
electronics

Article

FPGA Implementation for CNN-Based Optical Remote Sensing
Object Detection

Ning Zhang 1, Xin Wei 1, He Chen 1 and Wenchao Liu 2,*

����������
�������

Citation: Zhang, N.; Wei, X.; Chen,

H.; Liu, W. FPGA Implementation for

CNN-Based Optical Remote Sensing

Object Detection. Electronics 2021, 10,

282. https://doi.org/10.3390/

electronics10030282

Academic Editor: Dah-Jye Lee

Received: 19 December 2020

Accepted: 20 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Beijing Key Laboratory of Embedded Real-Time Information Processing Technology, Beijing Institute of
Technology, Beijing 100081, China; 3120205375@bit.edu.cn (N.Z.); weixin@bit.edu.cn (X.W.);
chenhe@bit.edu.cn (H.C.)

2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
* Correspondence: liuwenchao@mail.tsinghua.edu.cn; Tel.: +86-1521-051-4721

Abstract: In recent years, convolutional neural network (CNN)-based methods have been widely
used for optical remote sensing object detection and have shown excellent performance. Some
aerospace systems, such as satellites or aircrafts, need to adopt these methods to observe objects
on the ground. Due to the limited budget of the logical resources and power consumption in these
systems, an embedded device is a good choice to implement the CNN-based methods. However, it is
still a challenge to strike a balance between performance and power consumption. In this paper, we
propose an efficient hardware-implementation method for optical remote sensing object detection.
Firstly, we optimize the CNN-based model for hardware implementation, which establishes a
foundation for efficiently mapping the network on a field-programmable gate array (FPGA). In
addition, we propose a hardware architecture for the CNN-based remote sensing object detection
model. In this architecture, a general processing engine (PE) is proposed to implement multiple
types of convolutions in the network using the uniform module. An efficient data storage and access
scheme is also proposed, and it achieves low-latency calculations and a high memory bandwidth
utilization rate. Finally, we deployed the improved YOLOv2 network on a Xilinx ZYNQ xc7z035
FPGA to evaluate the performance of our design. The experimental results show that the performance
of our implementation on an FPGA is only 0.18% lower than that on a graphics processing unit
(GPU) in mean average precision (mAP). Under a 200 MHz working frequency, our design achieves a
throughput of 111.5 giga-operations per second (GOP/s) with a 5.96 W on-chip power consumption.
Comparison with the related works demonstrates that the proposed design has obvious advantages
in terms of energy efficiency and that it is suitable for deployment on embedded devices.

Keywords: object detection; remote sensing; deep learning; CNN; hardware implementation; FPGA;
you-only-look-once (YOLO)

1. Introduction

Object detection is an important research topic of remote sensing image processing.
Object detection of optical remote sensing images aims to predict the location of the objects
belonging to the category of interest in a given remote sensing image [1]. Drawing upon
recent advances in computer vision, many researchers have adopted CNN-based methods
to remote sensing object detection applications, such as environmental monitoring [2],
intelligent transportation [3], and other vital applications [4–7]. Traditional remote sensing
image processing systems need to download images to the ground station for processing
and analysis from satellites. However, with the development of remote sensing technology,
the resolution and the data amount of optical remote sensing images are constantly increas-
ing. The increasing volume of image data puts high pressure on the data downlink [8,9].
The processing delay of the systems may be too long to meet the requirements of timeli-
ness [10,11]. Thus, many works have constructed an onboard remote sensing system to

Electronics 2021, 10, 282. https://doi.org/10.3390/electronics10030282 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10030282
https://doi.org/10.3390/electronics10030282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030282
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/282?type=check_update&version=2

Electronics 2021, 10, 282 2 of 24

implement object detection in real time on the satellites or aircraft [8,12]. This solution has
been shown to be more efficient than the traditional solutions [12].

The CNN-based object detection requires a high volume of parameters and calcula-
tions to extract features in the image and make predictions about the objects [13–15]. To
meet this requirement, many researchers adopt high-performance devices, such as graphics
processing units (GPUs), central processing units (CPUs), field-programmable gate arrays
(FPGAs), and application-specific integrated circuits (ASICs), to build onboard real-time
systems [14,16]. It is difficult for CPUs to take full advantage of parallel computing to meet
real-time processing [17]. They are rarely used as CNN implementation platforms. While
the computing performance of GPUs is fantastic, the high-power consumption hinders their
usage in the onboard system with limited resources and power budgets [12,18]. FPGAs
and ASICs have the advantages of high performance and energy efficiency [16,19]. Thus,
taking these low-power devices as hardware implementation platforms for CNNs has
become a research hotspot. However, ASICs require a long development period and high
costs to be designed. Therefore, owing to the advantages of the short development period,
energy efficiency, and reconfigurability, FPGAs are the ideal implementation platforms for
CNNs [17].

In recent years, researchers have proposed a variety of hardware-implementation
methods for CNN-based models on FPGAs [20,21]. While these works have successfully
implemented the inference phase of CNNs on FPGA, some challenges remain. The first
challenge is how to rational design a parallel implementation scheme for CNNs on an FPGA.
The second challenge is how to reduce the model complexities of CNNs for hardware
implementation while ensuring implementation accuracy.

Some researchers focus on increasing the parallelism and pipeline of their designs.
Peemen et al. [22] proposed a novel data access pattern and on-chip buffer management to
improve parallelism and computational performance. However, the design needs about
10 s to program the FPGA to shift to the next layer. Thus, processing speed in this design
cannot meet the requirement of real-time processing. F. Sun et al. [23] proposed an FPGA-
based accelerator composed of multiple processing engines (PEs) and implemented an
AlexNet on it. Each PE is used to achieve the computation of one layer in the model.
This ensures that the calculations in different layers can be carried out in the pipeline.
Similarly, H. Li et al. [24] proposed an end-to-end CNN accelerator, which enables all layers
of the AlexNet to work concurrently in the pipeline structure. These designs increased
parallelism, which can improve performance significantly.

