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Abstract: Attack detection problems in industrial control systems (ICSs) are commonly known
as a network traffic monitoring scheme for detecting abnormal activities. However, a network-
based intrusion detection system can be deceived by attackers that imitate the system’s normal
activity. In this work, we proposed a novel solution to this problem based on measurement data
in the supervisory control and data acquisition (SCADA) system. The proposed approach is called
measurement intrusion detection system (MIDS), which enables the system to detect any abnormal
activity in the system even if the attacker tries to conceal it in the system’s control layer. A supervised
machine learning model is generated to classify normal and abnormal activities in an ICS to evaluate
the MIDS performance. A hardware-in-the-loop (HIL) testbed is developed to simulate the power
generation units and exploit the attack dataset. In the proposed approach, we applied several machine
learning models on the dataset, which show remarkable performances in detecting the dataset’s
anomalies, especially stealthy attacks. The results show that the random forest is performing better
than other classifier algorithms in detecting anomalies based on measured data in the testbed.

Keywords: machine learning; industrial control systems; anomaly detection; fault detection;

intrusion detection system

1. Introduction

The industrial control system (ICS) consists of devices, networks, and controllers
to automate industrial processes. ICS contains several types of control systems, such as
supervisory control and data acquisition (SCADA) systems, and distributed control systems
(DCSs). ICSs are widely used in different critical infrastructures such as smart grids, power
distribution, transportation systems, water treatment plants, and manufacturing [1,2].
In the power plants, ICS’s key role is evident, and a multitude of automated systems are
operating in a SCADA framework. The automated systems’ entanglements could endanger
the entire system’s performance, where a small fault or malfunction would lead to a cascade
failure. Thus, fault detection in ICSs, especially in critical infrastructures such as large-scale
power plants, has attracted much attention in recent years [3-6].

Generally, communication between ICS components is based on an information tech-
nology stack (ITS) and remote connectivity. The reliance on communication networks
to transmit measurements could increase the possibility of intentional attacks against
physical plants. Conventionally, network traffic is secured by mechanisms such as au-
thentication, data encryption, and message integrity techniques. However, these methods
cannot completely protect the entire levels of an ICS network against a wide range of
malicious activities. Figure 1 illustrates the five distinct levels of an ICS architecture. These
conventional mechanisms try to secure the network traffic transmitting between ICS levels
and do not investigate the compatibility of the physical plant measurements. This makes
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the system vulnerable against malicious activities such as insider sabotages, spoofing, and
stealthy attacks [7]. One solution to tackle this problem is the intrusion detection system
(IDS). The two main IDS strategies are signature-based and anomaly-based, which differ
in their detection mechanisms [8]. The signature-based strategy trains the system to find
specific anomalies while the anomaly-based strategy searches for any deviation from a
pre-known normal activity. Generally, IDS investigates the network traffic in an ICS and
tries to detect abnormal activities in the transmitting data packets. This strategy, known as
the network intrusion detection system (NIDS), monitors the incoming data packets and
prevents suspicious data from intruding into the system. Many studies leveraged machine
learning algorithms to train a NIDS model, which is responsible for detecting attacks in the
network traffic [9-11]. Although the NIDS effectively qualifies and quantifies attacks by
analyzing the amount and types of attacks in the network flow, its performance against
encrypted data packets, faked IP packets, and regular false positive alerts is not guaranteed.
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Figure 1. ICS network architecture.

