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Abstract: The paper describes major issues related to the design of a portable SiC-based DC supply
developed for evaluation of a high-voltage Marx generator. This generator is developed to be a
part of an electromagnetic cannon providing very high voltage and current pulses aiming at the
destruction of electronics equipment in a specific area. The portable DC supply offers a very high
voltage gain: input voltage is 24 V, while the generator requires supply voltages up to 50 kV. Thus, the
system contains two stages designed on the basis of SiC power devices operating with frequencies
up to 100 kHz. At first, the input voltage is boosted up to 400 V by a non-isolated double-boost
converter, and then a resonant DC-DC converter with a special transformer elevates the voltage to
the required level. In the paper, the main components of the laboratory setup are presented, and
experimental results of the DC supply and whole system are also shown.

Keywords: Marx generator; high-voltage; SiC; DC-DC converters; DC supply

1. Introduction

Marx generators are still the most popular systems used to generate high-voltage
pulses. In addition to the typical microsecond voltage surges used to test power de-
vices in accordance with the PN-EN 60060-1 standard [1], tests using pulses with a rise
time of nanoseconds are becoming more and more common. They are used in indus-
try [2–4], medicine [5] and scientific research, where they are used for electroporation-
defunctionalization of cell membranes [6,7], which can be used for sterilization, but also
for the penetration of cells and their organelles by chemical compounds (e.g., drugs) or
genetic material. However, most applications of this type of pulses are in electromagnetic
compatibility [8,9], where they can simulate nuclear electromagnetic pulses (NEMPs) or
high-altitude electromagnetic pulses (HEMPs) when testing civil or military equipment,
e.g., according to the MIL-STD-461 standard [10,11]. Examples of such generators can be
found in the portfolio of different companies, such as in [12]; however, the pulses produced
by the generators of the mentioned manufacturer show a rise time of 2.3 ± 0.5 ns and are
charged from DC power supplies with voltages of 0.2 kV to 25 kV, with positive polarity
only [13]. Tests with the use of this type of generator are often performed outside laborato-
ries, on open training grounds [14]. Hence, it is recommended that the design of the DC
power supply should be as light and compact as possible, which will facilitate transport.
An additional advantage will be the battery power supply, which enables conducting
research even on test sites not equipped with auxiliary infrastructure. Such a system
requires portable DC power supplies providing voltages up to 50 kV but with the feed
from low-voltage batteries.

Taking into account these requirements, a portable DC power supply has been de-
veloped on the basis of silicon carbide (SiC) power device technology. The first step of
the research was a literature review in the area of high-voltage power supplies and it
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was observed that most solutions use various types of transformer-based DC-DC convert-
ers [15–22]. In [15–17], a single active bridge was applied, while in some other works, a
resonant converter can be found [19–22]. What is also interesting is a series connection of
the DC-DC converters: a parallel-input series-output structure was discussed in [18], while
a special topology was developed in [22], and in [19], a voltage multiplier was applied.
Most of the solutions are supplied from the voltage in the range of hundreds of volts (i.e.,
three-phase rectifier) and use single-stage DC-DC conversion to reach the output voltage
in a required kV range. All in all, in most cases, traditional silicon power devices were
applied for operating, in most cases at tens of kHz. Therefore, the goal of this work was
to verify the performance of new SiC power devices. Then, as the voltage of the input
batteries is rather low, a two-stage system was considered with an additional non-isolated
boost converter. The expected gain of this converter was relatively high (up to 18); thus,
several concepts were reviewed starting from the charge pump [23] through to impedance
source topologies [24,25]. Finally, the double-boost topology [26] was found to be most
suitable; however, SiC devices are considered to reduce the size of the passive components.

