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Abstract: Parameter extraction of the photovoltaic cell is a highly nonlinear complex optimization
problem. This article proposes a new hybrid version of whale optimization and particle swarm
optimization algorithm to optimize the photovoltaic cell parameters. The exploitation ability of
particle swarm optimization with adaptive weight function is implemented in the pipeline mode
with a whale optimization algorithm to improve its exploitation capability and convergence speed.
The performance of the proposed hybrid algorithm is compared with six different optimization
algorithms in terms of root mean square error and rate of convergence. The simulation result shows
that the proposed hybrid algorithm produces not only optimized parameters at different irradiation
levels (i.e., 1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2) but also estimates minimum root
mean square error even at a low level of irradiations. Furthermore, the statistical analysis validates
that the average accuracy and robustness of the proposed algorithm are better than other algorithms.
The best values of root mean square error generated by the proposed algorithm are 7.1700× 10−4 and
9.8412× 10−4 for single-diode and double-diode models. It is observed that the estimated parameters
based on the optimization process are highly consistent with the experimental data.

Keywords: photovoltaic; parameter extraction; single-diode model; double-diode model; swarm
intelligence

1. Introduction

The depletion of fossil fuel resources and resulting environmental impact due to their
usages embarks the need for alternate energy resources [1]. Solar energy is one of the
most promising alternative sources for fossil fuel. The free access to the energy of sunlight
can be extracted employing the photovoltaic (PV) panels. The rapid adoption of solar
energy by the domestic and industrial sector makes it a vital source to be explored [2].
Despite the very low operational and maintenance cost, there are various limitations for
efficient energy generation. An enormous amount of research has been performed and
carried out to better the power output from the PV panels [3,4]. The major limitation in the
execution and implementation of the solar PV power plants is the very high capital cost
for installation [5]. PV cells are having nonlinear current-voltage (I-V) and power-voltage
(P-V) characteristics curves with some operational limitations [6]. This non-linearity makes
it difficult for any probability and approximation to increase efficiency. Every PV panel
can operate at maximum efficiency, as defined by the manufacturer, only if the practical
parameters (voltage-current) are somewhat close to or coinciding with the maximum
power point (MPP). The real behaviour of PV panels rather different from the optimal
conditions, due to the non-linearity of I-V characteristics of solar cells makes it essential to
determine the MPP in each moment. It could be done through simulation techniques for
better operational efficiency [7]. This technology is ensured by the model of the equivalent
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circuit having several inherent parameters. However, the parameters provided by the PV
panel manufacturer don’t specify the model parameters. The given information states the
open-circuit voltage (Voc), short circuit current (Isc), and current at maximum power point
(Impp) under standard test conditions (i.e., 1000 W/m2, 25 ◦C). The practical parameters
vary at every instant with a change in weather conditions. The aging effects of PV also
alter the parameters of the equivalent circuit [3,8,9].

The core unit of the PV system is a solar cell, and it is of utmost priority to extract the
parameters for a close analysis of the PV panel performance around its MPP. The simulation
study of cells combined all together give the performance analysis of entire PV panels [8,10].
The equivalent circuit for the single- and double-diode model for parameter extraction
is the recent and most widely used approach. The method of parameter extraction can
be bifurcated into two major categories: analytical and optimization methods [11–15].
Although the analytical methods are the simplest and yields result quickly, but it misses
the accuracy under normal day conditions with variable lighting. The deterministic ways
of parameter extraction such as Newton-Raphson, nonlinear least square, Lambert W-
functions [16], iterative curve fitting [17], conductivity method [18] and the Levenberg-
Marquardt algorithm [19] have many boundaries such as continuity, differentiability,
and convexity related to objective functions. The boundary conditions further impose
limitations on the usage of the above analytical methods, as they obtain local minima when
dealing with multi-modal problems. Thus, analytical methods are not suitable to extract
the parameters.

To get more accurate and precise parameters from nonlinear implicit equations with
high accuracy, evolutionary algorithms [20] were proposed. The bio-related algorithms are
more accurate and powerful optimization algorithms to simplify nonlinear transcendental
equations as it doesn’t include complex mathematics. Although, researchers have devel-
oped number of metaheuristic algorithm but there is no algorithm that provides optimal
solution to all sets of problems which has also been proven by No free lunch theorem. This
has motivated researchers to design new algorithms to efficiently solve complex science
and engineering problems. A gradient-based optimizer (GBO) [20] inspired from the
gradient-based Newton’s method, Harris-Hawk optimizer (HHO) [21] inspired from coop-
erative behavior and chasing style of the Harris Hawks Heap-based optimizer (HBO) [22]
inspired from corporate rank hierarchy and slime mould algorithm (SMA) [23] inspired
from diffusion and foraging conduct of slime mould are some of the recently developed
metaheuristic algorithms. Some of the recent optimization algorithms used for parameter
extraction are the genetic algorithm (GA) [24], differential evolution (DE) [25], simulated
annealing (SA) [26], pattern search (PS) [27], harmony search (HS) [28], cuckoo search
(CS) [29], flower pollination algorithm [30], bacterial foraging optimization (BFO) [31], bird
mating [32], and artificial bee swarm optimization (ABSO) [33]. The proposed algorithms
suffer from the problem of premature convergence. The primary disadvantage of GA is
that it involves wide parameter optimization search space which makes the system quite
complicated and slow. The problem of large search space was overcome by implementing
PSO. However, it imposed the problem of the randomly chosen initial parameter value.
The value exchange in SA between the cooling timetable and the original temperature
makes it less popular. There is a likelihood that PSO will choose an incorrect pattern,
leading to premature convergence or no convergence. PSO with reverse barrier restriction
for series resistance (Rs), shunt resistance (Rsh), and diode ideality factor (a) is suggested
for fast and coherent convergence of optimization issue to global optima, considering
the temperature impact to reduce the modeling errors in differential evolution [31–35].
Although the BFO technique offers excellent outcomes but involving too many param-
eters that have complicated the scheme and imposed a computational strain. Authors
in [36], implemented improved teaching-learning based optimization (ITLBO), where a
good trade-off is established between the exploration and exploitation by eliminating the
worst learner. This increases the global search ability of the population in a defined search
space. A hybridization approach is carried out by the researchers in [34] for parameter
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extraction of solar PV cell. In this approach, the hybridization of two algorithms are imple-
mented, the firefly and pattern search. The exploration phase is completed by the firefly
algorithm during the first half iteration and then the pattern search algorithm takes control
of the population for the exploitation phase. A new opposition-based learning approach is
incorporated with whale optimization and shuffled complex evolutionary algorithm for
optimization of solar cell parameters [35,36]. This approach is tested on unimodal as well
as on multimodal benchmark functions and simulation results clearly show the robustness
of the algorithms.

