the algorithm performance in
terms of scale and rotation estimation errors. Two cases of aerial view were considered in
the simulation, i.e., the scene of an aerial image may be overlapped with that of the reference
image either partially or in full. At each run, an aerial image is obtained from warping the
reference image and the rotation angle θ and scale factor α, which are used for warping,
are drawn from uniform distributions θ ∼ U [0, 900] and α ∼ U [0.7, 1.3], respectively. The
choice of these parameter ranges in the simulation are based on the consideration that the
registration algorithm is able to cover potential deformation uncertainties of the common
scene between an aerial image and georeferenced image when the UAV is switched to
localization mode near a georeferenced location. The results for two different image scene
cases, averaged from 100 runs, are summarized in Table 1. These results demonstrate a
low and consistent estimation error performed by the image registration algorithm with a
great computational efficiency (CPU time is calculated on a HP Elitebook Intel(R) Core(TM)
i7-7600U 2.8 GHz).

Table 1. Statistical error performance from 100 Monte Carlo runs, where all errors are root mean
square errors.

Image Size Scene Type Scale Error Rotation Error CPU (s)

600 × 800 Partial 0.015 0.024◦ 0.59

368 × 640 Partial 0.01 0.02◦ 0.09

368 × 640 Full 0.015 0.013◦ 0.1

600 × 800 Full 0.0014 0.0014◦ 0.49
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3. UAV Steering Controls Driven by Similarity Deformation
3.1. Transformation Matrix Estimation

Equation (1) may be written in the following form xr
yr
1

 =

 α cos θ −α sin θ bx
α sin θ α cos θ by

0 0 1

 xa
ya
1

 (2)

where the transformation matrix

T =

 α cos θ −α sin θ bx
α sin θ α cos θ by

0 0 1

 (3)

contains all deformation information between the image pair. In the localization mode of
the proposed system, the parameters of θ, α, bx, and by and thus transformation matrix T,
are estimated by the SURF algorithm. UAV steering controls are then generated from the
values of the estimate transformation matrix T̂. The generated controls aim to steer the
UAV toward the scene of the georeferenced image such that the overlapping area between
the aerial view of the UAV and georeferenced image increase and in the meantime the
transformation matrix T̂ is updated by the registration from a new aerial view. This control
process is expected to be progressively iterated until the estimated transformation matrix
T̂ approach to an identity matrix.

3.2. Derivation of UAV Controls

Under similarity mapping, we expect the UAV steering process to have controls of
four degrees of freedom gained from the output of image registration. As illustrated in
Figure 4, these controls are moving left or right, moving forward or backward, turning
clockwise or counterclockwise, and flying up or down.

𝜗𝜗

Down Up

Ref. Image

Aerial Image

Figure 4. Illustration of UAV steering control from image registration outcomes under similarity
transformation. From left to right images: the UAV steering control due to partial scene overlapping,
rotation, scale less than unit, and scale greater than unit with respect to the georeferenced image.

Table 2 lists the control types derived from the parameter values of the transformation
matrix estimated by the image registration algorithm. When several controls are presented
simultaneously, priority will be given to the correction of rotation, scale, and displace-
ment, successively. The relation between control parameters in Table 2 and the estimated
transformation matrix can be approximated as follows:

θ ≈ atan
(

T̂(1, 2)
1/2(T̂(1, 1) + T̂(2, 2))

)
(4)

a =
(T̂(1, 1) + T̂(2, 2))

2 cos θ
(5)
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The derived controls are for driving a first-order feedback controller that steers the
UAV to the direction that will minimize image registration error. They are implementable
by many existing flight controllers, such as the PX4 autopilot platform [20].

Table 2. First-order UAV control signal generation.

Parameter Value UAV Control Process Order

θ
> 0 Turn counterclockwise

1
< 0 Turn clockwise

a
> 1 Up

2
< 1 Down

bx
> 0 Left

3
< 0 Right

by
> 0 Forward

3
< 0 Backward

The UAV self-localization process is an optimization procedure against a control cost
and is performed iteratively in a feedback control loop. Upon receiving a control signal
interpreted by the estimated transformation matrix, the UAV is steered to approach the
scene of the reference image. Then, a new aerial frame is compared with the reference
image to generate a new set of controls. Driven by these controls, the UAV gradually
approaches the scene of the reference image. The process is repeated until control cost is no
longer decreasing, or, in other words, the scene of aerial frame is completely overlapped
with that of the reference image.