L. Chen et al. [17] implemented an LeNet-5 on an FPGA for remote sensing image
classification. It took 2.29 ms to process a remote sensing image with a size of 126 × 126.
This work adopted full-precision data types to represent the models and features, which
needed a high amount of hardware resources and thus are difficult to use for the imple-
mentation of complex models. Therefore, extensive studies have made efforts to reduce
the model complexities of CNNs to efficiently deploy them on FPGAs. Y. Zhou et al. [25]
implemented a 5-layer CNN on an FPGA with 11-bit fixed-point precision using the Xilinx
HLS tool. Z. Li et al. [26] presented an 8-bit fixed-point inference engine (Laius) for LeNet-5
on an FPGA. The test results on the MNIST dataset show that the accuracy loss of this
implementation exceeds 1%, compared to the original Caffe model. H. Fan et al. [27]
proposed an architecture that accelerates an SSDLite-MobileNetV2 object detector on an
FPGA. To meet the requirements of real-time processing, this work adopted partial net-
work quantization for hardware optimization. The weights of the convolutional layer
were quantized into 8-bit fixed. However, this design has a 1.8% accuracy loss on the
COCO dataset. Some researchers are devoted to exploring extreme low-bit compression
for hardware implementation [28,29]. J. Li et al. [30] implemented a CNN on an FPGA,
where the weights were constrained to only two possible values. In summary, the above-
mentioned works improved the calculation efficiency of their designs through different
quantization methods.

Electronics 2021, 10, 282 3 of 24

However, there are still some shortcomings in the hardware implementation. First,
while it can increase the pipeline and parallel of the implementation by designing a special
architecture for each layer in the network, they are only customized for a specific network
structure and cannot implement others. These methods are difficult to use for the hardware
implementation of complex networks due to the massive resource overhead. Second,
some low-precision quantization strategies are not hardware-friendly, such as the 11-bit
fixed-point quantization [25]. Moreover, the low-precision implementation of a CNN will
inevitably cause performance degradation, especially binary networks. These problems
are more serious in remote sensing image processing than that in the natural scenes [12].
Up to now, our search of the literature shows that few studies are devoted to implement
CNN-based object detection on the FPGA for remote sensing. This is still a challenging
task and research hotspot.

In this paper, we propose an efficient hardware-implementation method for optical
remote sensing object detection. This method enables a CNN-based object detection
network to be successfully deployed in an FPGA with a low cost of power consumption
and hardware resources. The main contributions of this paper are summarized as follows:

• We optimized an improved YOLOv2 network for hardware implementation. The
optimization mainly includes three aspects: network quantization, layer fusion, and
a unified implementation of multiple convolutions. Through these optimization
methods, we effectively reduced the scale of the network while maintaining detec-
tion accuracy.

• We proposed a hardware architecture for the CNN-based remote sensing object detec-
tion model. In this architecture, a general PE is proposed to implement multiple types
of convolutions in the network. An efficient data storage and access scheme is also
proposed, which achieves low-latency calculations and a high memory bandwidth
utilization rate.

• We implemented the optimized network on the Xilinx ZYNQ xc7z035 FPGA to evalu-
ate the performance of the proposed hardware architecture. The experimental results
tested on the detection in an aerial image (DOTA) [31] dataset illustrate that the per-
formance of our implementation on an FPGA is only 0.18% lower than that on a GPU
in mean average precision (mAP). A comparison with related works demonstrates
that our design can strike an excellent balance between resource consumption and
computing time cost.

2. Background

Several CNN-based methods, Region-CNNs (R-CNNs) [32], the Single Shot MultiBox
Detector (SSD) [33], and you-only-look-once (YOLO) [34], have been proposed for object
detection. YOLO ensures an excellent trade-off between accuracy and speed compared
with other approaches [29,35]. In Reference [4], an improved YOLOv2 network was
proposed for remote sensing object detection. This network adopted dilated convolution
and transposed convolution to improve performance for multiscale objects in complex
optical remote sensing scenes. This network strikes a balance between model complexity
and object detection performance. In this paper, we took the improved YOLOv2 as the
fundamental network. The structure of the fundamental work is shown in Figure 1. As
shown in Figure 1, the fundamental work contains multiple computational layers. These
layers are concatenated together. The main layers are the convolutional layer, pooling layer,
batch normalization layer, and activation function.

Electronics 2021, 10, 282 4 of 24

Electronics 2021, 10, x FOR PEER REVIEW 4 of 25

Figure 1. The structure of the improved YOLOv2. Each convolutional layer contains not only con-
volution but also batch normalization and activation sublayers.

2.1. Convolutional Layer
In CNNs, convolutional layers are used to extract features from input images. The

operation in a convolutional layer is a three-dimensional calculation by input feature
maps and convolution kernels. The fundamental network has three types of these opera-
tions: a standard convolution, a dilated convolution, and a transposed convolution. The
details are described in the following subsections.

2.1.1. Standard Convolution
The calculation of standard convolution is defined as

− − −

× + ×
= = =

= × +
1 1 1

, + , , ,
0 0 0

inC K K

x y x s m y s n m n x y
c n m

O I w b (1)

where Ix + s × m, y + s × n is the value of the input feature map at the point of (x + s × m, y + s × n),
Cin is the number of input channels, s represents the stride of the convolutional layer, wm,n
is the corresponding weight in the kernels, K is the size of kernels, bx,y is the corresponding
bias, and Ox,y is the value of the output feature map at the point of (x, y).

2.1.2. Dilated Convolution
A dilated convolution can expand the receptive field of the feature map without in-

creasing parameters [36]. It is mainly used to introduce fine features and avoid excessive
loss of the resolution. The actual size of the kernel can be computed with

= + − × −(1) (1)rk k k r (2)

where r is a hyper-parameter that represents the dilation rate. Taking the dilated convo-
lution with r = 2 in the fundamental network as an example, its computation is shown in

Figure 1. The structure of the improved YOLOv2. Each convolutional layer contains not only
convolution but also batch normalization and activation sublayers.

2.1. Convolutional Layer

In CNNs, convolutional layers are used to extract features from input images. The
operation in a convolutional layer is a three-dimensional calculation by input feature maps
and convolution kernels. The fundamental network has three types of these operations: a
standard convolution, a dilated convolution, and a transposed convolution. The details are
described in the following subsections.

2.1.1. Standard Convolution

The calculation of standard convolution is defined as

Ox,y =
Cin−1

∑
c=0

K−1

∑
n=0

K−1

∑
m=0

Ix+s×m,y+s×n × wm,n + bx,y (1)

where Ix + s × m, y + s × n is the value of the input feature map at the point of (x + s × m,
y + s × n), Cin is the number of input channels, s represents the stride of the convolutional
layer, wm,n is the corresponding weight in the kernels, K is the size of kernels, bx,y is the
corresponding bias, and Ox,y is the value of the output feature map at the point of (x, y).

2.1.2. Dilated Convolution

A dilated convolution can expand the receptive field of the feature map without
increasing parameters [36]. It is mainly used to introduce fine features and avoid excessive
loss of the resolution. The actual size of the kernel can be computed with

kr = k + (k− 1)× (r− 1) (2)

where r is a hyper-parameter that represents the dilation rate. Taking the dilated convo-
lution with r = 2 in the fundamental network as an example, its computation is shown in

Electronics 2021, 10, 282 5 of 24

Figure 2. A zero is inserted between every two weights in the original kernel. The size of
the kernel is changed from 3 × 3 to 5 × 5 after interpolation.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 25

Figure 2. The computation of the dilated convolution with a 3 × 3 kernel and a dilation rate of 2.

