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Abstract: The high penetration of distributed generation in distributed energy systems causes the
variation of power loss and makes the power grid become more complicated, so this paper takes
various types of optimal algorithms into account and simulates the feeder reconfiguration on the
IEEE-33 system as well as the Taiwan power system. The simulation verifies linear population size
reduction of successful history-based adaptive differential evolution (L-SHADE) and particle swarm
optimization (PSO) fitness in different systems and provides the recommended location of distributed
energy. The proposed method keeps the voltage bound of 0.95 to 1.03 p.u. of Taiwan regulation.
In the IEEE-33 system, we achieved a 52.57% power loss reduction after feeder reconfiguration,
and a 70.55% power loss reduction after the distributed generator was implemented and feeder
reconfiguration. Under the variation of load demand and power generation of the Taiwan power
system, we establish the system models by forecasting one-day load demand. Then, we propose a
one-day feeder switch operation strategy by considering the switches’ operation frequency with the
reduction of 83.3% manual operation and recommend feeder automation to achieve feeder power
loss reduction, voltage profile improvement and get regional power grid resilient configuration.

Keywords: automatic feeder; distributed generator; distribution feeder reconfiguration; optimization
algorithm; power loss reduction

1. Introduction

The huge and complicated power system will generate fault current when fault occurs,
which will have an impact on the stability of power supply. The power system contains
distributed power generation, which will cause dual current in different ways on the power
system that influences the choice of protective relay. Most state-of-the-art technical skills
and power system connection regulations are formulated to maintain the reliability of
power transmission and improve the toughness of the power system.

Diversified feeder types were developed [1,2] to facilitate the switching of feeder
switches in emergency situations, realize load transfer, stabilize the armature in the
transmission and distribution area, enhance the strength of the power grid and improve
power quality.

Feeder reconfiguration is one of the effective and common ways to improve power
grid-resilient dispatch. In Reference [3], the author presents particle swarm optimization
(PSO) for solving feeder reconfiguration of a distributed network with the objective of
minimum power loss. Minimum spanning tree (MST) combined with binary particle swarm
(BPSO) is presented in References [4,5], and the hybrid PSO with ant colony optimization
(ACO) algorithm in Reference [6], to solve the power loss and unstable system voltage.

In recent years, due to the vigorous development of renewable energy, the scale and
the number of solar farms have continued to increase. Therefore, the problem of distributed
generator (DG) construction is not only to minimize power consumption, but also the need
to consider DG grid-connected feeders. In Reference [3], the PSO is used to minimize the
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power loss of the feeder to select the DG capacity and location method, and Reference [7]
used the water cycle algorithm for IEEE 33 bus and IEEE 69 bus to update the algorithm
toward the same goal. In Reference [8], the author considers the dynamic distribution of
feeders and increasing time dependencies and improving PSO and Grey Wolf Optimizer
to complete the optimization calculation of operating costs. To achieve DG establishment
optimization, Reference [9] considers the intermittent nature of DG and the energy storage
system, then using loss sensitivity factor and multi-objective ant lion optimizer. Among
them, it is seldom considered to add renewable energy generation and load-ahead power
forecast to do the schedule planning of feeder reorganization. Because of the uncertainty
and high proportion of renewable energy, it has a great relationship with the loss of the
feeder. It is more significant to do the advance scheduling in practical applications.

This paper proposes size reduction of successful history-based adaptive differential
evolution (SHADE) with the linear population size reduction (L-SHADE) algorithm and
PSO math models with objectives of minimum power loss in a distributed system which
contains distributed generation. By testing on the IEEE 33 standard system and verifying
on the Taiwan power system, this paper analyzes the resiliently dispatchable power grid
by considering the impact of the distributed generator capacity, establishment location,
voltage variation and the load demand effect. According to feeder reorganization, it needs
to consider the characteristics of feeder switch reorganization, and combines multiple vari-
ables (feeder load, feeder resistance, feeder reactance, etc.) with optimization algorithms.
After many iterations, complex high-dimensional problems have been completed accord-
ing to grid standards. The related and commonly used optimization algorithms [10–16],
including PSO with a rich history of operations [14] and the SHADE with linear population
size reduction algorithm improved by differential evolution (DE) [12], were implemented
in the feeder reorganize simulation and analysis. Also, L-SHADE has obtained the best
configuration of high-output power generation in the discrete optimization problems of
the generator configuration of wind power plants [17] and has a significant compensation
improvement in optimizing the harmonic parameters of the design circuit [18].