On the other hand, the measurement intrusion detection system (MIDS) instead of
monitoring the network traffic, investigates suspicious activities in the system’s measure-
ment data. As shown in Figure 1, the MIDS does not interact with the connections between
the ICS levels, but directly inspect the measurement data in the system. This fault detection
approach can find any deviation from normal performance caused by malicious activities
such as changing the sensors setpoints or injecting fake data measurements into the ICS
network levels. Since, in an ICS, the SCADA system (Level II) collects the data from the
entire system, the MIDS can be embedded in this system’s level. In comparison to the
NIDS method, a few studies tried to use machine learning algorithms for training a fault
detection model. Choi et al. [12] presented an IDS based on voltage measurement data to
detect in-vehicle controller area network (CAN) intrusions using inimitable characteristics
of electrical signals. Their approach is well designed to detect bus-off attacks [13] and per-
forms very well to secure an in-vehicle CAN. However, relying on only one type of variable
to detect suspicious activities in the system caused a high rate of false positives in the IDS.
In [14], Pan et al. introduced an IDS strategy leveraging features of signature-based and
specification-based detection methods which protects an electrical power transmission line
from attacks. They used data from relay, network security logs, and energy management
system (EMS) logs. Their method could accurately distinguish malicious activities from
normal control operations. However, their proposed algorithm requires a large number
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of captured data scenarios, which is difficult to acquire. In another study, Ozay et al. [15]
proposed an attack detection model employing state vector estimation (SVE) to detect false
data injection at the physical layer of a smart grid. They showed that the model performs
accurately on various IEEE test systems in detection of abnormal behaviors; however, it
cannot detect the stealthy malicious activities properly.

Basically, due to the difficulties in generating a labeled dataset, which indicates
different types of attacks in an ICS, most studies apply a normal activity dataset for training
machine learning models. Therefore, the MIDS could only compare a set of normal data
with the incoming data and detect any deviation from the normal activity. This strategy
would fail while a stealthy attack that imitates a normal behavior intrudes into the system.
A solution to tackle this problem is generating a labeled dataset that includes different
types of attacks to train a machine learning model that is capable of detecting malicious
stealthy activities in the system. But, building a labeled dataset consisting attack scenarios
means the system should tolerate a set of controlled attack injected to the system, that
could lead to a system failure and irreparable damages. Nevertheless, it is possible to
simulate the critical infrastructures of an ICS using a hardware-in-the-loop (HIL) to prevent
damaging the system. This approach could be sensible while the ICS is a vital infrastructure,
and the system’s security is dramatically significant [16]. The main goal of this paper is
to investigate the performance of the MIDS by training machine learning algorithms
leveraging a labeled dataset. To this end, we develop an experimental setup in which we
can evaluate the effectiveness of fault detection by monitoring the measurement data in an
ICS. For this, we employ a power generation testbed whose sensors’ values are measured
over several days. Different scenarios of attacks are injected into the system to generate the
labeled dataset. The dataset was generated in 2020, available at [17]. Overall, this work has
made the following contributions to the attack detection domain:

(1) Introducing a novel approach which can be integrated to NIDS as a second layer
of defense mechanism for intrusion detection using measurement data and improving the
security of the ICS system.

(2) Applying the HIL-based augmented ICS (HAI) testbed dataset [18] for the first time
for training a supervised machine learning model to detect intrusions in an ICS. Unlike the
previous works [12-15], our proposed design is able to detect the stealthy attacks without
imposing any threat to the actual system using the advantages of labeled data obtained
from the HIL testbed.

(3) Using the measurement data in the all levels of ICS (Figure 1), which can help to
detect not only the sabotages in the communication links between the levels but also the
insider sabotages in each level. This particular feature would help to improve the security
of the system without any conflict with NIDS.

In addition, we compared different machine learning techniques to find the best
learning model for the detection of stealthy attacks in the ICSs. According to the results,
the random forest algorithm [19] has the best performance for the proposed dataset.