The whale optimization algorithm (WOA) [37] and particle swarm optimization
(PSO) [38] are the two most prominent used metaheuristics techniques as available in the
literature. However, they differ from each other in the search mechanism for the best
solution in a defined search space. WOA mimics the social behaviour of humpback whales
while PSO mimics the searching behaviour of the birds in a group. It is shown by many
previous research studies that WOA is good at exploring [39] the search space but suffers
from a slow convergence rate due to low exploitation ability while PSO don’t have good
capability in exploring [40] the search space but have good local search capability. the
convergence speed of the algorithm. In [41], the author proposed a chaotic WOA (CWOA)
to improve maps utilized their dynamic behavior to prevent an optimization algorithm to
trap in local optima and improves its global search capability. In [42], the author proposed
Levy flight trajectory based WOA (LWOA) to improve the accuracy and convergence speed
of the algorithm. Levy flight allowed for the algorithm to get rid of local optima and
prevents premature convergence.

There are certain complex and non-convex optimization problems that are not solved
by continuous metaheuristic therefore, in [43], the author proposed binary WOA (BWOA).
In [44], the author proposed a modified WOA that includes whale memory and new
random search agent to enhance the exploitation capability of the algorithm. In [45], the
author improved the exploration capability of WOA and proposed three modified WOA
which are based on opposition-based learning, exponentially decreasing parameters, and
re-initialization of the worst particles. The hybridization of metaheuristic algorithms is
another approach to improve the exploration and exploitation capability of population
based stochastic algorithm. Furthermore, researchers have proposed hybrid approach
grey wolf optimization (HAGWO) [46], WOA-CBO (colliding bodies optimization) [47],
memetic-WOA (MWOA) [48], WOA-SA (simulated annealing) [39], WOA-MFO (moth
flame optimization) [49], Sine-Cosine (SC-WOA) [50], WOA-PS (Pattern Search) [51], and
Brain Storm (BS-WOA) [52–54] to improve the global and local search capability of WOA.

According to the literature survey, WOAPSO has not yet been implemented for the
parameter extraction of the solar cell (and it cannot be used to establish a PV parameter
estimation technique that can overcome all existing techniques). Therefore, this research
paper aims to anticipate a new parameter estimation algorithm for solar cell/module. The
novelty of the proposed study is that the exploitation capability of WOA is significantly
improved by incorporating the exploitation capability of PSO with adaptive weight in
sequential mode. As a result, equivalent circuit parameters converge equally good to the
true values with minimum error. The proposed WOAPSO algorithm’s performance is
measured based on convergence analysis, robustness, reliability, and statistical analysis for
three PV models at diverse operating conditions.

The manuscript is organized as follows: the problem formulation and mathemati-
cal model for solar PV cell/module are presented in Section 2. Section 3 gives a brief
introduction of the WOA, PSO, and proposed WOAPSO algorithm and discussed its im-
plementation to estimate the optimized value of unknown parameters of a single-diode,
double-diode, and PV module model. In Section 4, the simulation results of the WOAPSO
algorithm are discussed and compared with pre-existing metaheuristic algorithms. Finally,
Section 5 provides a conclusive remark to summarize the paper.
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2. Methodology

In this section, the equivalent circuits of a photovoltaic solar cell are formulated using
a single-diode and double-diode models. These equivalent circuit models are used to
describe the current-voltage characteristics of a solar cell.

2.1. PV Panel Model

The equivalent circuit of PV panel module is shown in Figure 1. The relation between
current and voltage at output terminal for the PV panel module is expressed as:

Il/Np = Ip − ISD

[
exp

(
q
(
Vl/Ns + Rs Il/Np

)
a1kBT

)
− 1

]
−

Vl/Ns + Rs Il/Np

Rsh
(1)

where Ns and Np represents the number of solar cells connected in series and parallel
respectively. It is clearly depicted from Figure 1 that only five parameters (Ip, ISD, a1, Rs
and Rsh) are needed to be estimated for minimum value of the RMSE.
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Figure 1. Equivalent circuit of PV panel module model.