The rest of this paper is organized as follows. In Section 2, reconfiguration problem
constraints will be introduced. In Section 3, there are mathematical models of the proposed
algorithm L-SHADE and PSO. In Section 4, the optimal algorithms combined with feeder
reconfiguration analysis in various scenarios will be compared. Finally, the conclusion in
Section 5 will summarize the optimal feeder reconfiguration scheduling.

2. Reconfiguration Problems
2.1. Distributed Generation Characteristics

In the Taiwan power system, there are 17 distributed generators which are all photo-
voltaic (PV) generation and connected to the distributed network system. The generation
characteristics are shown in Table 1.

According to the different irradiance in a day, the generation function per square meter
is shown in (1) by Meteorological Information-Based Green Energy Operations Center and
power generation records in the Taiwan power company.

Pt = SSR× η (1)

where SSR is the amount of irradiance observed by the satellite and η is PV panel transfor-
mation efficiency.

Considering the PV generation curve and PV panels’ power transformation, this paper
simulates the sum of the PV capacity, which is 3057.7 kW, changing in proportion on the
day of 20 June 2020.
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Table 1. Distributed energy generation characteristics.

Challenge Statements

Intermittent generation Time of generation peak is different with peak of load demand
so takes the shape of duck curve.

Generation non-smoothing The severe variation easily makes system voltage and
current unstable.

Lack of system inertial In the severe power accident, generation equipment has no time
to respond, and is then disconnected.

Fault current
The fault current comes from the main transformer and
distributed generation will cause feeder breaker lack of

breaking capacity and increase short current.

Power reverse transmission
Comparing with the single way of electricity transmission

before, the multiple transmission ways will easily cause main
transformer power reverse transmission.

2.2. Feeder Reconfiguration Constraints
2.2.1. Feeder Current Constraints

In order to keep the power system under normal operation in a distributed network,
the various feeder current limits are shown in Table 2.

Table 2. Distributed system feeder current limits.

Type Wire Diameter Tolerable Max Current

Underground Cable
Main Feeder 500 MCM 600 A

Branch #1 AWG 200 A

Overhead lines
Main Feeder 477 MCM 590 A

Branch #2 AWG 165 A

In the simulation, the current of each branch should be less than or equal to the
maximum current so that the feeder can tolerate it, as shown in Equation (2). In order to
cooperate with the load current on the feeder, which will not exceed the maximum limit
when the feeder emergency load transformation occurs, we limit the current variation as in
Equation (3).

|Ii,i+1| ≤
∣∣∣Ii,i+1(max)

∣∣∣ (2)

4 Ixy =
Vx −Vy

Rloop + jXloop
(3)

Here,
∣∣∣Ii,i+1(max)

∣∣∣ is the maximum current between bus i and bus i + 1, 4Ixy is the
current variation which passes through the feeder, and Vx as well as Vy are voltage at both
ends of the feeder. Lastly, Rloop and jXloop are the impedance of the feeder.

2.2.2. Voltage Variation

During the normal operation, the voltage should maintain the voltage variation in
Equation (4), in order to keep the power system in the stable condition:

Uimin ≤ Ui ≤ Uimax (4)

The lowest limit of the feeder voltage variation is Uimin (here is 0.95 p.u.), and the
highest limit of the feeder voltage variation is Uimax (1.03 p.u.), whereas Ui is the voltage
difference between the two busses.
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2.2.3. Reverse Power Limit

In the IEEE system, this paper assumes the maximum capacity of the distributed
generation, which on the feeder is 70% of the load demand, with a view to making sure it
is under the reverse current limit. The control limit considers the rated capacity of the main
transformer to achieve the balance of supply as well as demand, and meanwhile, keep the
system operation stable.

2.2.4. Radial Network

The power system will keep the radial network before and after the feeder reconfigu-
ration to avoid the isolated islands or even the power system shut down. The simulation
excludes the feeder switch which could not compose the radial network. By reconfiguring
the rest feeder switch iteratively, as shown in (5), we can make sure the system keeps the
radial network in the normal operation.

gk ∈ Gk (5)

In each feeder, gk is one of the radial feeders after feeder reconfiguration, and Gk is
the combination of all types of radial feeder.