3.3. Control Cost

The choice of control cost criterion is crucial to the accuracy of the iterative image
alignment process. In this work, UAV steering control will be permitted only if a suitable
control criterion can be met. Essentially, we calculate two quantities from the estimated
transformation matrix T̂ as the control cost. They are

1. normalized displacement cb:

cb
∆
=
√
(bx/xl)2 + (by/yl)2,

=
√
(T̂(1, 3)/xl)2 + (T̂(2, 3)/yl)2; (6)

where xl × yl is the size of aerial (or georeferenced) image.
2. determinant of transformation matrix cd:

cd
∆
= |T̂|. (7)

As shown in Figure 5, the values of both cost functions are found to be monotonically
decreasing as the UAV approaches the scene of the georeferenced image during UAV
localization mode. Nevertheless, their turning points are sometimes slightly different,
which may cause a larger location error if only using one of them. We therefore adopt both
as the control cost, and a successful localization is claimed only if both have reached their
turning points.

It is worth mentioning that to be more robust and accurate in practical applications,
we may select the georeferenced images that have feature points that are as salient as
possible and, with shadow and lighting directions, that are as consistent as possible with
the actual environment.
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Figure 5. Typical values of the cost function in the locked-up localization process.

4. Experiment and Results

In this work, we focus on the evaluation of the system in the form of Monte Carlo
simulations, where the UAV camera is simulated and aerial images are taken from Google
Earth Pro© in a virtual test environment. In this experiment, we aim to:

1. provide a comprehensive understanding of the proposed system functionality, the
way of the best functioning and additional control needed, etc.

2. check the robustness of the proposed algorithm as well as potential localization
strategies.

4.1. Simulation Scenario

A flying UAV is guided by an inertial navigation system (INS) that calculates the
UAV dead reckoning position and attitude from the observations of an onboard inertial
measurement unit (IMU). Without an external aiding source, INS suffers from growing
bias and drift over time, propagated from IMU errors. Typically, the INS integrates external
location references, such as GNSS signal, via a Kalman filter [1]. In the proposed system,
as show in Figure 6, we use aerial video to regularly obtain accurate location information
as an alternative source of aiding in a GNSS-denied environment. We assume that aerial
images taken by the aerial camera onboard the UAV are of the same optical properties
(e.g., view angle, image size, etc.) as those of the georeferenced images. Otherwise, a
proper image processing technique may be applied to retrieve the difference of the optical
properties so that a consistent image registration can be performed. At each localization
process, the UAV moves toward the area of the georeferenced image guided by onboard
INS before the system is switched to localization mode. The UAV motion is then controlled
by the image registration output until the scene of the onboard aerial camera is matched
with that of the georeferenced image.
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UAV start point 
(known)

Uncertain area 
due to  INS drift

INS guided location

Georeferenced 
(true)  location

Figure 6. Illustration of the UAV inertial navigation strategy aided by the proposed aerial image
registration system. The UAV starts from a known point and is guided by the intertial navigation
system (INS) to the INS-computed georeference location (red dot). The green dot signifies the true
georeferenced location. The UAV steered from the INS-computed georeferenced location to the true
georeferenced location via the image registration system.

Figure 7 shows the entire scene of the UAV flying zone used in the simulation. It is a
high-resolution image of size 3840× 2160 pixels and corresponds to approximately 0.87 m
per pixel. In this image, we marked the UAV takeoff location using a red square and the
georeferenced scene using a green circle, both of which are from a single realization of 100
Monte Carlo simulations. The corresponding aerial image at the UAV start location and
georeferenced image are shown in Figure 8a,b, respectively.

Figure 7. Entire UAV flying zone for simulation generated using Google Earth Pro. The red square is the UAV takeoff
location and the green circle is the location where the reference image is taken.
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(a) (b)

Figure 8. (a) UAV aerial image taken at the UAV starting location (red square). (b) Georeferenced image taken at the location
of the green circle in Figure 7.

In the Monte Carlo simulations, a virtual camera of resolution 570× 320 pixels is simu-
lated to take aerial images from the flying UAV. We assume that both aerial and georeference
image sizes are identical. In each run, the locations of both the UAV starting point (x0

a , y0
a) and

the scene of the geo-reference image (x0
r , y0

r ) are uniformly drawn from the full scene area. In
each run, the UAV enters the scene of the georeferenced image navigated by the onboard INS.
Bias and drifts of inertial sensors yield navigation error of INS. Here, this navigation error
is defined by the distance between the center of the scene of the georeferenced image and
the actual position that the UAV has reached, and it is modelled as a uniformly distributed
random variable whose distribution is (x̂0

r,ins, ŷ0
r,ins) ∼ U (a, b), where

a = [x0
r − 1.2

xl
2

, y0
r − 1.2

yl
2
]′, b = [x0

r + 1.2
xl
2

, y0
r + 1.2

yl
2
]′. (8)

The setup of (8) ensures that when the UAV switches into localization mode from INS
navigation, a partially overlapped scene can be found from both the aerial and georefer-
enced images, which is a reasonable assumption in practice. In our experiment, xl = 320
and yl = 570, the UAV will enter into localization mode at a “pixel distance” distribu-
tion U (0, 192) in x direction and U (0, 342) in y direction to the center of the scene of the
georeferenced image at each run.