2.2. Objective Function

The key purpose of this work is to optimize the unknown parameters for both the
models (SDM and DDM) and to reduce the error between experimental and estimated data.
The objective function for error used here is same as the authors have used previously in
as:

RMSE =

√√√√ 1
k

k

∑
N=1

f (Vl , Il , X) (2)

where Vl and Il are the measured voltage and current of PV module. The parameter ‘k’
stands for the number of experimental data set. The best solution found by WOAPSO is
represented by a vector X. For the single-diode model:{

fsingle(Vl , Il , X) = Ip − ISD

[
exp
(

q(Vl+Il Rs)
a1kBT

)
− 1
]
− Vl+Il Rs

Rsh
− Il(

X = Ip, ISD, a1, Rs, Rsh
) (3)

For the double-diode model:
fdouble(Vl , Il , X) = Ip − ISD1

[
exp
(

q(Vl+Il Rs)
a1kBT

)
− 1
]

−ISD2

[
exp
(

q(Vl+Il Rs)
a2kBT

)
− 1
]
− Vl+Il Rs

Rsh
− Il(

X = Ip, ISD1, ISD2, a1, a2, Rs, Rsh
) (4)
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For the PV panel module model:
fsingle(Vl , Il , X) = Ip − ISD

[
exp

(
q
( Vl

Ns +
Rs Il
Np

)
a1kBT

)
− 1

]
−Vl /Ns+Rs Il/Np

Rsh
− Il/Np(

X = Ip, ISD, a1, Rs, Rsh
) (5)

2.3. Hybrid Algorithm

The hybridization of the metaheuristic algorithm plays a vital role in improving their
performance. The fundamental principle of hybridization is to blend the best features
of two or more metaheuristic algorithms to improve search capability, accuracy, and
convergence speed of an individual algorithm. A hybrid algorithm is also known as a
memetic algorithm. In the last few years, researchers have proposed different strategies
for hybridizing metaheuristic algorithms. The three most explored methodologies of
hybridization are multi-stage, sequential and parallel.

In the multi-stage methodology, one of the algorithms globally explores the search
space and the second algorithm locally discovers the optimal solution. In sequential search,
both the algorithms run sequentially and find the optimal solution in the search space. In
the parallel mode, both the algorithms run parallel on the same population of the defined
problem.

2.3.1. Particle Swarm Optimization (PSO)

Particle swarm optimization is a nature inspired stochastic optimization technique
proposed by J. Kennedy and R. C. Eberhard in 1995. It is a population-based computation-
ally inexpensive technique that is inspired by the social behaviour of fish schooling and
bird flocking. The methodology of the algorithm is that the swarm of particles fly in the
search space and finds the optimal solution by updating their own best solution and the
best solution obtained by the swarms. The swarm is randomly initialized as particles in
N-dimensional search space with position xi and velocity vi. The position of the particles
represents the probable solution, and the velocity represents the rate of change of position
of the particle concerning the current position. The particles change their positions with
respect to the positions of the best particle. The velocity update equations are given by:

vd
i (t + 1) = w× vd

i (t) + c1 × r1 ×
(

pbestd
i (t)− xd

i (t)
)
+ c2 × r2 ×

(
gbestd − xd

i

)
(6)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (7)

where vd
i (t) and xd

i (t) represents the velocity and position of ith particle in dth dimension
at tth iteration, vd

i (t + 1) and xd
i (t + 1) is the velocity and position of the ith particle in dth

dimension at (t + 1)th iteration. pbestd
i represents the current best position of the particles

and gbestd represents the best position among all the particles in dth dimension, c1 and c2
are the acceleration parameter, r1 and r2 are the random number in the range [0, 1] and w is
the inertial weight vector which maintains balance between exploration and exploitation.

2.3.2. Whale Optimization Algorithm (WOA)

The whale optimization algorithm is a population-based optimization algorithm that
mimics the social behaviour of humpback whales and was proposed by Mirjalili and
Lewis in 2016. Humpback whales are long in size and have an interesting food searching
capability: they attack their prey (krill and small fishes) by a bubble-net hunting strategy.
WOA is inspired by this hunting behaviour, and works in three phases. First, it searches for
prey then encircles the prey and lastly, attacks the prey. Humpback whales swim around
the prey either following a shrinking path or through a spiral movement. A probability
factor p assumed to be 50% simultaneously choose either of the two movements.
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Shrinking Movement

Initially in the exploration phase, humpback whales search around a prey chosen
randomly in the search space with the following mathematical model:

→
D =

∣∣∣∣→C ×→Xrand −
→
X
∣∣∣∣ (8)

→
X(t + 1) =

→
Xrand −

→
A×

→
D (9)

where t is the current iteration and (t + 1)th is the next iteration,
→
Xrand is the random

position of the prey,
→
A and

→
C are the coefficient vectors and is defined as:

→
A = 2

→
a
→
r −→a (10)

→
C = 2×→r (11)

where
→
a is decreased from 2 to 0 over the course of iterations and

→
r is the random number

in the range [0, 1]. In the exploitation phase the position of whales are updated based on

the position of the best search prey
→
X∗. Mathematically it is defined as:

→
D =

∣∣∣∣→C × →X∗ −→X∣∣∣∣ (12)

→
X(t + 1) =

→
X∗ −

→
A×

→
D (13)

Spiral Movement

In the spiral movement of the humpback whale, first the distance is evaluated between
the whale located at (X, Y) and best search prey located at (X*, Y*). Once the distance
is evaluated then the helix-shaped movement of whale around the prey is defined with
following mathematical equation:

→
X(t + 1) =

→
D′·ebl · cos(2πl) +

→
X∗(t) (14)

where
→
D′ = |

→
X∗(t)−

→
X(t)| is the distance between the whale and best searched prey, b

is the constant which maintains the shape of the logarithmic spiral and l is the random
number defined in the range [–1, 1].