3. Optimal Algorithm Math Models

This section describes the math models of L-SHADE and PSO. We first describe L-
SHADE, which is modified DE. Contrary to L-SHADE, PSO has rich calculation history
which is suitable to solve feeder reconfiguration.

3.1. L-SHADE Optimal Algorithm

L-SHADE is improved by DE, which is called adaptive DE with linear population size
reduction [19,20]. In the DE algorithm, the calculation steps are initialization, mutation,
reconfiguration (crossover) and selection. According to DE characteristics, it developed
the SHADE algorithm and used two corresponding variables, which are the scaling fac-
tor (F) and the cross rate (CR), to search in the historic data. Then, SHADE developed
into L-SHADE which combined the DE algorithm while linearly reducing the searching
population after each iteration to decrease the calculation time.

3.1.1. Initialize Population

In Equation (6), the variable i is selected from 1 to the population size (NP), which is
the searching population (i ∈ [1, NP]), and the variable j is selected from 1 to D, which
represents the calculation dimension (j ∈ [1, D]). We usually set j to the number of the
control variables in calculation with the upper limit xmax

j as well as the lower limit xmin
j . In

order to maintain diversity, randi,j[0, 1] is the variable selected randomly from 0 to 1.

x(0)i,j = xmax
j + randi,j[0, 1](xmax

j − xmin
j ) (6)

3.1.2. Mutation

During the algorithm, each difference will cause the mutation vector in (7) by selecting
two unequal vectors and combined with the scaling factor (F) (when a target vector is
replaced by a trial vector, the target vector will be added into the archive). However, the
calculation should ensure that x(G)

Ri
1

and x(G)

Ri
2

are different individuals:

V(G)
i = x(G)

i + F(G)
i · (x(G)

pbest − x(G)
i ) + F(G)

i · (x(G)

Ri
1
− x(G)

Ri
2
) (7)

As shown in (7), R1
i and R2

i are two of the variables which are mutually exclusive,

selected from the range of [1, NP]. x(G)
i is one of the random individuals, and x(G)

pbest is
the other individual selected from the contemporary population. While G means the Gth
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generation, Fi represents the scaling factor applied on the ith individual for scaling at
the Gth.

3.1.3. Parameter Adaption

In each generation, the offspring will vary by the new scaling factor and the cross rate
from (8) and (9):

F(t)
i = randc(µF(t)

r , 0.1) (8)

CR(t)
i = randn(µCR(t)

r , 0.1) (9)

The two are randomly selected from the standard distribution and the Cauchy distri-
bution. In each generation, when there is a better generation, the original CR as well as F
will be recorded as SCR and SF. After each iteration, µCR and µF will be renewed, as in
(10) and (11):

µCR = (1− c) · µCR + c ·meanA(SCR) (10)

µF = (1− c) · µF + c ·meanL(SF) (11)

c is learning factor which is usually 0.1, meanA is arithmetic mean and meanL is known
by Lehmer Mean, which is calculated as in Equation (12):

meanL(SF) =

∑
F∈SF

F2

∑
F∈SF

F
(12)

3.1.4. Reconfiguration (Crossover)

By means of mutation, the mutation vector V(G)
i will combine with objective vector

x(G)
i to take the shape of the next variable vector u(G)

i,j , shown in (13):

u(G)
i,j =

{
v(G)

i,j , i f j= jrand or randi,j [1,0) CR (G)
i ,

x(0)i,j , otherwise.
(13)

to generate the new vector and create diversity. In (13), jrand is a random value in 1 to D,
where D represents the problem dimension.

3.1.5. Selection

If the performance of the offspring is better than the parent, it will replace into objective
vectors in (14):

x(G+1)
i,j =

{
u(G)

i,j , i f f (u(G)
i,j ) f (x(G)

i,j ),

x(G)
i,j , otherwise.

(14)

Function F means the function to get the minimum objective. When the new offspring
performance is less than or equal to the value of the objective function, it will substitute for
the objective vector in the next iteration.

3.1.6. Linear Population Size Reduction Technique

To speed-up the process of the calculation, after every generation iteration, the size of
G+ 1th is NP (G + 1) in (15) for decreasing the range of the searching population. We usually
set Npmin to 4 because the variables in the mutation process are 4. NFE is the number of
fitness evaluations. If Np (G + 1) > Np (G), the difference from (Np (G)− Np (G + 1))
will be deleted. The L-SHADE optimal algorithm simulation procedure is shown in
Figure 1.