2.1.3. Transposed Convolution

A transposed convolution is another type of convolutional operation in CNNs. This

convolution can be used to achieve the up-sampling of the feature maps, which can be

defined as

 T

out in
f f k (3)

where kT represents the weight matrix after transpose, and fin and fout represent the input

and output feature maps, respectively. The essence of the transposed convolution is an

operation expanding the size of the input feature map. The size of the input feature map

after interpolated can be expressed as follows:

'

'

2

2

in in in out

in in in out

H H s pad pad

W W s pad pad
 (4)

where s is the stride of the convolution, padin is the amount of zero-padding to both sides

of the input, padout is the amount of zero-padding to one side of the output, and Hin and

Win represent the height and width of the original input feature map, respectively. H
′

in and

W
′

in represent the height and width of the input feature map after interpolation, respec-

tively. For the fundamental network, padin and padout are both 1 and the stride is equal to 2.

The computation of the transposed convolution is shown in Figure 3.

Figure 3. The computation of the transposed convolution (padin = 1, padout = 1, s = 2).

2.2. Batch-Normalization Layer

In most CNNs, the batch normalization (BN) layer and activation function [37] are

placed after the convolutional layers. BN layers are used to prevent over-fitting and speed

up the training [38]. The calculation of BN can be defined as follows：

,

,
2

x y

x y

O O
BN O (5)

Figure 2. The computation of the dilated convolution with a 3 × 3 kernel and a dilation rate of 2.

2.1.3. Transposed Convolution

A transposed convolution is another type of convolutional operation in CNNs. This
convolution can be used to achieve the up-sampling of the feature maps, which can be
defined as

fout = fin × kT (3)

where kT represents the weight matrix after transpose, and fin and fout represent the input
and output feature maps, respectively. The essence of the transposed convolution is an
operation expanding the size of the input feature map. The size of the input feature map
after interpolated can be expressed as follows:

H′in = Hin × s + 2× padin + padout
W ′in = Win × s + 2× padin + padout

(4)

where s is the stride of the convolution, padin is the amount of zero-padding to both sides of
the input, padout is the amount of zero-padding to one side of the output, and Hin and Win
represent the height and width of the original input feature map, respectively. H′in and W ′in
represent the height and width of the input feature map after interpolation, respectively.
For the fundamental network, padin and padout are both 1 and the stride is equal to 2. The
computation of the transposed convolution is shown in Figure 3.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 25

Figure 2. The computation of the dilated convolution with a 3 × 3 kernel and a dilation rate of 2.

2.1.3. Transposed Convolution

A transposed convolution is another type of convolutional operation in CNNs. This

convolution can be used to achieve the up-sampling of the feature maps, which can be

defined as

 T

out in
f f k (3)

where kT represents the weight matrix after transpose, and fin and fout represent the input

and output feature maps, respectively. The essence of the transposed convolution is an

operation expanding the size of the input feature map. The size of the input feature map

after interpolated can be expressed as follows:

'

'

2

2

in in in out

in in in out

H H s pad pad

W W s pad pad
 (4)

where s is the stride of the convolution, padin is the amount of zero-padding to both sides

of the input, padout is the amount of zero-padding to one side of the output, and Hin and

Win represent the height and width of the original input feature map, respectively. H
′

in and

W
′

in represent the height and width of the input feature map after interpolation, respec-

tively. For the fundamental network, padin and padout are both 1 and the stride is equal to 2.

The computation of the transposed convolution is shown in Figure 3.

Figure 3. The computation of the transposed convolution (padin = 1, padout = 1, s = 2).

2.2. Batch-Normalization Layer

In most CNNs, the batch normalization (BN) layer and activation function [37] are

placed after the convolutional layers. BN layers are used to prevent over-fitting and speed

up the training [38]. The calculation of BN can be defined as follows：

,

,
2

x y

x y

O O
BN O (5)

Figure 3. The computation of the transposed convolution (padin = 1, padout = 1, s = 2).

2.2. Batch-Normalization Layer

In most CNNs, the batch normalization (BN) layer and activation function [37] are
placed after the convolutional layers. BN layers are used to prevent over-fitting and speed
up the training [38]. The calculation of BN can be defined as follows:

BN
(
Ox,y

)
= γ

(
Ox,y −O
√

σ2 + ε

)
+ β (5)

Electronics 2021, 10, 282 6 of 24

where Ō and σ2 represent the average and variance of the output feature maps of the
previous convolution layer, respectively. ε is a minimal number to prevent the denominator
from being zero. γ and β are learnable parameters to apply an affine transformation to the
normalized output feature maps.

2.3. Activation Function

The activation functions are mainly used to change the output feature maps non-
linearly. The most commonly used activation functions are the rectified linear unit (ReLU)
and Leaky ReLU. LeakyReLU activation is widely used in the fundamental network, which
can be defined as

y =

{
x x ≥ 0
ax x < 0

(6)

where a is the fixed leaky coefficient in the range (0, 1). For ReLU activation, it can be
computed in the same way by setting a = 0.

2.4. Pooling Layer

The pooling layer can reduce the size of feature maps by discarding redundant infor-
mation. The most commonly used in CNNs are average pooling and max pooling. In the
fundamental network, max pooling is used as the pooling layer. The output neuron of the
max-pooling layer can be calculated as

Nout
x,y = Max

i,j∈[0,m−1]
(Nin

x+i,y+j) (7)

where the max pooling layers take the maximum value from the region m×m as the output.
The height and the width of the pooling size are both 2, and its vertical and horizontal
strides are 2 in the fundamental network.

3. Optimization for Implementation

With the above-mentioned descriptions of the computational layers in the fundamental
network, we can use a processing block to achieve all the forward calculations during
inference. The block is shown in Figure 4. We can directly deploy the block on the
hardware. However, this deployment method has several disadvantages. Firstly, the values
involved in the calculations are represented at the floating point and are not hardware
friendly. Second, the multiplications and additions in the calculations are very dense,
which limits the processing speed and has a high resource requirement. In addition, the
fundamental network contains multiple types of convolution operations. If we customize
the structure for each convolution, it will consume enormous hardware resources. To
solve these problems, we optimize the network, as shown in Figure 4. The optimization
contains network quantization, layer fusion, and the unified implementation of multiple
convolutions. The details are described in the following subsections.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 25

Figure 4. The forward inference calculation process of the fundamental network and an overview of our optimization for

implementation.