2. The Setup of the Marx Generator

The main goal of the Marx generator to be supplied is to generate nanosecond high-
voltage pulses for exposure tests of electronic equipment. The generator load will be a
stripline impedance of 130 Ω and the expected output voltage from the generator is 1 MV.
Therefore, taking into account the available supply systems and 50 kV-rated capacitors,
it was decided to build a 20-stage system (Figure 1a). The capacitance of each capacitor
is 8 nF, while the predicted repetition time of the generated pulses is 1 Hz. Therefore, in
total, the DC power supply must charge the 160 nF capacity to 50 kV in less than 1 s. As
charging resistors, volume resistors were used, which are immune to short-term current
pulses, temporarily significantly exceeding the rated long-term current of these resistors.
The value of each resistor marked as Rc in Figure 1a is 6 kΩ. The generator structure itself
was placed in a sealed housing (Figure 2a). During the generator’s operation, a pressure of
several atmospheres was maintained in the housing, which protected the system against
surface discharges at higher charging voltages. Due to the fact that strong electromagnetic
disturbances are generated in the vicinity of the measuring setup during the generation
of high-voltage pulses, it was necessary to place the DC power supply in a sealed metal
housing (Faraday cage), and communication between the user and the power supply
needed to be carried out via a fiber optic link. Further, the generator ignition initiating
signal was sent from the power supply to the optical fiber triggering system.
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Since the voltage measurement of hundreds of kilovolts and rise times of the order
of nanoseconds are not feasible with classical voltage dividers, the measurements of the
output pulse were measured indirectly—by measuring the field strength on the stripline
connected to the generator output (Figure 2b). The dimensions of the line were as follows:
length: 1 m, width: 0.48 m, height: 0.3 m, while the total impedance was equal to 130 Ω. A
Montena SFE3-5G probe (Montena, Rossens, Switzerland) was used to measure the electric
field strength in the stripline space, which can measure pulses with rise times from 110 ps.
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3. Portable DC Power Supply

The abovementioned requirements for a portable DC power supply are very challeng-
ing. At first, the input voltage from the low-voltage battery was assumed to be 24 V, while
the nominal output voltage was expected to reach 50 kV when charging the 160 nF capaci-
tance of the Marx generator. This means that the voltage gain of the system exceeds 2000.
Moreover, the volume and weight should also be reasonable to make this unit portable.
On the other hand, the system was designed to survive electromagnetic impulses of the
Max generator placed at a close distance. Finally, control of the charging process is also
problematic as precise measurement of the output voltage including signal isolation is
difficult.

The proposed solution was based on the two conversion stages presented in Figure 3.
The second stage is an isolated series resonant DC-DC converter operating with a fixed
voltage gain (G = 125) up to 50 kV, while at the input, a non-isolated DC-DC converter is
connected. This converter plays the role of a regulated voltage source with the reference
voltage proportional to the expected value of the output VO. This approach is more
convenient than the complex control of the series resonant DC-DC as precise adjustment of
the voltage up to 400 V is less complex. Thus, the reference voltage VDC was set according
to the reference VO and the ideal gain G. Then, on the basis of the isolated measurement
of the output voltage VO, which was designed to be isolated from the controller and, in
consequence, is rather slow, necessary corrections of the VDC were also introduced. This
approach was necessary due to variations in the gain of the isolated DC-DC converter with
the load changes. Moreover, the voltage of the battery VBAT may also drop with the current.
All in all, the proposed solution is simple and easy to manage at high operation frequencies
and the output voltage is properly controlled according to the Marx generator’s needs.
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3.1. Double-Boost DC-DC Converter