In WOA, coefficient vector ‘A’ maintains the balance in exploration and exploitation,
when the value of p < 0.5 and A > 1 then the positions are updated by Equations (9) and
(13) while when p < 0.5 and A < 1 the positions are updated by Equations (13) and (14) and
when the p ≥ 0.5 then the positions are updated using Equation (14).

2.3.3. Hybrid WOAPSO Algorithm

In this section, the principle of the proposed hybrid WOAPSO algorithm is briefly
addressed. In general, the performance of any optimization technique while solving any
NLP problem is affected by premature convergence and slow rate of convergence. Some
algorithms better explore the search space and have a slow convergence rate while some
algorithms less diversely explore the search space and did not find the optimal solution.
Maintaining the balance between exploration and exploitation is a critical issue in any
optimization algorithm. WOA has good exploration capability but exploitation depends
on evaluating the distance between the whale and the best position of the prey, and if the
distance is large then it takes more time to converge. While PSO has fast rate of convergence
but it is prone to premature convergence due to weakness in global search capability. Since
in PSO, if the global best solution gets trapped in local optima, then the rest of the particles
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do not explore the search space and follow the global best solution, and become trapped
in local optima. Therefore, it can be concluded that WOA is good at exploring the search
space, but suffers from a slow convergence rate while PSO doesn’t have good capability in
exploring the search space but have good local search capability. The aim of the proposed
hybrid algorithm is to enhance the exploitation capability of WOA by embedding the
PSO algorithm to find an optimal solution around the region explored by WOA. The
proposed approach is mixed, co-evolutionary in which PSO is used as a component of
WOA and thus the hybrid approach utilizes the strength of both the algorithms to avoid
the premature convergence and local optima. Figure 2 depicts the process flow chart of the
proposed algorithm. The mathematical model of the proposed algorithm is illustrated in
the following steps:

Step 1: Initialize the random population of search agents with position and velocity
defined as:

Xi =
(

x1
i , . . . . . . . . . . . . .xd

i , . . . . . . . . . .xn
i

)
, f or i = 1, 2, . . . . . . . . . . . . .N (15)

Vi =
(

v1
i , . . . . . . . . . . . . .vd

i , . . . . . . . . . .vn
i

)
, f or i = 1, 2, . . . . . . . . . . . . .N (16)

Step 2: Calculate the fitness of each search agent. If the problem is the minimization prob-

lem, then
→
X∗ is the position corresponding to the minimum fitness and for maximization

problem
→
X∗ is the position corresponding to the maximum fitness.

→
X∗ is the best search

agent.
Step 3: Update the constant parameters A, C, using Equations (10) and (11) and l lying
between [–1, 1] and p is the probability between 0 and 1.
Step 4: If p < 0.5 and |A|≥1, then select the random position of search agent (X*) in search
space and update the position of search agent using Equations (9) and (13).

Else if p < 0.5 and |A|<1, then update the position of search agent using Equations
(13) and (14).

Else p > 0.5, then update the position of search agent using Equation (14).

Step 5: Update the velocity of search agent based on the best position of search agent (X*)
in the search space using the following equation:

vd
i (t + 1) = w× vd

i (t) + c1 × r1 ×
(

X∗ − xd
i (t)

)
(17)

Step 6: Update the position of the particles using Equation (17).
Step 7: Go to step 3 until the termination criteria is met. The algorithm terminates when
either maximum number of iterations or minimum error criteria is attained.
Step 8: In the last iteration the returned value of

→
X∗ represents the global minimum and

the position corresponding to it represents the solution of the problem.

2.3.4. Implementation of WOAPSO for Parameter Extraction
Single-Diode Model

Initialize the population of search agents of fifth order dimension in the search space.
The fifth order dimension represents the photovoltaic current (Ip), series resistance (Rs),
shunt resistance (Rsh), diode saturation current (ISD) and diode ideality factor (a1). The
range of these parameters are [0–1, 0.001–0.5, 0–100, 0.01–0.5, 1–2].

Regulate the fitness of all agents in the search space using Equation (3).
Update the position of the agents at every iteration using WOAPSO. The algorithm

is designed to work in the minimization mode thus the location of particles that acquire
minimum cost represents the optimized parameters of SDM with minimum RMSE.
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Figure 2. Flowchart of proposed hybrid version of whale optimization and particle swarm optimization WOAPSO
algorithm.

Double-Diode Model

Initialize population of search agents of seventh-order dimension in the search space.
The seventh-order dimension represents the photovoltaic current (Ip), series resistance (Rs),
shunt resistance (Rsh), diode saturation currents (ISD, ISD1), and diode ideality factor (a1,
a2). The range of these parameters are [0–1, 0.001–0.5, 0–100, 0.01–0.5, 0.01–0.5, 1–2, 1–2].

Regulate the fitness of all agents in the search space using Equation (4).
Update the position of all agents at every iteration using WOAPSO. The algorithm

is designed to work in the minimization mode. Thus, the location of particles having
minimum cost represents the parameters of the double-diode model with minimum RMSE.