3.1. Network Quantization

In the fundamental network, the convolutional layers account for most of the calcu-

lations. To deploy the network on the FPGA efficiently, we adopted a hardware-aware-

ness symmetric quantization scheme to quantize both the feature maps and weights of the

convolutional layers into a low-bit integer. Since other layers require high data accuracy

[28,29], we retain them at full precision. Considering the general case of N-bit symmetric

quantization, the quantization function is defined by the following:

1 1, 2 1 , 2 1N Nr
q clamp Int

S
 (8)

where r represents the floating-point element in the input feature matrix or weight matrix,

q represents the corresponding quantized value, S indicates the scaling factor of the ma-

trix, and N indicates the quantization bit width. The clamp(∙) function is used to limit the

quantized values to the range of

1 12 1 , 2 1N N , and Int(∙) function is used to round

the data to an integer. The quantized bias can be calculated by the following:

1 1, 2 1 , 2 1b b

d w

N Nb
b clamp Int

S S
 (9)

where b and b′ represent the original and quantized bias, respectively. Sw and Sd represent

the scaling factor of the feature matrix and weight matrix, respectively. Nb indicates the

quantization bit width of the bias matrix. In this paper, the quantization bit widths of the

feature maps and weights are set to 8 bits. The quantization bit widths of biases are set to

32 bits. With the quantized feature maps and weights, the convolutional layer can be con-

verted into a quantized version as

1 1 1

, + , , ,
0 0 0

ˆˆ ˆ ˆ
inC K K

x y x s m y s n m n x y
c n m

O I w b (10)

where Î and ŵ represent the feature values and weights after being quantized to 8-bit

fixed-point version, respectively. b̂ represents the biases after quantification, and Ô

represents the output feature values of the quantized convolutional layer.

The output feature maps of the quantized convolutional layer are 32-bit integers. It

is necessary to perform inverse quantization to convert these values into floating-point

types for the following layers. The operation of inverse quantization is defined as follows:

d w

q S S q (11)

Figure 4. The forward inference calculation process of the fundamental network and an overview of our optimization
for implementation.

Electronics 2021, 10, 282 7 of 24

3.1. Network Quantization

In the fundamental network, the convolutional layers account for most of the calcula-
tions. To deploy the network on the FPGA efficiently, we adopted a hardware-awareness
symmetric quantization scheme to quantize both the feature maps and weights of the con-
volutional layers into a low-bit integer. Since other layers require high data accuracy [28,29],
we retain them at full precision. Considering the general case of N-bit symmetric quantiza-
tion, the quantization function is defined by the following:

q = clamp
(

Int
(r

S

)
,
(
−2N−1 + 1

)
,
(

2N−1 − 1
))

(8)

where r represents the floating-point element in the input feature matrix or weight matrix,
q represents the corresponding quantized value, S indicates the scaling factor of the matrix,
and N indicates the quantization bit width. The clamp(·) function is used to limit the
quantized values to the range of

[(
−2N−1 + 1

)
,
(
2N−1 − 1

)]
, and Int(·) function is used to

round the data to an integer. The quantized bias can be calculated by the following:

b′ = clamp
(

Int
(

b
Sd × Sw

)
,
(
−2Nb−1 + 1

)
,
(

2Nb−1 − 1
))

(9)

where b and b′ represent the original and quantized bias, respectively. Sw and Sd represent
the scaling factor of the feature matrix and weight matrix, respectively. Nb indicates the
quantization bit width of the bias matrix. In this paper, the quantization bit widths of the
feature maps and weights are set to 8 bits. The quantization bit widths of biases are set
to 32 bits. With the quantized feature maps and weights, the convolutional layer can be
converted into a quantized version as

Ôx,y =
Cin−1

∑
c=0

K−1

∑
n=0

K−1

∑
m=0

Îx+s×m,y+s×n × ŵm,n + b̂x,y (10)

where Î and ŵ represent the feature values and weights after being quantized to 8-bit fixed-
point version, respectively. b̂ represents the biases after quantification, and Ô represents
the output feature values of the quantized convolutional layer.

The output feature maps of the quantized convolutional layer are 32-bit integers. It is
necessary to perform inverse quantization to convert these values into floating-point types
for the following layers. The operation of inverse quantization is defined as follows:

q = SdSw × q′ (11)

where q′ represents the quantized value in the quantized convolutional results, and q
represents the corresponding floating-point value after inverse quantization. With the
hardware-awareness symmetric quantization, the volume of floating-point operations in
the network can be reduced. Moreover, this hardware-friendly optimization can efficiently
reduce the requirement of hardware resources for implementation.

3.2. Layer Fusion

Applying symmetric quantization to the fundamental network eliminates most of the
floating-point operations in the convolutional layers. However, there are still dense floating-
point operations in the other layers, the quantization layers and the inverse quantization
layers. To further reduce the volume of the floating-point calculation in the fundamen-
tal network, we present another optimization, layer fusion, to merge the floating-point
multiplications and additions in adjacent layers.

Electronics 2021, 10, 282 8 of 24

In Equation (5), Ō, σ2, γ, and β are determined after the network is trained. With the
determined parameters, Equation (5) can be rewritten as

BN
(
Ox,y

)
=

γ√
σ2 + ε

Ox,y +

(
β− γO√

σ2 + ε

)
(12)

Compared to Equation (5), Equation (12) has one less addition and multiplication dur-
ing the inference. This transformation can optimize the hardware design while deploying
the BN layer on the FPGA.

Generally, BN layers are placed after convolutional layers. Applying the symmetric
quantization will insert an inverse quantization layer between the quantized convolutional
layer and BN layer. Considering that the multiplications in the inverse quantization
layer and the BN layer can be achieved by only one multiplication, we fused the inverse
quantization to the BN layer. The calculation of the fused BN layer is defined as follows:

q = γ′Ox,y + β′ (13)

where γ′ and β′ represent the multiplication and addition coefficients of the fused BN layer,
respectively. They can be calculated by the following: γ′ = γSdSw√

σ2+ε

β′ = β− γ× O√
σ2+ε

(14)

These two coefficients can be calculated offline. For hardware implementations, this
fused layer only needs to perform one floating-point multiplication and addition. Notably,
if the networks do not include BN layers, we can achieve them by setting γ′ = SdSw and
β′ = 0 without re-design.