In the localization mode, the aerial images taken from UAV camera are compared
with a georeferenced image and the cost cb is calculated based on the image registration
output. In this experiment, when cb ≤ 0.8, it is found that at least three consecutive
transformation matrices can be estimated consistently by image registration, and thus
we let the UAV lock into localization iteration, where UAV controls are generated from
every output of the image registration. The UAV is then steered by these controls and
progressively approaches the scene of the georeferenced image. The localization process is
completed if the stopping criterion described in Section 3.3 is met, that is, if the matching
error (see Figure 5) is no longer decreasing. The proposed localization procedure is a
trial-and-error process. The first attempt of the UAV self-localization starts from the INS-
computed location r0 = (x̂0

r,ins, ŷ0
r,ins) (see Figure 6). In the case where cb has not fallen

below 0.8 for a predefined short period, say, 10 sampling periods, another attempt of
the UAV self-localization will be triggered and the UAV will be steered to a new starting
location r0 + δr, where δr is drawn from a zero-mean Gaussian distribution with standard
deviation described by nominal position error of INS. The system is designed to repeat this
process until the UAV enters into the (locked-up) localization iteration and completes the
localization process.
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Figure 9 shows a snapshot of the experiment from a single run. In this example, the
georeferenced image was taken from the point marked with a green circle and it was
rotated 30◦ clockwise. It was also enlarged by a scale factor of 1.46 as if it were taken
from a lower altitude than that of the UAV actually flying. Furthermore, white noise of
N (0.01, 0.01) was added to the intensity of the georeferenced image. All of these added
additional challenges to the UAV self-localization process.

Figure 9. The top left is the UAV aerial camera view window. The top right displays the process of UAV localization when
the image registration algorithm captures the scene of reference image. The bottom left is the full view of UAV flying
zone image, where the green circle is the location where the reference image was taken, the red square is the UAV takeoff
location and the yellow circle represents the flying UAV with its trajectory highlighted by a red curve. The right lower
corner window plot the normalized matching accuracy cb when the UAV enters into localization mode. The discontinuity of
cb curve signifies that this particular localization process experienced two attempts.

4.2. Localization Error Analysis

Apart from randomly drawing the locations of the UAV starting point, the georef-
erenced scene, and the point at which the UAV enters into localization mode, we also
warp the georeferenced image at each run to cover potential image variations caused by
environment changes as follows:

• Assume a random angle between the directions of the UAV heading and georefer-
enced image scene. The angle distribution is of Gaussian zero-mean with a standard
deviation 20◦.
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• Assume that height at which the georeferenced image was taken is random such that
the corresponding scale factor between the UAV aerial image and the georeferenced
image follows from a uniform distribution U (0.8, 1.2).

• A white noise of N (0.01, 0.01) is added to intensities of the georeferenced image.

As mentioned earlier, the full scene of the UAV flying area shown in Figure 7 is a high-
resolution image of size 3840× 2160 pixels with a scale of 0.87 m per pixel. In the controller
design, we allow the final scale accuracy |â− a| ≤ 0.04, where â is the estimated scale in (5)
and a = 1 is the true scale. Therefore, the actual distance resolution is 0.87× 1.04 = 0.9048
meter per pixel.

From the matching error in (6), and assuming that the errors in x and x directions are
of the same scale, we may roughly estimate the matching error bound in terms of distance
derror as

derror ≈
cb√

(1/xl)2 + (1/yl)2
×
√

2|â− a|. (9)

For the current experiment setup, we have derror ≈ 390c̄b (m), where c̄b is the average
cost at final localization iteration.

Table 3 lists statistical results obtained from 100 Monte Carlo runs for the proposed
UAV self-localization process. In the experiment, the average UAV speed in INS navigation
stage is 10 m/s and in the localization locked up (iteration) stage is 3 m/s.

Table 3. Statistical results of Monte Carlo 100 runs.