According to assumed approach, the main task of the input stage is to adjust the
voltage levels between the input power circuit (a battery with a constant rated voltage
VBAT of 24 V) and the intermediate circuit (VDC up to 400 V). As a result of the analysis
carried out earlier, the topology of the double voltage boost was selected as can be seen in
Figure 4a. The main circuit of the converter (Figure 4b) consists of two branches, each of
which includes one SiC MOSFET (C3M0065090D) and a SiC Schottky diode (C3D16065D)
(Cree/Wolfspeed, Durham, NC, USA). The transistors are controlled by integrated gate
drivers (ACPL-P343-000E) (Broadcom, San Jose, CA, USA), which also provide isolation
between the controller and power circuit. These drivers provided by the separated DC-DC
converters (MGJ2D241505SC) (Murata Power Solutions Inc., Westborough, MA, USA)
supply the transistor gates with a positive voltage of +15 V to switch them on and −5 V to
switch them off. The converters are fed directly from the system input—24 V battery.
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To control the input current drawn from the battery, the main circuit was also equipped
with two current sensors (LA 25-NP) (LEM USA Inc., Milwaukee, WI, USA), and then
the signal was transferred to the control board described in the following sections. Pads
were attached to the midpoints of the branches, which enable the connection of the boost
inductors of 30 µH/30 A max required in this topology. In parallel, two sets of capacitors,
C1 = C2 = 40 µF/250 V and 4 × 2.2 µF/250 V, were applied. As can be seen, the high
switching frequency, set to 100 kHz due to the outstanding performance of the SiC devices,
enables a reduction in passive components necessary to provide a suitable DC voltage.
Moreover, two phase legs operating with a phase shift ensure a very good quality of the
input current drawn from the batteries. As the assumed gain of the DC-DC converter is
high (up to 17), the duty ratio varies from zero to 95% at nominal 400 V (Table 1).

Table 1. Selected parameters of double-boost DC-DC converter.

Parameter Symbol Value

Input voltage VBAT <24 V
Output voltage VDC <450 V

Switching frequency fs 100 kHz
Input inductors L1, L2 30 µH/30 A max

Capacitors C1, C2
40 µF/250 V

4 × 2.2 µF/250 V
Duty cycle range D 0 ÷ 0.95
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3.2. Isolated Resonant DC-DC Converter

The main aim of the output stage is to boost the output voltage of the DC-DC converter,
at nominal conditions from 400 V to 50 kV; moreover, for isolation between the input and
output, a high-voltage circuit is provided. As a result of the literature review and analysis
carried out earlier, the series resonant converter was selected (see Figure 5a), which, in
practice, works with four series-connected secondary windings and sets of high-voltage
rectifiers (Figure 5b). Note that the converter is operating at a fixed frequency (65 kHz)
and a suitable, also fixed, phase shift while the voltage control is conducted via the input
DC-DC converter.

On the basis of simulation analysis, the prototype was developed on a common power
board with the DC-DC converter (see Figure 4b). The main circuit of the converter consists
of two inverter branches, each of them with two SiC MOSFETs (C3M0065090D) suitable
for high-frequency operation. The transistors are controlled by integrated gate drivers
(ACPL-P343-000E), which also provide isolation between the control signals and the power
circuit. Similar to the input stage, the same DC-DC converters (MGJ2D241505SC) are
applied. At the input of each H-bridge, a dry capacitor (40 µF/450 V) is applied but each
inverter branch also contains fast capacitors (3 × 1 µF/450 V) supporting fast switching
transients (all parameters in Table 2). The resonant tank contains, in addition to the leakage
inductance of the transformer, an additional inductor of 24 µH and a set of capacitors with
an equivalent capacitance of 9.9 nF.

Table 2. Selected parameters of resonant converter.

Parameter Symbol Value

Input voltage VDC 400 V
Switching frequency fs 68 kHz
Resonant inductor Ls 24 µH/35 A max
Resonant capacitor Cs 3 × 3.3 nF
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High-voltage rectifiers are an important part of the output stage, operating at voltages
up to 50 kV. In this prototype, three half-bridge rectifiers with the neutral point of the
capacitive divider were used in series. Due to high-frequency switching and the low
current at the high-voltage output, capacitors were 1 nF each, rated at 10 kV. As a rectifier
diode, a series connection of 26 SF1600s (1.6 kV/1 A) was applied, which made it possible
to block 1/3 of the rated voltage (50 kV) with a necessary margin—the photo of the rectifier
is shown in Figure 6. This rectifier is designed to provide air isolation between key points
in the circuit. Furthermore, to ensure adequate isolation, the target version was placed in
epoxy resin—a view of the housing for 4 rectifiers, made on a 3D printer before pouring, is
shown in Figure 6.
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3.3. High-Voltage Transformer