In the fundamental network, LeakyReLU is used to activate the output feature maps of
a convolutional layer. With the network quantization, a quantization layer is placed before
the following convolutional layer. Both the activation function and the quantization layer
involve one floating-point multiplication. Like the previous layer fusion, the activation
function can be fused into the following quantization layer. However, the max-pooling
layer may make the two layers non-adjacent. Considering that the max-pooling layer only
involves a comparison operation, and the change of calculation order will not result in
wrong network calculations, we placed the following quantization layer before the current
max-pooling layer. The fused activation layer is defined as

d′ =

 clamp
(

Int
(

1
Sd
× x
)

,
(
−2Nd−1 + 1

)
,
(
2Nd−1 − 1

))
x ≥ 0

clamp
(

Int
(

a
Sd
× x
)

,
(
−2Nd−1 + 1

)
,
(
2Nd−1 − 1

))
x < 0

(15)

Similar to the fused BN layer, the multiplying factors 1/Sd and a/Sd of this fused layer
can be calculated off-line before implementation.

Figure 5 shows the optimized processing block with network quantization and layer
fusion. Compared with the original, most float-point calculations have been converted to
an 8-bit fixed-point version, and the processing flow is optimized. These optimizations can
reduce the requirement of hardware resources.

Electronics 2021, 10, 282 9 of 24

Electronics 2021, 10, x FOR PEER REVIEW 9 of 25

1 1

1 1

1
 , 2 1 , 2 1 0

, 2 1 , 2 1 0

d d

d d

N N

d

N N

d

clamp Int x x
S

a
clamp Int x x

S

d

(15)

Similar to the fused BN layer, the multiplying factors
1

dS and
d

a
S of this fused

layer can be calculated off-line before implementation.

Figure 5 shows the optimized processing block with network quantization and layer

fusion. Compared with the original, most float-point calculations have been converted to

an 8-bit fixed-point version, and the processing flow is optimized. These optimizations

can reduce the requirement of hardware resources.

Figure 5. The forward inference calculation process after network quantization and layer fusion.

3.3. Unified Implementation of Multiple Convolutions

As shown in Figure 1, the fundamental network contains many different types of

convolutional layers. It is ineffective and inflexible to customize the hardware module for

each type of convolution. Furthermore, while the data type is optimized by network quan-

tization, the volume of calculations in the convolutional layers is constant. It is still a great

challenge to implement these calculations on an FPGA. To solve these problems, we first

optimized the original loop computation in a standard convolutional layer to run it effi-

ciently on an FPGA. We then proposed some transformation methods to convert all other

types of convolutions in the fundamental network into a standard convolution by data

arrangement. With these transformation methods, only one processing engine needs to be

designed to implement all types of convolutional layers in the fundamental network.

3.3.1. Loop Optimization for Standard Convolutions

The execution of convolution exhibits numerous sources of parallelism. Due to hard-

ware constraints, it is impossible to exploit all of the parallelism patterns fully [39]. The

standard convolutional layer contains N filters, and each filter consists of M-channels K ×

K kernels. We optimize the original loop computation of the standard layer, as shown in

Figure 6. When calculating, the K × K rectangular window slides along the width of the

input feature maps, which is called row processing. The extracted pixels need to be calcu-

lated with N corresponding kernels. However, the N kernels may not be calculated at the

same time due to the limited hardware resources. Thus, we divided the N kernels into

multiple groups to perform calculations, and each time n kernels participate in the calcu-

lation. This operation repeats Ni = N/n times until all the N intermediate results are ob-

tained. The N intermediate results generated by the calculation are stored in the accumu-

lation buffer. These kernels are reused for subsequent row processing until the rectangular

Figure 5. The forward inference calculation process after network quantization and layer fusion.

3.3. Unified Implementation of Multiple Convolutions

As shown in Figure 1, the fundamental network contains many different types of
convolutional layers. It is ineffective and inflexible to customize the hardware module
for each type of convolution. Furthermore, while the data type is optimized by network
quantization, the volume of calculations in the convolutional layers is constant. It is still
a great challenge to implement these calculations on an FPGA. To solve these problems,
we first optimized the original loop computation in a standard convolutional layer to run
it efficiently on an FPGA. We then proposed some transformation methods to convert all
other types of convolutions in the fundamental network into a standard convolution by
data arrangement. With these transformation methods, only one processing engine needs
to be designed to implement all types of convolutional layers in the fundamental network.

3.3.1. Loop Optimization for Standard Convolutions

The execution of convolution exhibits numerous sources of parallelism. Due to hard-
ware constraints, it is impossible to exploit all of the parallelism patterns fully [39]. The
standard convolutional layer contains N filters, and each filter consists of M-channels
K × K kernels. We optimize the original loop computation of the standard layer, as shown
in Figure 6. When calculating, the K × K rectangular window slides along the width of
the input feature maps, which is called row processing. The extracted pixels need to be
calculated with N corresponding kernels. However, the N kernels may not be calculated
at the same time due to the limited hardware resources. Thus, we divided the N kernels
into multiple groups to perform calculations, and each time n kernels participate in the
calculation. This operation repeats Ni = N/n times until all the N intermediate results are
obtained. The N intermediate results generated by the calculation are stored in the accumu-
lation buffer. These kernels are reused for subsequent row processing until the rectangular
window shifts to the end of the channel. In a row processing, N × Hout intermediate results
are obtained. The rectangular window then shifts toward the subsequent channels and
repeats the above row processing. For each row processing, the corresponding kernels in
the filters are taken out for convolution. Traversing all channels needs M row processing,
which is called channel processing. After that, the rectangular window shifts down by
one row and repeats the above-mentioned channel processing. The number of repetitions
is Hin + 2 × pad − K + 1, where pad is the amount of zero-padding to both sides of the
input image. Therefore, to process the whole input feature maps, the weights of the filters
should be read Hin + 2 × pad − K + 1 times. To avoid performance degradation, we hide
the waiting time in row processing by weight prefetching. Notably, the intermediate results
produced by one row processing will be accumulated in the next row processing. Therefore,
the size of the accumulation buffer is M× Hout × 32 bit. This computing pattern has several

Electronics 2021, 10, 282 10 of 24

advantages. Firstly, the same feature values will not be read repeatedly from external
memories, which avoids frequent memory access. Second, the intermediate results can be
accumulated in time, reducing the consumption of on-chip resources. Finally, the feature
values of output feature maps can be obtained row by row, which is beneficial to pooling.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 25

window shifts to the end of the channel. In a row processing, N × Hout intermediate results

are obtained. The rectangular window then shifts toward the subsequent channels and

repeats the above row processing. For each row processing, the corresponding kernels in

the filters are taken out for convolution. Traversing all channels needs M row processing,

which is called channel processing. After that, the rectangular window shifts down by one

row and repeats the above-mentioned channel processing. The number of repetitions is

Hin + 2 × pad − K + 1, where pad is the amount of zero-padding to both sides of the input

image. Therefore, to process the whole input feature maps, the weights of the filters

should be read Hin + 2 × pad − K + 1 times. To avoid performance degradation, we hide the

waiting time in row processing by weight prefetching. Notably, the intermediate results

produced by one row processing will be accumulated in the next row processing. There-

fore, the size of the accumulation buffer is M × Hout × 32 bit. This computing pattern has

several advantages. Firstly, the same feature values will not be read repeatedly from ex-

ternal memories, which avoids frequent memory access. Second, the intermediate results

can be accumulated in time, reducing the consumption of on-chip resources. Finally, the

feature values of output feature maps can be obtained row by row, which is beneficial to

pooling.