Np(G + 1) = round [(
Npmin − Npini

NFEmax
) · NFE + Npini] (15)
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Figure 1. L-SHADE optimal algorithm simulation procedure.

Function F means the function to get the minimum objective. When the new offspring
performance is less than or equal to the value of the objective function, it will substitute for
the objective vector in the next iteration.

3.2. PSO Optimal Algorithm

The PSO optimal algorithm iteration math model is as shown in Figure 2. The initial
variables contain searching domain (D), the best position of individual particle (pbest), the
best position of current swarm particles (gbest) and maximum iteration times (itermax). The
ith particle and velocity are given by (16) and (17).

xi = (xi1, xi2, xi3, . . . , xiD) (16)

vi = (vi1, vi2, vi3, . . . , viD) (17)

Figure 2. PSO algorithm math models.

The iteration velocity of every step of the particle evolution is defined as in (18), and
the new position after iteration is defined as in Equation (19):

v(i+1)
ij = w · v(t)ij + c1 · r · (pbest− x(t)ij ) + c2 · r · (gbest− x(t)ij ) (18)

x(t+1)
ij = x(t)ij + v(t+1)

ij (19)
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where v(t)ij is the velocity of the ith particle in the tth iteration, x(t)ij is the position of the ith

particle in the tth iteration, c1 and c2 are the learning factors and w is the weight, with the
calculation as shown in Equation (20):

w = wmax − iter · wmax − wmin

itermax
(20)

The time of the iteration is iter, and wmax as well as wmin are the upper and lower
limits of the weight. The learning factor c1 will impact the learning efficiency of the particle,
and c2 will impact the learning efficiency of the population. The bigger the w, the wider
range the particle will search to get the global optimal point. On the contrary, the smaller
the w, the result will get closer to the local optimal point.

Gi(t) is the best position of the group after training, and Pi(t) is the best position of
the individual after training. Before training, Xi(t) is the initial position of the individual
particle, Xi(t + 1) is the next position after training, Vi(t) is the initial velocity of particle
movement and Vi(t + 1) is the velocity of particle movement after iteration. The simulation
procedure of the PSO optimal algorithm is shown in Figure 3.

3.3. Objective Function

After the iteration, the objective function of the feeder reconfiguration is to get the
feeder configuration with the minimum power loss, as presented in (21):

minPloss =
n

∑
i=0

Pi
2 + Qi

2

Ui
2 kiri (21)

Here, i indicates the number of branches in the system feeder, n is the summation
of the branch number and ki presents the switch condition of the branch i, in which zero
means the switch turns off. By calculating the feeder branch resistance i, active power Pi,
reactive power Qi and the voltage Ui on the feeder, we can obtain the power loss of the
system feeder.

Figure 3. PSO optimal algorithm simulation procedure.
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4. Case Study
4.1. System Parameter Definition

There are three systems in this paper, as shown in Table 3. This paper compared L-
SHADE and PSO in three different systems with MATLAB using MATPOWER to calculate
the power flow integrated with an optimal algorithm. The flow chart is shown in Figure 4.

Table 3. Scale of the three systems.

System IEEE 33 [21] Taiwan Case 1
System

Taiwan Case 2
System

Apparent power (MVA) 100 25 25

System voltage (kV) 12.66 11.4 11.4

Total of system load demand 3715 kW + 2300 kvar
1471.6 kW +
483.7 kvar

(one-day average)

2745.6 kW +
902.4 kvar

(one-day average)

Branch number 37 78 134

Node number 32 73 126

Tie switch number 5 5 8

4.2. Optimal Reconfiguration Analysis
4.2.1. IEEE 33 System Background

The standard IEEE 33 system is shown in Figure 5. To correspond to the radial network,
there are five tie switches, which are often open in the IEEE 33 system.

4.2.2. IEEE 33 Feeder Reconfiguration

Table 4 summarizes the results obtained with L-SHADE and PSO algorithms in the
IEEE 33 node test feeder. By confirming the voltage distribution, it is significant to the
stability of the system, as shown in Figures 6 and 7 in different scenarios.

In the four different scenario simulations in Figure 7, the power loss reduction percent-
age could reach up to 70.55% of the IEEE 33 system after DG implementation and feeder
reconfiguration, with the tie switches as 6, 10, 12, 27 and 30 and the minimum voltage pf
0.967842 p.u. at bus number 32.
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Figure 4. Flow chart.