Problem Description and Motivation

ICS, including SCADA networks, consists of several parts such as controllers moni-
tored by operators through the human-machine interface (HMI). In critical ICS infrastruc-
tures such as power plants, the communication network between parts of the system can be
extended over large geographical regions, which perform under virtual private networks
(VPN) or the Internet. Although connecting the communication network to the Internet or
using remote connections help to have an off-site operation and management of ICS over a
vast geographical distance, it puts the system at risk of malicious attacks [20]. The NIDS is
widely employed to detect any kind of abnormal activity in the system’s network flow to
defeat these types of attacks. Nevertheless, while the NIDS could address the problem of
cyber attacks at a sensible rate of accuracy, these systems are inefficient in detecting insider
attacks or any other sabotage inside the system. Furthermore, the NIDS is incapable of
detecting encrypted or any other faked data packets, especially stealthy attacks. To address
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these problems, one solution is investigating the behavior of measurement data instead of
monitoring network traffic.

The MIDS is not only capable of detecting any deviation from the normal activity
of the ICS, but it is also effective in the detection of stealthy attacks [21]. The presence
of SCADA systems, especially in large-scale ICSs, helps deploy the MIDS without any
additional devices; however, the main obstacle in practicing the MIDS is preparing a
comprehensive dataset to train a machine learning model. Basically, building an attack
dataset for measured data means injecting a malfunction to the system and possibly
the whole system’s failure. This could have dramatically high costs when the system is
a critical large-scale ICS. Moreover, for each system’s environment, the dataset should
be built separately, and it could be extremely expensive. Fortunately, in recent years,
development in processing units and computation power has helped to overcome this
problem by introducing the HIL technique. This technique stimulates the critical parts of an
ICS and injects attacks into the system without any threat to the existing system. Tackling
the problem of building a dataset, including real-time attacks, provides a remarkable
opportunity for studying the MIDS.

In this study, to investigate the MIDS’s efficiency in ICS fault detection, an electrical
power generation testbed is employed, which is wholly explained in Section 3. The inves-
tigation procedure includes pre-processing the data, fitting supervised learning models,
and evaluating each model’s classification accuracy. The standard methods of assessing
models’ effectiveness are the confusion matrix, the area under the curve (AUC), and the
receiver operating characteristics (ROC) curve.

The remainder of the paper is organized as follows. In Section 2, the methodology
for building a machine learning model is described. Section 3 includes a description of
the dataset. The results and discussions of implementing the model on the dataset are
proposed in Section 4. Section 5 presents the conclusion and future work directions.

2. Methodology

The developed attack detection procedure is described in this section. First, the most
significant attacks in the ICSs are introduced; then, the approach to detect these attacks
is explained. As shown in Figure 2, after collecting the data, the most relevant features
are selected, and a trained ML model based on the corresponding features classifies the

output data.
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Figure 2. The framework of MIDS in ICS for the HAI dataset.
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2.1. Attack Description

Anomaly detection consists of various domains, such as intrusion detection, fault de-
tection, and event detection in sensor networks. Any deviation from a normal performance
could be considered an anomaly in an ICS. It could happen due to several reasons, includ-
ing a malfunction in a system’s component, insider sabotage, or an intentional cyberattack.
In this paper, the concept of anomaly detection based on the MIDS refers to fault detection
and intrusion detection. When a malfunction or insider sabotage occurs, the MIDS tries to
detect faults in the system. In addition, when an attacker attempts to intrude in the system,
it is known as intrusion detection.

Anomaly detection in ICSs using the measured data captured by the SCADA system
has the privilege of detecting any deviation from a normal activity even if the intrusion
is not recognized in the network layer by the NIDS. Evidently, due to a deviation from
the system’s normal behavior, detecting a malfunction or a simple attack that directly
manipulates the system’s measurement data would not be a challenging task for the MIDS.
On the other hand, the main concern about the MIDS effectiveness is its performance in
the detection of stealthy attacks. These kinds of attacks occur when an attacker manipu-
lates sensor measurements or control signals persistency by penetrating control networks
without being detected until the system crashes. Normally, attackers attempt to imitate the
system’s normal behavior to stay undetected. In this paper, not only the MIDS performance
in the detection of malfunctions is evaluated, but also a set of stealthy attacks are injected
into the system to investigate the MIDS effectiveness in the detection of this type of attack.