Figure 6. The computing pattern of the standard convolutions.

3.3.2. Transformation Method for Other Convolutions

The standard convolution with a kernel size of 3 × 3 is representative in the funda-

mental network. In this section, we focus on converting the remaining types of convolu-

tions into the 3 × 3 standard convolutions for implementation. For a 1 × 1 standard convo-

lution, we can convert the size of the kernel from 1 × 1 to 3 × 3 by zero-padding. Notably,

an additional zero-padding is added to the input feature maps to obtain the correct size

of the output feature maps. The calculation process after conversion is shown in Figure 7a. The

essence of 3 × 3 transposed convolution and 3 × 3 standard convolution is the same. Their

basic operations are both the convolution of nine weights and the corresponding feature

values. Notably, the 3 × 3 transposed convolution has two differences. Firstly, its kernels

need to be transposed for convolution. We adjust the order of the weights off-line to avoid

matrix transpose operation during the calculation. The other difference with the standard

convolution is that the input feature maps need to be interpolated by zero according to

Equation (4). For the fundamental network, the s, padin and padout of the 3 × 3 transposed

convolution is equal to 2, 1 and 1, respectively. Thus, 1-pixel-wide zero-padding is re-

quired in the left and top part; 2-pixel-wide zero-padding is required in the right and bot-

tom part of the input feature maps. Moreover, 1-pixel-wide zero-padding is required be-

tween two rows and between two columns of the input feature maps. We have designed

a reading strategy to efficiently complete the interpolation of feature maps and avoid extra

overhead, as shown in Figure 7b. The Enable signal represents a valid signal for the input

feature maps, but the feature values are not continuously read from the storage. The read

enable signal of the memory is a square-wave signal corresponding to the zero-padding

mode, named Rd_en signal. The Rd_en signal is set to zero when the input feature maps

need to be interpolated by zero, and the input feature map at this time is set to zero.

Figure 6. The computing pattern of the standard convolutions.

3.3.2. Transformation Method for Other Convolutions

The standard convolution with a kernel size of 3× 3 is representative in the fundamen-
tal network. In this section, we focus on converting the remaining types of convolutions
into the 3 × 3 standard convolutions for implementation. For a 1 × 1 standard convolution,
we can convert the size of the kernel from 1 × 1 to 3 × 3 by zero-padding. Notably, an
additional zero-padding is added to the input feature maps to obtain the correct size of the
output feature maps. The calculation process after conversion is shown in Figure 7a. The
essence of 3 × 3 transposed convolution and 3 × 3 standard convolution is the same. Their
basic operations are both the convolution of nine weights and the corresponding feature
values. Notably, the 3 × 3 transposed convolution has two differences. Firstly, its kernels
need to be transposed for convolution. We adjust the order of the weights off-line to avoid
matrix transpose operation during the calculation. The other difference with the standard
convolution is that the input feature maps need to be interpolated by zero according to
Equation (4). For the fundamental network, the s, padin and padout of the 3 × 3 transposed
convolution is equal to 2, 1 and 1, respectively. Thus, 1-pixel-wide zero-padding is required
in the left and top part; 2-pixel-wide zero-padding is required in the right and bottom part
of the input feature maps. Moreover, 1-pixel-wide zero-padding is required between two
rows and between two columns of the input feature maps. We have designed a reading
strategy to efficiently complete the interpolation of feature maps and avoid extra overhead,
as shown in Figure 7b. The Enable signal represents a valid signal for the input feature
maps, but the feature values are not continuously read from the storage. The read enable
signal of the memory is a square-wave signal corresponding to the zero-padding mode,
named Rd_en signal. The Rd_en signal is set to zero when the input feature maps need to
be interpolated by zero, and the input feature map at this time is set to zero. Through the
above method of processing the input feature map and kernel, the transposed convolution
can be converted into a 3 × 3 standard convolution for implementation.

Electronics 2021, 10, 282 11 of 24

Electronics 2021, 10, x FOR PEER REVIEW 11 of 25

Through the above method of processing the input feature map and kernel, the transposed

convolution can be converted into a 3 × 3 standard convolution for implementation.

Figure 7. (a) The schematic diagram of the modified 1 × 1 convolution operation process. (b)The interpolation processing

of the input feature map. If the row contains feature values, we will read the feature values and zero at intervals according

to the interpolation rules; otherwise, the readout values are all equal to zero. (c) The modified computational process of

the dilated convolution with a 1-pixel stride. (d) The modified computational process of the dilated convolution with a 2-pixel

stride.

Moreover, the fundamental network contains two types of dilated convolutions with

a stride of 1 and 2, respectively. Figure 2 illustrates the principle of the dilated convolution

with a 1-pixel stride. In essence, the operational of a 3 × 3 dilated convolution with a 1-pixel

stride is constant with the 3 × 3 standard convolution. Notably, the feature values are ex-

tracted from non-adjacent rows and columns in the feature maps due to the expansion of

the kernel. Furthermore, the feature values used in two consecutive operations are totally

different. If the kernel slides in the original order, like a 3 × 3 standard convolution, fre-

quent memory access will cause long latency as the bandwidth is limited. Therefore, we

propose an efficient method to transform the dilated convolution with a 1-pixel stride into

a 3 × 3 standard convolution for implementation, as shown in Figure 7c. When reading

the input feature map, we will group the feature values according to odd rows, even rows,

odd columns, and even columns. The input feature values are reordered according to the

group and then convolved with the 3 × 3 kernel. The output feature maps can be obtained

by reordering the obtained calculation results according to the groups. In addition, the

principle of the dilated convolution with a 2-pixel stride is similar to that of the dilated

convolution with a 1-pixel stride. The difference is that only the feature values located in

odd rows and columns of the feature maps participate in the operation. Therefore, we

only need to retain the corresponding feature values when grouping and perform the

same subsequent operations as the dilated convolution with 1 pixel. Its calculation process

Figure 7. (a) The schematic diagram of the modified 1 × 1 convolution operation process. (b)The interpolation processing
of the input feature map. If the row contains feature values, we will read the feature values and zero at intervals according
to the interpolation rules; otherwise, the readout values are all equal to zero. (c) The modified computational process of
the dilated convolution with a 1-pixel stride. (d) The modified computational process of the dilated convolution with a
2-pixel stride.