Figure 5. IEEE 33 system feeder.
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Table 4. Results obtained after execution of the L-SHADE and PSO algorithms in the IEEE 33 node test feeder.

Scenario Statement L-SHADE PSO

Before feeder reconfiguration
(Initial system)

Tie switches 33, 34, 35, 36, 37 33, 34, 35, 36, 37

Power loss (kW) 202.68 202.68

Power loss reduction percentage (%) – –

Min voltage
(bus number) 0.91075 p.u. (18) 0.91075 p.u. (18)

After feeder reconfiguration

Tie switches 3, 10, 16, 33, 37 5, 22, 32, 33, 34

Power loss (kW) 96.1344 150.6883

Power loss reduction percentage (%) 52.57 25.65

Min voltage
(bus number) 0.95657 p.u. (8) 0.95603 p.u. (33)

After DG*3 implementation
(keep initial system)

Tie switches 33, 34, 35, 36, 37 33, 34, 35, 36, 37

Power loss (kW) 72.5447 90.7069

DG capacity (kW)
(bus number)

751 (14)
926 (24)

1021 (30)

1220 (6)
650 (11)
200 (30)

Power loss reduction
percentage (%) 64.21 55.25

Min voltage
(bus number) 0.9726 p.u. (33) 0.9578 p.u. (33)

Figure 6. (a) Voltage profile before and after reconfiguration. (b) Voltage profile before and after reconfiguration. (c) Voltage
profile after DG implementation. (d)Voltage profile after DG implementation.
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Figure 7. Various feeder bus voltage profile patterns.

4.3. Impact by Load Variation to the Feeder Switch
4.3.1. Taiwan Case 1 System Background

As above, in the IEEE 33 standard test system, we tested the reliability of L-SHADE
and PSO optimal algorithms in feeder reconfiguration. Then, we verified two of the
algorithms in the Taiwan case 1 system, as shown in Figure 8, and analyzed the impact of
the load variation to the feeder switch from light-load to overload.

Figure 8. Taiwan case 1 system network with renewable energy sources present.

4.3.2. Taiwan Case 1 Feeder Reconfiguration

In this area, there are numerous households, but no large-scale load demands of the
factory. By considering the rapid change at 4:00, 12:00 and 20:00 o’clock respectively, the
control variables are the active power as well as reactive power (load demand) in each hour,
the condition of the feeder switch and the domain of the calculation is set to eight. The
results in Table 5 show the minimum voltage profile and the power loss after simulation
with L-SHADE and PSO algorithms.
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Table 5. Results obtained after execution of the L-SHADE and PSO algorithms in the Taiwan case 1 system.

Scenario Statement Initial System L-SHADE PSO

After reconfiguration at
4:00

Tie switches 74, 75, 76, 77, 78 12, 17, 26, 30, 33 6, 10, 24, 30, 47

Power loss (kW) 13.4505 3.7289 12.3869

Power loss reduction percentage (%) – 72.2769% 7.9075%

Min voltage
(bus number)

0.9989 p.u.
(18)

0.9991 p.u.
(49)

0.9990 p.u.
(18)

After reconfiguration at
12:00

Tie switches 74, 75, 76, 77, 78 17, 33, 50, 76, 78 4, 24, 30, 33, 47

Power loss (kW) 9.9062 9.1997 9.8512

Power loss reduction percentage (%) – 7.1319% 0.5552%

Min voltage
(bus number)

0.9992 p.u.
(18)

0.9990 p.u.
(49)

0.9991 p.u.
(18)

After reconfiguration at
20:00

Tie switches 74, 75, 76, 77, 78 17, 24, 30, 33, 78 3, 6, 24, 26, 30

Power loss (kW) 31.5766 9.3244 31.9362

Power loss reduction percentage (%) – 70.4705% −1.1388%

Min voltage
(bus number)

0.9982 p.u.
(18)

0.9987 p.u.
(49)

0.9981 p.u.
(18)

The Taiwan case 1 system simulation showed two results: in the voltage profile,
both L-SHADE and PSO could maintain the minimum voltage in the constraints, while L-
SHADE could keep voltage distribution more stable than PSO. In the power loss, L-SHADE
efficiently lowered the power loss compared to the initial system and the simulation of PSO
from light-load to overload. As a result of the above-mentioned results, the next simulation
will mainly use L-SHADE to raise the efficiency of the power grid transmission.