2.2. Data Analyzing

The problem of imbalanced datasets in IDS modeling is a critical issue. In machine
learning modeling, particularly in classification problems, having access to a balanced
dataset in the training stage has a significant impact on the model’s performance. In the
MIDS, this problem comes from a large number of normal conditions compared to abnormal
activities in the system logs.

To handle the problem of imbalanced datasets, a multitude of techniques are intro-
duced, such as the threshold method, one-class learning, or cost-sensitive learning [22].
In fact, all balancing methods are based on oversampling or undersampling approaches.
Briefly, the undersampling method tries to decrease the number of instances from the ma-
jority class; on the other hand, the oversampling method attempts to increase the number
of samples of the minority class. While undersampling has the risk of losing important
data, oversampling puts the model at the stake of overfitting.

One solution to tackle this problem is the Synthetic Minority Over-sampling Technique
(SMOTE) method [23]. The SMOTE is a random oversampling approach that generates new
instances using existing data from the rare classes. For this, any point from the minority
class that smoothly moves an existing sample around its neighbors will be added to the
dataset until the dataset reaches a balanced condition. Therefore, this method by generating
new samples (which are not exactly the same as the existing samples) makes it possible
to avoid the risk of overfitting problems [24]. In this paper, due to the imbalance in the
labeled data, the SMOTE method is employed to normalize the dataset targeted data.
Moreover, the balanced dataset helps the normal and abnormal data be split equally during
the procedure of building the train and test datasets. In this paper, the Stratified Shuffle
Split (SSS) method is applied to divide the train and test data. The test data include 0.3 of
the entire dataset, and the number of re-shuffling and splitting iterations is considered as 5.

2.3. Feature Engineering

In the MIDS, features are basically the measured data collected by the SCADA system
from embedded sensors. In large-scale ICSs, the quantity of sensors is normally a large
number. This mentions two facts. First, in the proposed problem, the feature selection
method plays a significant role in the performance of the model; second, due to a large
amount of measured data, the model algorithm should be capable of fast prediction to be
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usable in real-time applications. The goal of feature selection is to find the most effective
features that lead to training more accurate models and less computation time. Feature
selection techniques can be classified as filter, wrapper, embedded, and hybrid methods [25].
In the filter method, correlation criteria are employed widely in machine learning problems.
Correlation is a measure of the linear relationship between two or more parameters. In
feature selection, the most correlated features with the target would be chosen to build
the model. Moreover, those features should not show a high correlation with each other
to avoid using redundant data. Pearson correlation technique is one of the most useful
criteria in feature selection, which can be described as

cov(a;, b)

Corr(i) = 1

var(a;) * var(b)

where 4; is the ith feature, b is the target label, and cov() and var() represent the covariance
and the variance functions, respectively. Corr(i) also indicates the Pearson correlation tech-
nique, which shows the correlation between the ith feature and the corresponding target.

To select the features with a high correlation with the target, we need to set a threshold
value for choosing the features with a higher correlation. Suppose that the selected features
are correlated to each other. In that case, we can drop the one with the lowest correlation to
the target. In addition, the features that show a high correlation together can be unified.
To do so, the correlation of the features, two by two, are calculated, and the most correlated
features are nominated for removal.

Moreover, in the pre-processing step, the input data should be scaled. This could
result in a sustainable learning process. In this paper, the MinMaxScaler is employed to
scale the features values. Equation (2) describes this function, where a}" is the ith feature
from mth experiment, a,,;, and a4,y are the minimum and the maximum values of the

feature among the experiments, respectively. In addition, 2’/ indicates the scaled value
i(scaled)

for the ith feature of mth experiment.