Moreover, the fundamental network contains two types of dilated convolutions with
a stride of 1 and 2, respectively. Figure 2 illustrates the principle of the dilated convolution
with a 1-pixel stride. In essence, the operational of a 3× 3 dilated convolution with a 1-pixel
stride is constant with the 3 × 3 standard convolution. Notably, the feature values are
extracted from non-adjacent rows and columns in the feature maps due to the expansion
of the kernel. Furthermore, the feature values used in two consecutive operations are
totally different. If the kernel slides in the original order, like a 3 × 3 standard convolution,
frequent memory access will cause long latency as the bandwidth is limited. Therefore, we
propose an efficient method to transform the dilated convolution with a 1-pixel stride into
a 3 × 3 standard convolution for implementation, as shown in Figure 7c. When reading
the input feature map, we will group the feature values according to odd rows, even rows,
odd columns, and even columns. The input feature values are reordered according to the
group and then convolved with the 3 × 3 kernel. The output feature maps can be obtained
by reordering the obtained calculation results according to the groups. In addition, the
principle of the dilated convolution with a 2-pixel stride is similar to that of the dilated
convolution with a 1-pixel stride. The difference is that only the feature values located
in odd rows and columns of the feature maps participate in the operation. Therefore,
we only need to retain the corresponding feature values when grouping and perform
the same subsequent operations as the dilated convolution with 1 pixel. Its calculation
process is shown in Figure 7d. With these transformations, all types of convolutions in
the fundamental network are converted to 3 × 3 standard convolutions. Compared to the

Electronics 2021, 10, 282 12 of 24

method of designing custom architectures for each convolution, our method can reduce
resource overhead and increase flexibility.

4. Hardware Implementation

As per the previous section, we optimized the fundamental network to reduce the
complexity of FPGA-based hardware implementation. Based on this, in this section, a
hardware architecture to implement the optimized fundamental network is presented. As
shown in Figure 8, the proposed hardware architecture is composed of an Advanced RISC
Machines (ARM)-centric processing system (PS) and programmable logic (PL). The PS
contains general-purpose input/output (GPIO), Direct Memory Access (DMA) support,
an Ethernet interface, an interrupt controller, etc. The PL contains the following main
components: An input data reordering module, a decoding module, a DDR controller, a
memory generator interface (MIG), a parameters buffer, and a processing array. Both PS
and PL have an external Double Data Rate (DDR) SDRAM memory, called PS-DDR and
PL-DDR, respectively. The PS-DDR and PL-DDR communicate with the FPGA through the
DMA and the MIG IP core, respectively. The PS-DDR is mainly used to store feature maps,
while the PL-DDR is used to store network parameters. A host PC connects with the PS
through the Ethernet interface. The host PC is used to provide images to the PS-DDR and
parameters to the PL-DDR and to generate the detection results.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 25

is shown in Figure 7d. With these transformations, all types of convolutions in the funda-

mental network are converted to 3 × 3 standard convolutions. Compared to the method of

designing custom architectures for each convolution, our method can reduce resource

overhead and increase flexibility.

4. Hardware Implementation

As per the previous section, we optimized the fundamental network to reduce the

complexity of FPGA-based hardware implementation. Based on this, in this section, a

hardware architecture to implement the optimized fundamental network is presented. As

shown in Figure 8, the proposed hardware architecture is composed of an Advanced RISC

Machines (ARM)-centric processing system (PS) and programmable logic (PL). The PS

contains general-purpose input/output (GPIO), Direct Memory Access (DMA) support,

an Ethernet interface, an interrupt controller, etc. The PL contains the following main com-

ponents: an input data reordering module, a decoding module, a DDR controller, a

memory generator interface (MIG), a parameters buffer, and a processing array. Both PS

and PL have an external Double Data Rate (DDR) SDRAM memory, called PS-DDR and

PL-DDR, respectively. The PS-DDR and PL-DDR communicate with the FPGA through

the DMA and the MIG IP core, respectively. The PS-DDR is mainly used to store feature

maps, while the PL-DDR is used to store network parameters. A host PC connects with

the PS through the Ethernet interface. The host PC is used to provide images to the PS-DDR

and parameters to the PL-DDR and to generate the detection results.

Figure 8. The overall diagram of the proposed hardware architecture.

During work, the configuration instruction of each layer is performed with ARM and

transmitted to PL by GPIO. After the decoding module decodes the instruction, control

signals are sent to the relevant modules. DMA fetches the original image from the PS-DDR

and transmits it to PL. The input data reordering module rearrange the pixels and feeds

them to the processing array. The DDR controller in PL fetches the model parameters from

the PL-DDR to the parameters buffer, and the parameters buffer then provides parameters

to the processing array. In the proposed architecture, N PEs are adopted to build a pro-

cessing array for parallel computing. These parallel PEs share the same input feature map

and calculate for different output channels. These PEs complete the calculation of each

layer in parallel. Finally, the output feature maps of the last layer are transferred back to

the host PC from the PS-DDR. With the final feature maps, the host PC performs Non-

Figure 8. The overall diagram of the proposed hardware architecture.

During work, the configuration instruction of each layer is performed with ARM and
transmitted to PL by GPIO. After the decoding module decodes the instruction, control
signals are sent to the relevant modules. DMA fetches the original image from the PS-DDR
and transmits it to PL. The input data reordering module rearrange the pixels and feeds
them to the processing array. The DDR controller in PL fetches the model parameters
from the PL-DDR to the parameters buffer, and the parameters buffer then provides
parameters to the processing array. In the proposed architecture, N PEs are adopted to
build a processing array for parallel computing. These parallel PEs share the same input
feature map and calculate for different output channels. These PEs complete the calculation
of each layer in parallel. Finally, the output feature maps of the last layer are transferred
back to the host PC from the PS-DDR. With the final feature maps, the host PC performs
Non-Maximum Suppression (NMS) to obtain the object detection results. The details are
discussed in the following subsections.