3. Results

In this section, the feasibility of the proposed new hybrid WOAPSO was tested and
evaluated using mainly two types of PV devices: one PV cell (R.T.C France solar cell) and
one PV module (SS2018P) at different solar irradiation. As a result, the retrieved PV cell
and module parameters were monitored and used to create simulated I-V data for each
device type. The accuracy and reliability of the WOAPSO were assessed by comparing the
techniques published in the literature with the existing art. The efficiency of the proposed
method is evaluated based on distinct empirical tools such as the individual absolute error
(IAE), the relative error (RE), the precision of the curve fitting, and the global minimum
convergence patterns. The experimental values of current and voltage are taken from [55]
by using R.T.C France solar cell at standard temperature condition i.e., 1000 W/m2 at
33 ◦C. The SS2018P PV module is composed of 36 polycrystalline cells connected in series
and generate the I-V data under different irradiance levels i.e., 1000 W/m2, 870 W/m2,
720 W/m2 and 630 W/m2. The data collection consists of a total of 20 I-V measurements
for solar cell and 27 for PV module. The values of current and voltage for solar PV module
(SS2018P) are measured across variable resistive load (0.1–250 Ω, 2 A). The measured value
of voltage and current at different irradiance level is presented in supplementary materials.
For a reasonable comparison, the search ranges (i.e., upper and lower bound) for each
parameter are tabulated in Table 1, which are the same as those being used by investigators



Electronics 2021, 10, 312 9 of 22

in [27]. The proposed WOAPSO algorithm is implemented on MATLAB 2018a platform
with Intel ® core ™ i7-HQ CPU, 2.4 GHz, 16 GB RAM Laptop. In order to conduct the
experiment, the sample size, and the estimated number of objective function evaluations
are set at 30 and 50,000, respectively. Furthermore, a minimum of 30 separate runs are
carried out to prevent the contingency.

Table 1. Range of parameters for SDM, DDM and PV Module.

Parameter
SDM/DDM SS2018P PV Module

Lower Bound Upper Bound Lower Bound Upper Bound

Ip (A) 0 1 0 10
Isd, Isd1 (µA) 0.01 0.5 0 50

Rs (Ω) 0.001 0.5 0.001 2
Rsh (Ω) 0 100 0 2000
a, a1, a2 1 2 0 100

3.1. Parameter Estimation of Single-Diode Model Using WOAPSO

Only five parameters (Ip, Isd, a, Rs, Rsh) are required to be estimated for a single-diode
model. Table 2 signifies the values of parameters optimized by WOAPSO and RMSE for
the comparison. The WOAPSO algorithm provides the lowest RMSE of 7.1700 × 10−4

than others (Table 2 and Table S2). Here RMSE values are acquired as the index for the
evaluation of results with previously existing algorithms implemented by the researchers.

Table 2. Comparison of WOAPSO with different parameter estimation methods for SDM.

Algorithms Iph (A) ± SD Isd (µA) ± SD Rs (Ω) ± SD Rsh (Ω) ± SD a ± SD RMSE

GSA 0.7607 ± 0.0053 0.05 ± 0.0265 0.0339 ± 0.0076 63.7784 ± 4.304 1.5486 ± 0.0042 1.2012× 10−3

SCA 0.7595 ± 0.0209 0.002 ± 0.034 0.0519 ± 0.0229 90.0685 ± 4.517 1.2641 ± 0.140 1.9123× 10−3

GWO 0.7695 ± 0.0038 1 ± 0.193 0.0269 ± 0.0037 47.9136 ± 16.872 1.6232 ± 0.0311 9.4095× 10−4

PSO 0.7383 ± 0.023 1 ± 0.023 0.0501 ± 0.0053 25.1251 ± 3.213 1.6605 ± 0.024 1.4320× 10−3

WOA 0.7573 ± 0.0019 0.016 ± 0.0056 0.053 ± 0.0028 58.5839 ± 0.354 1.2476 ± 0.0043 9.9529× 10−4

PSOGSA 0.7677 ± 0.0071 0.01 ± 0.006 0.0522 ± 0.0066 18.4587 ± 37.62 1.218 ± 0.0349 1.2400× 10−3

WOAPSO 0.7597 ± 0.0012 0.499 ± 0.004 0.0342 ± 0.0007 83.0131 ± 0.027 1.5483 ± 0.001 7.1700× 10−4

The characteristics curve of current-voltage and power-voltage for a single-diode
model is redrawn based on the best optimized parameters obtained by implementing
the WOAPSO algorithm and depicted in Figure 3. It is observed that the calculated data
obtained by the WOAPSO is very effectively in keeping with the experimental data set,
under S.T.C (i.e., 1000 w/m2 and 33 ◦C), all over the voltage range. The error relating the
measurement results for each of 20 pair points is determined by IAE and RE, which is
calculated by using Equations (18) and (19), respectively.

IAE = |Imeasured − Isimulated| (18)

RE = (Imeasured − Isimulated)/Imeasured (19)
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3.2. WOAPSO for Parameter Estimation of Double-Diode Model

In the case of DDM, the seven parameters (Ip, Isd, Isd1, a1, a2, Rs, Rsh) are required to
be optimized. The values of optimized parameters and minimum of RMSE are presented
in Table 3. The characteristics curve in terms of current-voltage and power-voltage for the
double-diode model is redrawn based on the best optimized parameters (Figure 4). It can
be observed that the estimated data based on optimized parameters are in keeping with
the experimental data set.

Table 3. Comparison of WOAPSO with different parameter estimation methods for DDM.