(@ — ayin)
m =t "7
aj(scaled) - (ﬂmux — ﬂmin) (2)

2.4. Machine Learning Models

Supervised anomaly detection in ICS generally uses normal activity data to build a
predictive model of normal class as well as anomaly class. Then, any unforeseen data are
compared with the generated model to detect its class. Several algorithms are applied
in this study to train a machine learning model for detecting anomalies by the MIDS.
Having access to a labeled dataset allows for applying supervised learning strategies by
considering two classes of attack and normal activities. In this study, the most accurate
supervised learning algorithms are chosen that are k-nearest neighbors (KNN), decision
tree classifier (DTC), and random forest (RF).

e  The KNN algorithm uses data to classify unforeseen data points by measuring the
distances from the neighbor points. This classification method classifies new data by
the plurality vote of its k neighbors which are assigned to the most similar class.

e  The decision tree classifier uses a tree-like model of decisions and their possible
outcomes. Normally, a decision tree classifier is used for discrete categorical tar-
gets, which, in this paper, the target is a binary variable that includes attack and
normal situations.

¢ The random forest algorithm is a combination of tree classifiers. This classifier tries to
maximize the variance by injecting randomness in data selection and to minimize the
bias by increasing the tree depth to a maximum level.
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2.5. Model Evaluation Metrics

The performance of algorithms in detecting anomalies in ICSs based on supervised
learning is investigated by the following metrics.

e  Confusion matrix: This measure is used to evaluate a classifier’s performance consid-
ering a pre-known set of labeled data. For each classifier, a confusion matrix would
be generated. In addition, sensitivity, specificity, precision, and F1-score metrics are
calculated regarding this matrix. The sensitivity or recall metric shows the likelihood
of predicting true positive, while the specificity measures the true negative rate. In ad-
dition, the precision metric represents the accuracy of the positively predicted classes,
which are actually positive. The F1-Score shows the balance between sensitivity and
precision. Finally, the accuracy of the model is measured by evaluating the trueness of
the results. Figure 3 explains a confusion matrix and its associated metrics.

®  Receiver operator characteristic (ROC) curve and area under the curve (AUC). The
ROC is a graph that illustrates the performance of the classification algorithm at all
classification thresholds and includes two parameters: true-positive and false-positive
rates. The ROC compares the classifiers’ performance among the whole range of class
distributions and error costs. To compare the ROC curves, the area under the ROC
curve is calculated, called the area under the curve (AUC) metric. More values of
AUC implies more accuracy in the model prediction [26].

Actual Value
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Positives Negatives
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= el o .

2% | = Positive Positive 4= Precision
g = Q?q (Correct) (Incorrect) (Positive Predicted Value)
= 2
L
53 »
. — 8 15}
T 5| E False True
[ o] - . .
& 9| §| Negative Negative |<4mm NPV

=) 2 (Incorrect) (Correct) (Negative Predicted Value)

‘t ' ACC, F-measure,
MMC
Recall Specificity ———————————————
(Sensitivity)

Figure 3. Explanation of confusion matrix. ACC and MMC are accuracy and Matthew’s correlation

coefficient, respectively [27,28].

3. Experimental Setup
3.1. ICS Testbed

Performance of anomaly detection in ICSs based on sensors measurement data is
evaluated by implementing machine learning models on a dataset from a power gener-
ation system [18]. As shown in Figure 4, the testbed system has four primary processes,
including a turbine process, a water-treatment process, a boiler process, and a HIL sim-
ulator. In the procedure of building the attack dataset, to protect the system from harm-
ful damages of attacks, the HIL simulates the thermal power and the pumped-storage
hydropower generators.

The boiler process, including four controllers (level controller, pressure controller,
temperature controller, flow-rate controller), is responsible for heating the pumped water
from the main water tank. The turbine process consists of a motor speed controller that
rotates a turbine. The water-treatment process has a level controller that manages the level
control pump (LCP) and the level control valve (LCV) and is in charge of transferring water
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from the upper to the lower reservoir and vice versa. The HIL simulator includes two
generators and a power grid model that feeds an electrical load.