4.3.3. Taiwan Case 2 System Background

Combined with feeders in neighboring areas, L-SHADE is applied to the Taiwan case
2 system in Figure 9. Considering the changes in load and DG generation in one day, we
analyzed the impacts to the feeder switches schedule and proposed the one-day feeder
switch configuration and recommendations.

In Figure 9, the red circles mean the distributed generator connected to the system,
which is all PV generators, the blue circles mean the tie-switches, which are often turned
on in the system with the dotted line. The whole system is combined with three regions, as
shown in Table 6. Only area A contains decentralized renewable energy (here, all are PV),
and the load users are mainly agricultural and households, but no large-scale load demand
users, such as factories.

According to the change in the daily load demand of each system, as shown in Figure 10,
it can be obviously seen that the peak power consumption time is about 20:00 to 23:00
o’clock, while the light load consumption time focuses on 6:00 to 8:00 o’clock. After 16:00
o’clock, the load demand gradually increases, however, after 23:00 o’clock, the load demand
gradually decreases. The light-load in the system is about 0.53 times that of the peak load
consumption.
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Figure 9. Taiwan case 2 system network with renewable energy sources present.

Table 6. Taiwan case 2 system feeder data.

System Area A Area B Area C Area A + B + C

Apparent power (MVA) 25
System voltage (kV) 11.4
Total of system load

demand (one-day average)
1471.6 kW +
483.7 kvar

756.7 kW +
248.7 kvar

517.3 kW +
170 kvar

2745.6 kW +
902.4 kvar

Branch number 73 35 20 134
node number 73 33 20 126
DG number 17 0 0 17

Total DG capacity (kW) 3057.7 – – 3057.7
Tie switch number – 2 – 8



Electronics 2021, 10, 362 14 of 18

Figure 10. Taiwan case 2 one-day load demand and power generation variation.

4.3.4. Taiwan Case 2 Feeder Reconfiguration

There are 68 feeder switches that can be operated in the system, and the daily switches
schedule is summarized in Table 7. The total number of switching operations is 209.
According to Table 8, the total number of frequently changed switches under daily load is
85. If we set the eight frequently operated switches in Table 8 into automatic, the number
of manually operated switches was reduced to 124 and the number of manual operational
times reduced by 40.7%.

Table 7. Feeder switches schedule in daily load demand variation.

Time Tie Switches Variation

Original system 100 109 129 130 131 132 133 134
00:00 6 53 54 84 99 111 117 132
01:00 3 28 29 84 99 111 124 132
02:00 3 4 28 84 99 113 124 132
03:00 3 7 12 40 84 99 102 116
04:00 3 7 40 50 84 99 116 117
05:00 28 50 51 84 99 104 116 132
06:00 15 34 53 84 99 116 120 132
07:00 3 29 40 84 99 111 124 132
08:00 3 28 50 77 84 99 111 117
09:00 10 12 58 82 84 99 116 124
10:00 12 51 54 77 84 99 101 111
11:00 3 29 54 84 99 113 120 132
12:00 10 30 58 82 84 99 111 120
13:00 15 51 58 84 90 99 113 124
14:00 3 50 54 84 99 111 117 132
15:00 10 50 54 80 84 99 113 117
16:00 41 51 78 84 99 113 117 129
17:00 15 20 51 80 84 99 113 124
18:00 34 50 53 84 90 99 113 124
19:00 6 20 51 82 84 99 116 120
20:00 4 28 53 84 99 113 117 132
21:00 3 15 34 77 84 99 116 120
22:00 41 51 54 78 84 99 116 124
23:00 12 38 51 84 99 105 113 132

Table 8. One-day frequently changed switches.

Switch number 3 51 54 111 113 117 124 132

Operation frequency 10 12 8 10 12 10 12 11



Electronics 2021, 10, 362 15 of 18

4.3.5. Reconfiguration Considering the Operation Frequency

The excessively frequent switching operations will consume labor costs and time in
actual power company operation, so this paper takes the switching operation frequency
into account.

Retaining the switches with high operational frequency while limiting the non-action
switches or low relational switches can reduce the complexity of the actual feeder. We limit
the operable switches from 68 to 28 by setting the switches that are far away from the main
transformer and those with fewer occurrences as inoperable. The feeder switches schedule
in daily load demand variation by considering the operation frequency is shown in Table 9.

Table 9. Feeder switches schedule in daily load demand variation by considering the operation
frequency.