Algorithms Iph (A) ±
SD

Isd1 (µA) ±
SD

Isd2 (µA) ±
SD

Rs (Ω) ±
SD

Rsh (Ω) ±
SD a1 ± SD a2 ± SD RMSE

GSA 0.7641 ±
0.0079

0.05 ±
0.177

0.001 ±
0.1191

0.0344 ±
0.0091

37.780 ±
1.21

1.9943 ±
0.1756

1.5492 ±
0.1076 2.03× 10−3

SCA 0.7623 ±
0.0097

0.0012 ±
0.059

0.001 ±
0.046

0.0595 ±
0.0067

52.4903 ±
24.02 2 ± 0.3030 1.2197 ±

0.2088 3.18× 10−3

GWO 0.7609 ±
0.0026

0.3156 ±
0.0052

0.0001 ±
0.008

0.0323 ±
0.0015

65.6799 ±
6.5859

1.9426 ±
0.0625

1.5312 ±
0.0272 1.60× 10−3

PSO 0.7676 ±
0.0016

0.0216 ±
0.027

0.0947 ±
0.234

0.0335 ±
0.012

54.9501 ±
5.4630

1.4606 ±
0.203

1.8363 ±
0.0137 2.90× 10−3

WOA 0.76354 ±
0.0019

0.169 ±
0.0017

0.163 ±
0.0011

0.0410 ±
0.0022

35.7342 ±
0.7539 2 ± 0.034 1.4420 ±

0.0036 4.30× 10−3

PSOGSA 0.7611 ±
0.0041

0.432 ±
0.0171

0.01 ±
0.0021

0.0347 ±
0.0042

61.72 ±
18.7135

1.9 ±
0.0183

1.5489 ±
0.0144 1.48× 10−1

WOAPSO 0.7601 ±
0.0007

0.5 ±
0.0020

0.5 ±
0.0027

0.0311 ±
0.0005

100 ±
0.4345

1.5755 ±
0.0043

1.7314 ±
0.0015

9.8412×
10−4
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3.3. WOAPSO for Parameter Estimation of SS2018P PV Module

In order to further evaluate the efficiency of the proposed WOAPSO algorithm, pa-
rameters for SS2018P PV module were also estimated at different level of irradiance by
utilizing the SDM model. The optimal value of five parameters (Ip, Isd, a, Rs, Rsh) for
SDM of solar PV module at distinct levels of irradiance and constant temperature of 25 ◦C
is presented in Table 4 and Tables S7–S9. The characteristics curve of current-voltage
and power-voltage for solar PV module is redrawn based on best optimized parameters
obtained by implementing the WOAPSO algorithm at a different level of irradiance, i.e.,
1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2 and is depicted in Figure 5. It is found
that the calculated data obtained by the WOAPSO is very effectively in keeping with the
experimental data set. The curve of IAE between experimental and estimated values at
1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2, is shown in Figure 6.

Table 4. Comparison of proposed WOAPSO with different parameter estimation methods for SS2018P PV module
(1000 W/m2).

Parameters
Algorithms

GSA SCA GWO PSO WOA PSOGSA WOAPSO

Iph (A) 1.0959 ± 0.0037 1.1742 ± 0.011 1 ± 0.024 1.1796 ± 1.009 1.181 ± 0.0103 1.168 ± 0.053 1.1707 ± 0.0025
Isd (µA) 0.001 ± 0.2246 0.0092 ± 0.388 0.001 ± 0.0759 0.001 ± 0.707 0.019 ± 1.034 0.001 ± 1.358 0.0074 ± 0.0348
Rs (Ω) 0.001 ± 0.0253 0.0011 ± 0.0187 0.001 ± 0.0022 0.0022 ± 0.583 0.0024 ± 0.007 0.0075 ± 0.0342 0.2 ± 0.0017

Rsh (Ω) 455.5284 ± 13.67 139.676 ±
19.5323 100 ± 0.842 1308.079 ±

2.466 18.166 ± 10.71 2000 ± 4.63 177.219 ± 0.026

a 53.5976 ± 0.2493 1.4147 ± 1.021 1.2628 ± 0.0399 1.2429 ± 0.252 1.289 ± 0.6784 1.246 ± 0.24 1.3939 ± 0.0068
RMSE 1.68× 10−1 1.51× 10−3 1.59× 10−1 5.13× 10−3 7.82× 10−4 3.22× 10−3 7.6714× 10−4

CPU time (s) 17 12.45 9.3 10 7.56 13.17 7.81
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Figure 5. Characteristics curve of simulated and experimental values at different level of irradiance
(a) I-V curve and (b) P-V curve for single-diode model of SS2018P PV module. Symbols represent the
estimated data while the solid lines represent the measured data.
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Figure 6. Internal absolute error between measured and simulated current for single-diode model of SS2018P PV module at
different level of irradiance.

3.4. Convergence Analysis

To analyze the computational competence of WOAPSO, the convergence curves of
the single-diode model, double-diode model, and PV module is presented in Figure 7. It is
depicted that the proposed WOAPSO algorithm outperforms the GSA, SCA, GWO, PSO,
WOA, PSOGSA algorithms in terms of convergence speed and generates a precise solution
for the identical number of function evaluations (i.e., 50,000).
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3.5. Robustness and Statistical Analysis

This section presents statistical evaluation based on mean, minimum, maximum, and
standard deviation of RMSE for all previously implemented methods, and a comparison
with respect to precision and consistency of the distinct algorithms in a total of thirty runs
and depicted in Table 5. The mean of RMSE is calculated to evaluate the precision of
algorithms, and the standard deviation is calculated to evaluate the consistency of the
parameter estimation methods.
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Table 5. Statistical results of RMSE of different algorithms for all three models.