1 Attempt 2 Attempts 3 Attempts ≥4 Attempts

Proportion 81% 14% 4% 1%
Mean # of frames 346.7 531.1 773.5 720
Average time (s) 72 99.7 112.6 94.9

Mean accuracy c̄b 0.0041 0.0077 0.0064 0.0073
derror (m) ≤1.6 ≤3 ≤2.5 ≤2.85

As mentioned earlier, the localization iteration is a trial-and-error process. A single
trial of localization process is deemed as an attempt. In 81 out of 100 runs, the UAV locks
into localization iteration from INS navigation mode in the first attempt, and complete
localization process successfully. The average time from the UAV taking off to the localiza-
tion process completion is 72 s at a frame rate 5 frames per second. About 14% of the runs
completed with two attempts, 4% with 3 attempts, and 1% with 4 attempts.

It is observed that the deformation level of reference image has a direct impact on the
localization accuracy. The more attempts made for the UAV entering into the (locked-up)
localization mode and thus completing the localization process, the larger the average
localization error is. In those simulations in which more than one attempt have been made,
the warp level of the georeferenced image is often more severe than average.

The UAV localization locked-up control process is demonstrated in Figure 10, which was
recorded from a single run. The left column shows the aerial image sequence (along the time
line from top to bottom) taken by the UAV during the process and the right column displays
the sequence of registered images on top of the georeferenced image, where we also indicate
the operation status of UAV controller (turn right, flying down, and moving direction, etc.).
Although the entire locked-up control process takes up about 50 frames, only six frames are
shown here to illustrate the process. In this particular example, the UAV motion is driven by
controls generated by the registration algorithm involving right turn, flying down, moving
left, and forward operations during the locked-up localization process.
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(a) (b)

Figure 10. Illustration of a typical UAV locked-up localization process that involves all UAV controls generated by image
registration as discussed in Section 3. The entire process takes up about 50 frames. We only show six of those frames.
Column (a): UAV aerial camera view. Column (b): aerial images “registered” on top of georeferenced image. For this
particular example, the localization accuracy is within 3 m. The processing frame rate is 5 fps (Intel(R) Core(TM) i7-7600U).
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We carried out 100 further Monte Carlo runs where the georeference images and UAV
aerial images are taken at different times of the day. In each run, the georeferenced image
is drawn from the full scene image taken at 4:30 p.m. in the afternoon, whereas the UAV
localization is performed at 10 a.m. in the morning. As shown in Figure 11, this leads to
the image pair to be registered with different lighting conditions caused by different sun
illumination directions.

(a) (b)

Figure 11. Illustration of image difference due to different sun illumination directions. (a) Aerial image taken at 10 a.m. in
the morning. (b) Georeferenced image taken at 4:30 p.m. in the afternoon.

Similar to Table 3, we present the statistical results of the 100 Monte Carlo runs for
image pairs with different lighting conditions in Table 4. While the localization process for
all runs have successfully completed, the average time used is longer than those without
lighting issues. The mean accuracy and localization error are slightly larger as well.

Table 4. Statistical results of 100 Monte Carlo runs, where aerial image and reference image are with
different sun illumination directions.

1 Attempt 2 Attempts 3 Attempts ≥4 Attempts

Proportion 86% 9% 2% 3%
Mean # of frames 297 535 472 889
Average time (s) 82 141 135 225

Mean accuracy c̄b 0.0069 0.0106 0.005 0.0135
derror (m) ≤2.1 ≤3.23 ≤1.53 ≤4.12

This reflects the fact that the difference of sun direction has considerable negative
impact on the image registration algorithm. Overall, there is no localization failure case
in our experiment. The proposed UAV localization system is therefore resilient against
potential failure, showing a strong robustness and effectiveness, in particular, in the latter
test results.

5. Conclusions

In this paper, the problem of autonomous UAV self-localization in a global-positioning-
system (GPS)-denied environment is approached by comparing the aerial images taken by
an onboard camera with a georeferenced image. A SURF feature-based image registration
algorithm is designed and implemented. The algorithm is shown to be efficient and robust
for real-time processing. Controls for UAV steering operation are derived from the image
registration output based on the estimated similarity transformation matrix. We present a
detailed statistical evaluation by Monte Carlo method in a simulated environment using
Google Earth Pro©.

In the hardware development front, the proposed UAV self-localization system is
being tested on a three-axis gimbal platform onboard a S500 drone in a controlled and
laboratory environment as a proof of concept, where the aerial images are taken by a
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Pi camera module v2 and sent to a laptop computer via a WiFi communication channel.
Image registration is performed remotely and generated UAV controls are then sent back
to the flight controller (Pixhawk 4 mini autopilot via MAVlink) by WiFi link. We are
implementing a Jeston-nano onboard processor to put all signal processing on the S500
platform. Consequent field test results will be published in future works.
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