The applied transformer with a step-up ratio (n = 18) consists of one primary winding
(N1 = 6) and four secondary windings (N2 ÷ N5 = 108). The primary winding (N1) is
powered by a resonant converter, where the assumed voltage value does not exceed 400 V.
With the assumed high-frequency operation (fs = 68 kHz), a Litz wire was used, consisting
of 245 insulated wires with a diameter of 0.1 mm each and a total effective cross-section
of Scu = 1.92 mm2. Enameling of the individual conductors and the silk braid used were
enough to protect the primary winding against breakdown. Secondary winding sectioning
allowed the transformer secondary voltage to be divided by 4, so that the maximum voltage
on each section is 25 kV ÷ 4 = 6.25 kV. In this case, a single coil with a diameter of 0.25 mm
was used, appearing in triple insulation (TIW—triple-insulated wire), which allowed for
protection against possible voltage breakdown. Moreover, the prepared windings were
separated with a distance of at least 2 mm from each wall of the carcass, and an insulator
in the form of a two-component polyurethane cast resin (PUR) was used.

The transformer is equipped with a core, which is a set of 8 fittings (16 halves) of the U
80/49/20 core. The design of the magnetic element was conducted in such a way that the
primary winding of the transformer includes 4 fittings with a total core cross-section SFe
(N1) = 4 × 400 mm2 = 1600 mm2, while each of the four secondary windings is made on 2
cores with a total cross-sectional area of SFe (N2 ÷ N5) = 2 × 400 mm2 = 800 mm2—Figure 7.
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Each of the four secondary windings is connected to a rectifier through specially designed
and made connectors with high breakdown strength.
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3.4. Digital Control System

The basic assumption of the developed control system is to control two converter
systems in such a way as to maintain the value of the output voltage VO * set by the user
without exceeding the rated current at the input (battery) and in all components of the
system. It is necessary to ensure cooperation of individual stages: the output, which is
the resonant DC-DC converter with the high-frequency transformer, and the input double-
boost converter that adjusts the voltage of the VDC intermediate circuit to the appropriately
scaled voltage value at the VO output. In fact, the input stage consists of two voltage boost
converters (Figure 4a). Each of them has a separate control system, consisting of an internal
current control loop and an external voltage control loop (see Figure 8) with PI controllers.
In order to reduce the non-linearity of the characteristic of the boost converter, especially at
very high values of the duty cycle, the output signal of the PI controller of the current loop
is converted according to

D = 1 − 1
UP

(1)

where D is the duty cycle of PWM pulses, and UP is the output signal from the current
regulator.
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Figure 8. Block scheme of the digital control system.

According to the assumed operation principles, the boost converter acts as a voltage
source for the resonant DC-DC converter, which is operating at a fixed frequency and
phase shift. However, the voltage gain G of the resonant converter is not constant and
drops with the output voltage/power. Therefore, for the assumed range of the output
voltage, the characteristics VREF = f (VO) were obtained on the basis of experiments and
then used to determine the function correcting the set value of the output voltage. The
obtained characteristic (Figure 9) was approximated by a third degree polynomial of the
following form:

VREF = 0.0921V2
O + 7.4882VO − 43.961 (2)
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Figure 9. Experimentally determined function correcting the relation between input voltage and gain
of the resonant DC-DC converter.

The reference voltage VO * is converted into the appropriate value of the set voltage of
the input stage according to Equation (2).