Model Algorithm
RMSE

Min Mean Max SD

Single-diode
model

GSA 1.2012× 10−3 5.4701× 10−3 2.4211× 10−1 1.3129× 10−3

SCA 1.9123× 10−3 9.6515× 10−3 2.1642× 10−1 9.4066× 10−3

GWO 9.4095× 10−4 1.0441× 10−3 1.3506× 10−3 1.4050× 10−5

PSO 1.4320× 10−3 1.2534× 10−3 1.4074× 10−3 1.1520× 10−4

WOA 9.9529× 10−4 9.2032× 10−4 7.1240× 10−3 9.0250× 10−3

PSOGSA 1.2400× 10−3 1.7660× 10−3 5.2460× 10−3 1.9880× 10−3

WOAPSO 7.1701× 10−4 7.8030× 10−4 1.3436× 10−3 2.4290× 10−6

Double-
diode
model

GSA 2.0330× 10−3 4.7041× 10−3 2.6058× 10−1 1.5796× 10−3

SCA 3.1800× 10−3 1.7932× 10−3 1.2470× 10−1 7.7256× 10−2

GWO 1.6000× 10−3 2.6901× 10−3 8.2830× 10−2 2.6995× 10−3

PSO 2.9000× 10−3 4.9713× 10−3 3.3402× 10−2 3.5833× 10−2

WOA 4.3000× 10−3 5.2967× 10−3 1.8698× 10−2 3.9481× 10−3

PSOGSA 1.4812× 10−1 1.4833× 10−1 1.4732× 10−1 1.0977× 10−2

WOAPSO 9.8412× 10−4 1.2481× 10−3 1.9312× 10−3 1.0581× 10−3

SS2018P
module
model

GSA 1.6877× 10−1 1.9462× 10−1 2.0011× 10−1 4.4500× 10−3

SCA 1.5149× 10−3 5.2657× 10−3 2.0345× 10−1 1.0058× 10−2

GWO 1.5938× 10−1 1.5940× 10−1 5.2494× 10−1 1.6793× 10−2

PSO 5.1329× 10−2 1.2512× 10−2 2.6323× 10−1 1.9334× 10−2

WOA 7.8164× 10−4 1.8268× 10−3 2.1078× 10−2 1.3639× 10−3

PSOGSA 3.2258× 10−3 3.9510× 10−3 2.2333× 10−1 4.0336× 10−3

WOAPSO 7.6714× 10−4 7.4601× 10−4 7.5388× 10−4 7.4516× 10−5

The statistical results presented in Table 5 indicate that WOAPSO is the most accurate
and reliable parameter optimization technique. As shown in Table 6, based on the Friedman
ranking test result, the best ranking is obtained by the WOAPSO, followed by WOA, GWO,
GSA, PSOGSA, SCA, and PSO. Also, Figure 8 shows the distribution of results (i.e., RMSE)
obtained from the distinct algorithms in 30 runs in the form of a boxplot graph for the SDM,
DDM, and PV module. It can be anticipated from Figure 8 that the proposed WOAPSO
algorithm delivers the best results in terms of accuracy and reliability compared to the
other six algorithms.

Table 6. Ranking of the proposed WOAPSO and other compared algorithms on three PV models
according to the Friedman test.

Algorithms Friedman Ranking Final Ranking

GSA 3.9 4
SCA 5.91 6

GWO 3.36 3
PSO 6.53 7

WOA 2.05 2
PSOGSA 5.22 5
WOAPSO 1 1
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4. Discussion 

To evaluate the reliability of the WOAPSO, the proposed hybrid algorithm is com-

pared with six well established metaheuristics algorithms, i.e., GSA [56], SCA [57], GWO 

[58], PSO [59], WOA [37], PSOGSA [60] as well as other algorithms existing in the litera-

ture. It is observed that the estimated parameters based on the optimization process are 

highly consistent with the experimental data for SDM, DDM, and SS2018P PV module. 

For SDM, the hybrid WOAPSO algorithm generates the lowest RMSE values 

(7.1700 × 10−4) compared to the GSA, SCA, GWO, PSO, and WOA, PSOGSA algorithms 
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4. Discussion

To evaluate the reliability of the WOAPSO, the proposed hybrid algorithm is compared
with six well established metaheuristics algorithms, i.e., GSA [56], SCA [57], GWO [58],
PSO [59], WOA [37], PSOGSA [60] as well as other algorithms existing in the literature. It
is observed that the estimated parameters based on the optimization process are highly
consistent with the experimental data for SDM, DDM, and SS2018P PV module.

For SDM, the hybrid WOAPSO algorithm generates the lowest RMSE values
(7.1700× 10−4) compared to the GSA, SCA, GWO, PSO, and WOA, PSOGSA algorithms
(Table 2). The RMSE of the proposed WOAPSO algorithm is also compared with previously
studied algorithms (Table S2). It is noted that the hybrid WOAPSO algorithm provides
the lowest RMSE values than that of others. Table S3 represents the absolute IAE for SDM
analysis. The magnitude of IAE for different observations is less than 0.0018 (Table S3),
which indicates that the parameters optimized by the WOAPSO are very precise.

In the case of DDM analysis, the MLBSA, EHHO, IJAYA, and GOTLBO algorithms
produce the best value of RMSE (Table S4). However, WOAPSO generates the third-best
value of RMSE (9.8412× 10−4), which is very close to MLBSA (9.8249× 10−4), EHHO
(9.8360× 10−4), IJAYA (9.8293× 10−4), and GOTLBO (9.8317× 10−4). However, the com-
putational cost in terms of function evaluation is 1/3 of MLBSA, EHHO, IJAYA, and
GOTLBO. Moreover, WOAPSO shows superiority over other algorithms in terms of RMSE
(Table 3). For DDM, the magnitude of IAE for different observations is depicted in Table S5.
It is noticed that the IAE values are less than 0.0097, which demonstrates the accuracy of
optimized parameters produced by WOAPSO.