Time Tie Switches Variation

Original system 100 109 129 130 131 132 133 134
00:00 3 13 34 84 99 113 122 132
01:00 7 13 34 53 84 99 113 122
02:00 3 13 34 84 99 111 124 132
03:00 3 7 13 34 84 99 111 124
04:00 13 34 83 84 99 113 124 132
05:00 34 50 53 84 99 113 122 132
06:00 3 7 13 34 84 99 113 122
07:00 7 13 34 53 84 99 113 124
08:00 7 13 34 53 84 95 99 124
09:00 3 7 34 50 84 95 99 124
10:00 13 34 83 84 95 99 122 132
11:00 3 7 13 34 84 99 111 124
12:00 13 34 53 84 95 99 122 132
13:00 7 34 50 53 84 99 113 124
14:00 3 7 13 34 84 99 113 122
15:00 7 34 50 83 84 99 113 124
16:00 13 34 53 84 99 111 122 132
17:00 10 34 50 84 99 113 122 132
18:00 3 13 34 84 99 113 124 132
19:00 13 34 53 84 99 113 124 132
20:00 13 34 53 84 95 99 124 132
21:00 7 34 50 53 84 99 113 124
22:00 3 7 13 34 84 95 99 124
23:00 34 50 83 84 95 99 122 132

Under the consideration of DG generation and load variation, we proposed the
switches operation schedule of every hour. It can be found from Table 9 that the frequently
acting switches are numbered 3, 7, 13, 50, 53, 122, 124 and 132. The switch numbers 34, 84
and 99 are almost in the state of normally open switches, so the total switching operation
number is 141. Considering the total number of frequently changed switches, as shown
in Table 10, there are 106 in total. Setting the eight switches into automatic can effectively
reduce the operation number to 35 and significantly reduce labor costs and reduce the
number of manual operational times by 83.3%.

Table 10. One-day frequently changed switches by considering the operation frequency.

Switch number 3 7 13 50 53 122 124 132

Operation frequency 14 12 14 14 12 13 12 13

5. Conclusions

This paper compared L-SHADE with PSO in feeder reconfiguration analysis consider-
ing distributed generation connection and load variation to achieve the goal of reducing
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the power loss. We tested the two algorithms in the IEEE 33 standard system under the
constraints including voltage, current and DG capacity to improve the power system con-
dition.

Also, we verified L-SHADE and PSO in the Taiwan system. By taking into account the
one-day load fluctuation and PV generation, L-SHADE effectively reduces the power loss
and keeps the voltage variation and current changes within the limit. In order to save the
labor costs and raise system-resilient scheduling, we reduced the feeder switches operation
number to 35 by setting the feeder switches with frequent actions to automation.

The contributions of this paper are as follows: (1) We analyzed the PSO and L-SHADE
in the feeder reconfiguration by applying them to the IEEE 33 standard system as well
as the Taiwan power system. (2) After verifying in the Taiwan system, the algorithm we
proposed, L-SHADE, spends less time than PSO in calculating the optimal solution for
convergence. Also, L-SHADE effectively reduces the power loss with the limit constraints.
(3) The system uses real feeder parameters and a high percentage of solar power plants.
The proposed scheduling showed reliability and effectiveness. Also, we achieved the goal
of power loss reduction as well as feeder automation planning, with an 83.3% reduction of
the manual operation times.
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Abbreviations

Pt power generation per square meter
SSR amount of irradiance observed by the satellite
η PV panel transformation efficiency
Ii,i+1 current between bus i and bus i + 1
Vx, Vy voltage at ends of the feeder
Rloop resistance of the feeder
jXloop reactance of the feeder
∆Ixy current variation which passes through the feeder
Ui voltage difference between the two busses
gk radial feeder after feeder reconfiguration
Gk combination of all types of radial feeder
NP population size
D dimension
F scaling factor
G the Gth generation
CR cross rate
c learning factor
NFE number of fitness evaluations
pbest best position of individual particle
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gbest best position of current swarm particles
itermax maximum iteration times
w weight
ki switch condition of the branch
ri feeder branch resistance
Pi feeder branch active power
Qi feeder branch reactive power
Ui voltage on the feeder
SHADE Successful history-based adaptive differential evolution
L-SHADE SHADE with linear population size reduction
PSO particle swarm optimization
DG Distributed generator
DE Differential evolution
PV Photovoltaic
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