P1: Boiler Process (
@ Level Controller

[® Pressure Controller

P3: Water Treatment Process

Level

® Temperature Controller . P4: Harware-In-the-Loop Simulator Upper Tank °°;‘;’:1L‘“
@ Flow-rate Controller :
Heating f Main bee >@ Load ®< N —
Water [«—=—»{ Water :
' Steam Turbine Pump-Storage
Tank Tank H Power Generator Hydro Power Generator Level

' Controller
| H Valve

Lower Tank

P2: Turbine Process

------- | |

Figure 4. HIL-based augmented ICS.

3.2. Dataset

The dataset used in this paper is from a HIL-based augmented ICS security (HAI)
available at [17]. The testbed dataset is built by collecting measurements of 59 sensors
every second through four days. During these four days, 28 attacks are injected into the
system. These attacks are a combination of 14 process control loop (PCL) primitive attacks
which are affecting four points in the system: setpoints, process variables, control output,
and control parameters. The attacks are stealthy type and cannot be detected easily by the
conventional NIDS.

The next section is devoted to the implementation of supervised machine learning
algorithms on the proposed dataset. The following section illustrates the MIDS performance
on fault detection, especially stealthy attacks.

4. Results and Discussion

The proposed MIDS method based on a machine learning approach is tested on the
HAI dataset, and its performance in anomaly detection is evaluated. The machine learning
algorithms are trained and tested by employing Python. The procedure of generating the
model is shown in Figure 2. In this paper, several classification algorithms were examined,
and the most accurate ones were selected to be implemented on the MIDS model.

Due to the large number of measuring points in the dataset, the most important
features are selected by employing a correlation metric. The feature selection process
contains two steps. First, the most correlated features are identified and unified. In this
step, from 59 features, 41 are selected. Then, among the residue features, the ones showing
the most correlation with the target values are chosen, leading to 17 remaining features.
Figure 5 shows the correlation matrices during the feature selection process. It should
be mentioned that Figure 5b is the correlation matrix after removing the most correlated
features together, and Figure 5c is the correlation matrix after removing the least correlated
feature with the target.

Mostly, in the intrusion detection problems, the training datasets are suffering from
imbalance targeted data. This is because of the much lower duration of attack activities
compared to the normal conditions. In the testbed dataset, less than 4% of the whole data
are associated with abnormal activities. This imbalance of data could affect the performance
evaluation of the trained models. The SMOTE method is employed to tackle this problem.
This method helps to balance the dataset without a high risk of overfitting. Figure 6 shows
the target distribution in the dataset before and after normalizing.
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It should be considered that the sensors’ measurements in an ICS have a wide range
of values. The unscaled data could cause significant problems during the model training
procedure, and lead to an unsustainable learning process. Therefore, the MinMaxScaler
function explained in Section 3 is used to scale the measurement data in an appropri-
ate range.

After the pre-processing step, the dataset is ready to train a machine learning model.
In this study, the supervised classification models that are implemented on the dataset are
k-nearest neighbor (KNN), random forest (RF), and decision tree classifier (DTC). These
algorithms are chosen based on their effectiveness on this particular problem. Two major
factors are considered in the evaluation of the algorithms’ performances. First, the accuracy
in classifying the targeted output. Second, the required time for fitting and predicting
processes. For the first factor, the confusion matrix is computed (Figure 7), and regarding
this matrix, other metrics such as accuracy, precision, F1-score, specificity, and sensitivity
are calculated. More information related to the confusion matrix concept and its metrics is
available at [29]. For the second factor, the computation time for fitting the training dataset
and predicting the test dataset is captured. Table 1 shows the confusion matrices along
with the computation times for the selected algorithms.
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= BOSEB7 - E0000 o - 60000
- 50000 - 50000
-40000 - 40000
- 30000 - 30000
— 82907 -ao000  — 3570 20000
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(a) Confusion matrix for the KNN algorithm. (b) Confusion matrix for the decision tree algorithm.
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(c) Confusion matrix for the random forest algorithm.