For the SS2018P PV module, the hybrid WOAPSO algorithm produces the lowest
RMSE values compared to the GSA, SCA, GWO, PSO, WOA, and PSOGSA algorithms.
The IAE magnitudes for different observations (at 1000 W/m2) are less than 0.0018 (Table
S6). More importantly, the computational time for WOAPSO is less than other algorithms
(Table 4). The average execution time of each algorithm on the three PV models is calculated
and illustrated in Figure 9. The WOAPSO algorithm requires less time (about 26.1 s)
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than GWO, PSO, SCA, WOA, and PSOGSA, while GSA has the worst execution time of
approximately 52 s.
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Furthermore, the Friedman ranking test is also performed for all algorithms and
depicted in Table 6. Table 6 shows that the proposed WOAPSO algorithm significantly
outperforms the GSA, SCA, GWO, PSO, WOA, PSOGSA algorithms for all three models,
i.e., single-diode, double-diode, and PV module models.

5. Conclusions

In this study, the hybridization of whale optimization and particle swarm optimization
algorithm (WOAPSO) is anticipated. The exploitation ability of PSO is only implemented
in pipeline mode when WOA stops to improve the best-found solution. The collaboration
of both metaheuristic algorithms can establish an effective balance between exploitation
and exploration ability. The proposed technique is further used to estimate the parameter
of three PV cell models, i.e., single-diode, double-diode, and SS108P PV panel module
model at different operating conditions. It should be noted that this suggested technique is,
for the first time, intended to track the estimation of parameters for photovoltaic models
reliably. The major conclusions are classified as follows:

• The proposed WOAPSO is relatively accurate and reliable at delivering the solution
in terms of RMSE as compared with other algorithms such as GSA, SCA, GWO, PSO,
WOA, PSOGSA, and existing algorithms in the literature.

• The I-V and P-V characteristic curves and IAE results indicate that WOAPSO can
generate the optimized value of estimated parameters for all the models of solar PV
cell as compared with other algorithms.

• The statistical analysis clearly depicts the robustness of the proposed WOAPSO tech-
nique on parameter estimation problem at different operating conditions.

• The convergence curves demonstrate that the best values of estimated parameters are
obtained by WOAPSO, and RMSE is 7.1700× 10−4 and 9.8412× 10−4 in the case of
single- and double-diode respectively.

• At different irradiation levels (i.e., 1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2),
the proposed WOAPSO algorithm is best in producing optimized parameters (Ip, Isd, a,
Rs, Rsh) and minimum value of RMSE for PV module even at a low level of irradiation
(630 W/m2).

The proposed WOAPSO algorithm has limitation for DDM analysis. The RMSE
value (9.8412× 10−4) of WOAPSO algorithm is lower than that of recently developed
metaheuristics algorithms (MLBSA, EHHO, IJAYA, and GOTLBO algorithms).
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The WOAPSO is an efficient and robust technique to estimate the unknown optimized
parameters of the solar PV model at different operating conditions. For future study,
the implementation of proposed WOAPSO to solve the other problems related to energy
optimization such as economic load dispatch, energy scheduling and optimization of PV
array configuration may also be interesting for scientists and research scholars.
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Abbreviations
The following abbreviations and nomenclature are used in this manuscript:
Ip Photo Diode Current
Isd Reverse Saturation Current
Rs Series Resistance
Rsh Shunt Resistance
a Diode Ideality Factor
RMSE Root Mean Square Error
PV Photo Voltaic
I-V Current-Voltage
P-V Power-Voltage
MPP Maximum Power Tracking
Voc Open Circuit Voltage
Impp Maximum Power Point Current
Isc Short Circuit Current
GBO Gradient Based Optimizer
HHO Harris-Hawk optimizer
HBO Heap-Based Optimizer
SMA Slime Mould Algorithm
GA Genetic Algorithm
DE Differential Evaluation
SA Simulating Annealing
PS Pattern Search
HS Harmony Search
CS Cooku Search
FPA Flower Pollination Algorithm
BFO Bacterial Foraging Algorithm
BM Bird Mating
ABSO Artificial Bee Swarm Optimization
PSO Particle Swarm Optimization
ITLBO Improved Teaching-Learning Based Optimization
WOA Whale Optimization Algorithm
CWOA Chaotic Whale Optimization Algorithm
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LWOA Levy flight trajectory based WOA
BWOA Binary Whale Optimization Algorithm
HAGWO Hybrid Approach Grey Wolf Optimization
WOA-CBO Whale Optimization Algorithm Colliding Bodies Optimization
MWOA Memetic Whale Optimization Algorithm
WOA-SA Whale Optimization Algorithm-Simulated Annealing
WOA-MFO Whale Optimization Algorithm-Moth Flame Optimization
SC-WOA Sine-Cosine Whale Optimization Algorithm
WOA-PS Whale Optimization Algorithm- Pattern Search
BS-WOA Brainstorm- Whale Optimization Algorithm
SDM Single-diode Model
DDM Double-diode Model
IAE Internal Absolute Error
RE Relative Error
GSA Gravitational Search Algorithm
SCA Sine Cosine Algorithm
GWO Grey Wolf Optimization
PSOGSA Particle Swarm Optimization Gravitational Search Algorithm
MLBSA Multiple Learning Backtracking Search Algorithm
EHHO Enriched Harris Hawks Optimization
IJAYA Improved Jaya Algorithm
GOTLBO Generalized Opposition-Based Teaching Learning Based Optimization
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