The Texas Instruments TMS320F28377S signal processor (Texas Instruments, Dallas,
TX, USA) was used to implement such a developed algorithm—a suitable control board
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was developed to control both DC-DC converters and provide a user interface. The photo
of the control board is shown in Figure 10.
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3.5. Complete DC Supply

The individual components were combined by keeping the insulation distances and
using a glass-epoxy laminate, which is the internal cover of the device. Input terminals
(supplying 24 V voltage from the battery) are placed, together with the input fuse, on the
left side (see Figure 11). On the other hand, the output of the device (voltage up to 50 kV)
is provided in the rear part of the housing, but the positive terminal has been appropriately
separated from the metal parts connected to the negative output pole. The front side of the
power supply, being the user interface, includes the main switch with the LED indicator
(upper left corner), LCD display with a multifunctional selection knob (upper right corner)
and a mode switch (MANUAL, REMOTE) with LED indicators (central part of the panel).
On the right side of the device, on the other hand, there are fiber optic communication
connectors for connecting the superior power supply control system and communication
with the device. The presented prototype of the power supply has the dimensions of 242
(width) mm × 298 (length) mm × 136 (height) mm, and thus the volume is slightly below
10 dm3 and the obtained DC power supply can fit into the housing of the Marx generator
and may be easily transported.
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4. Experiments

After initial tests including the operation of the two DC-DC converters separately
and tests of the control system, the system was completed and mounted in the housing
(Figure 11). Figure 12 shows the output voltage of the DC power supply without the
external load, while the internal load is always the 48 MΩ resistive divider (the part of the
VO measurements) designed to draw 1mA at the nominal output voltage. As can be seen
in Figure 12, where the output voltage is presented, the DC supply provides a nominal
voltage of 50 kV after 700 ms from the system start. Next, tests were conducted with an
adjustable spark gap (see Figure 13) connected via a series resistor, and the DC supply was
programmed to keep the voltage for a certain time period. During this time, the spark gap
fired at a certain voltage level (5 kV—Figure 13a, and 16.9 kV—Figure 13b), reducing the
voltage to zero, and then the supply was charging the voltage to the same critical value.
This process was repeated several times, showing very good performance of the supply.
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Next figures illustrate behavior of the DC-DC converters during both tests. The
output voltage of the double-boost converter reaches nominal value after 320 ms, however,
waveform shows two overshoots due to impact of the current controller (Figure 14). For
this operation point a higher proportional gain of PI controller (Figure 8) would help to
reach nominal current of 30 A faster but the same settings of the PI-controllers are expected
to work properly also at low output voltages. Thus, the introduced settings and presented
waveforms are a compromise, acceptable performance is observed for the whole operation
range. As the resonant DC-DC converter operates with fixed frequency and phase shift, the
peak value of inverter output voltage follows waveform of the VDC (Figure 15). From the
same figure can be also seen that current of the resonant tank depends on the conditions in
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the inverter and transformer circuit, which is also visible in Figure 16 where waveforms
measured after spark-gap discharge are presented. After rapid decrease of the output
voltage, the converter is responding by means of increased resonant current and the output
voltage is rising again to reach steady-state.
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Finally, the portable DC supply was connected to the Marx generator in the setup
described in Section 2. During the test, the generator was providing pulses counted in
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hundreds of kVs, resulting in strong electromagnetic fields emitted by the antenna. Thus,
the whole device was controlled via fiber optic links, but the use of an oscilloscope and
high-voltage probes near to the test setup was too risky. The performance of the DC
supply was watched indirectly by recording voltage measurements in the microprocessor
memory—the system was providing the requested voltage to the generator.

5. Conclusions

A portable DC supply was designed, built and experimentally validated under various
scenarios and circuit conditions, including the Marx generator. Providing voltages up to
50 kV from a 24 V battery was not a trivial task but the applied two-stage solution with
two DC-DC converters containing fast-switching SiC power devices proved to be the
correct one. The high switching frequency up to 100 kHz enabled a system size reduction
(< 10 dm3), especially for the inductors and transformer. This component as well as the
high-voltage rectifiers was truly demanding due to isolation requirements. According to
the presented results, all components were operating correctly in terms of electrical and
thermal performances. The proposed control method with the input DC-DC operating as a
controllable voltage source and isolated DC-DC converter working at a fixed frequency and
phase shift seems to also be suitable for the task. Waveforms presented for the charging
or recharging after rapid discharge of the output voltage confirm that the system is stable
and controllable. Finally, the user interface and fiber optic links make cooperation with the
Marx generator or other loads rather simple.
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