Figure 7. Confusion matrices.
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Table 1. Models’ performance comparison.

KNN DTC RF
Precision 0.9732 0.9937 0.9976
Recall 0.9729 0.9937 0.9976
F1-score 0.9729 0.9937 0.9976
Accuracy 0.9729 0.9937 0.9976
AUC 0.9729 0.9937 0.9976

Fitting time [s] 173 5.8 2.21
Prediction time [s] 104 0.0283 0.0505

The random forest algorithm has the best performance in detecting the anomalies in
the dataset. This algorithm consumes the least time for generating the model, while the
decision tree classifier has the lowest prediction computing time. This mentions that a
trade-off between accuracy and prediction time should be considered for a real-life problem.
Moreover, the KNN algorithm shows a lower accuracy in predicting the anomalies and
requires a longer time for fitting and predicting processes. The result implies that the MIDS
can be a reliable solution for the anomaly detection problem. Applying measurement
data from the SCADA system to detect attacks could be considered a protection layer in
ICSs. While the NIDS can protect the network traffic from malicious intrusions, the MIDS
could improve the system’s reliability as the second layer of protection, especially against
stealthy attacks.

Usually, stealthy attacks that intrude into the field level (level 0) of an ICS attempt
to conceal the state changes by imitating a normal behavior and deceiving the protection
systems. Usually, building a dataset that includes stealthy attacks is a complicated process.
For the first time, by leveraging HIL systems, a real-life dataset containing stealthy attacks
on sensor data measurements is provided. This dataset consists of actual data during
intrusion attacks that manipulate the control parameters.

The ROC curve illustrated in Figure 8 indicates that the random forest algorithm has a
remarkable performance in detecting anomalies. This figure compares the three applied
algorithms” accuracy using the AUC of the ROC curves. The diagonal dashed line from
the bottom left to the top right corner of Figure 8a represents a non-discriminatory test
points where sensitivity = 1-specificity. As shown in Figure 8b, the random forest algorithm
performs far better than the KNN and the DTC algorithms by an AUC of 1.
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(a) ROC curves.

(b) ROC curves from a closer view.

Figure 8. ROC curves for KNN, random forest, and decision tree classifiers.

5. Conclusions

In this paper, the classification performance of the measurement intrusion detection
system is investigated and a remarkable outcome is concluded, especially on stealthy
attacks. The MIDS is working based on the measured data that the SCADA system collects
from the ICS sensors. IDSs are mostly investigating network traffic to find malicious activi-
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ties in the system, and stealthy attacks are hard to be detected by these strategies. Because
the MIDS is investigating the measurement data, it could detect deceptive behaviors in
the system better than the NIDS. The HAI dataset, including actual data from a power
generation system, is applied to evaluate the MIDS performance in fault detection. The
results show a very successful classification employing the random forest algorithm in the
fault detection process with an accuracy of 99.76%.

Nevertheless, although the MIDS can greatly detect anomalies, especially stealthy
attacks, it cannot prevent malicious intrusions in the layer of network traffic. Indeed, the
MIDS could detect anomalies when they successfully deceive the NIDS by imitating a
normal behavior in the system. Therefore, the MIDS cannot be a substitution of the NIDS;
however, it can be embedded as the second layer of protection in the critical infrastructure
of ICSs. By combining these two protection layers, if any malfunction in the system,
including insider’s sabotage, systems failure, stealthy attack, or network intrusion happens,
the IDS could be sufficient in detecting it successfully.

Moreover, this study leverages the supervised learning approach to build a machine
learning model. The unsupervised learning methods are also a topic of interest for our
future works; however, their efficiencies in comparison with supervised learning models
should be investigated. In the future, we would like to investigate unsupervised learning
algorithms due to the fact that they don’t require labeled data for the model training step,
which leads to detecting new anomalies in the system.
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