Electronics 2021, 10, 282 13 of 24

4.1. Processing Engine Architecture Design

With the optimizations in Section 3, all calculations during the inference phase in the
fundamental network are divided into multiple identical processing blocks. Thus, only
one hardware module is needed to be designed to deploy the fundamental network on the
FPGA. To achieve this goal, we propose an efficient PE. The architecture of the proposed
PE is as shown in Figure 9. In the proposed PE, a finite state machine (FSM) is adopted to
configure the routers to achieve the calculations in different processing blocks. Two local
memories in the PE are used as a data register. The first local memory is used to store the
intermediate results during calculations. These intermediate results can be accumulated in
the overlap-add operation. The second local memory is used to cache one row of feature
maps for the max pooling. These rows will be read out to achieve the pooling operation
when the next row of convolutional results is obtained. The convolution unit is used to
implement the standard 3 × 3 convolution. This unit is composed of nine multipliers and
an adder tree. The operation bit width of each stage in the adder tree is increased by one bit
to prevent overflow. A clamp function is used to prevent the overflow of the 32-bit adders
in the adder tree. With this function, the values that exceed the upper and lower bounds
are set to the 231 − 1 and 2−31 + 1, respectively. The pseudo-code of the clamp operation
in hardware implementation is shown as Algorithm 1. A fixed-to-float conversion unit is
used to convert the fixed-point convolutional results to the floating-point values for the
following fused layers. After the floating-point calculations of two fused layers, the results
are converted to the integer. In addition, the comparison operation is used to achieve
max pooling.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 25

Maximum Suppression (NMS) to obtain the object detection results. The details are dis-
cussed in the following subsections.

4.1. Processing Engine Architecture Design
With the optimizations in Section 3, all calculations during the inference phase in the

fundamental network are divided into multiple identical processing blocks. Thus, only
one hardware module is needed to be designed to deploy the fundamental network on
the FPGA. To achieve this goal, we propose an efficient PE. The architecture of the pro-
posed PE is as shown in Figure 9. In the proposed PE, a finite state machine (FSM) is
adopted to configure the routers to achieve the calculations in different processing blocks.
Two local memories in the PE are used as a data register. The first local memory is used
to store the intermediate results during calculations. These intermediate results can be
accumulated in the overlap-add operation. The second local memory is used to cache one
row of feature maps for the max pooling. These rows will be read out to achieve the pool-
ing operation when the next row of convolutional results is obtained. The convolution
unit is used to implement the standard 3 × 3 convolution. This unit is composed of nine
multipliers and an adder tree. The operation bit width of each stage in the adder tree is
increased by one bit to prevent overflow. A clamp function is used to prevent the overflow
of the 32-bit adders in the adder tree. With this function, the values that exceed the upper
and lower bounds are set to the 231 − 1 and 2−31 + 1, respectively. The pseudo-code of the
clamp operation in hardware implementation is shown as Algorithm 1. A fixed-to-float
conversion unit is used to convert the fixed-point convolutional results to the floating-
point values for the following fused layers. After the floating-point calculations of two
fused layers, the results are converted to the integer. In addition, the comparison opera-
tion is used to achieve max pooling.

Figure 9. The architecture of the proposed processing engine (PE).

Figure 9. The architecture of the proposed processing engine (PE).

Electronics 2021, 10, 282 14 of 24

Algorithm 1. The pseudo-code of the clamp operation in hardware implementation.

if Int33 (32) = ‘0’ then // int33 is positive
if Int33 (31) = ‘0’ then

Int32 ≤ Int33 (31 downto 0);
else

Int32 ≤ x”7fffffff”; // Limit the maximum feature values to 231 − 1
end if;

else // int33 is negative
if Int33 (32 downto 0) = x”80000000” then

Int32 ≤ x”80000001”; // Exclude the case of 2−31

else if Int33 (31) = ‘1’ then
Int32 ≤ Int33 (31 downto 0);

else
Int32 ≤ x”80000001”; // Limit the minimum feature values to 2−31 + 1

end if;
end if;

4.2. Data Storage and Transmission

In this section, we focus on the data storage and transmission scheme to efficiently
deploy the network on an FPGA with the proposed PEs. To achieve this goal, a multi-level
memory structure and a corresponding data path is designed to reuse calculation data
and effectively access external memories. Notably, the design of multi-level memories is
extended and based on our previous work [40]. To buffer and rearrange the feature maps,
an input data reordering module is designed. As shown in Figure 10, this module is mainly
composed of four block random access memories (Brams). The four Brams respectively
store four rows of all channels. This module is designed as a Ping-Pong buffer. For example,
at the beginning of the calculation, the first three rows of input feature maps are stored in
Bram_1, Bram_2, and Bram_3 for calculation. At the same time, the fourth row of input
feature maps are written into Bram_4. At this time, Bram_1, Bram_2, and Bram_3 is the
Ping buffer; Bram_2, Bram_3, and Bram_4 is the Pong buffer. After the calculation of the
current three rows is completed, the fifth row of feature maps are written into Bram_1. At
this time, Bram_2, Bram_3, and Bram_4 is Ping buffer; Bram_3 Bram_4 and Bram_1 is Pong
buffer. Notably, the Brams of the Ping buffer and Pang buffer are in order and cannot be
reversed. This way can continuously provide feature values for the PEs, and hence enables
low-latency calculations and improve the DDR bandwidth utilization rate. In addition,
the zero-padding is achieved by selecting zero as the outputs of the input data reordering
module in the appropriate place.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 25

Figure 10. The diagram of the input data reordering module.

The efficient calculation of PEs requires not only feature values but also parameters.

For the fundamental network, the multiplying factors of the fused activation layer in each

layer are two fixed values, which can be directly initialized in the read-only memory

(ROM). The other parameters of each layer are stored in external memory due to the high

volume. Figure 11 illustrates the parameter storage module, which contains the DDR con-

troller and parameters buffer. The parameters buffer is used to provide parameters to PEs.

The DDR controller is responsible for interacting with the PL-DDR though the MIG IP

core. It is used to read parameters from the PL-DDR according to the control signals and

store them in the parameters buffer.

Figure 11. The diagram of the parameter storage module, which is composed of a Double Data Rate (DDR) controller and

parameters buffer.

During inference phase, the parameters of each layer need to be reused multiple

times in the operation. For the fundamental network, the data amount of b̂ , γ′, and β is

small. Thus, these parameters of a layer can be stored in Brams. Nevertheless, it is not

feasible to cache all weights in a large layer. Therefore, they are cached in FIFO and dis-

carded immediately after a single use. In this case, we read them from the PL-DDR mul-

tiple times to meet the computing demand. The time spent for repeatedly reading weights

is completely overlapped by the calculation time, which ensures the acceleration perfor-

mance.

With the provided parameters and feature maps, the processing array can obtain the

corresponding calculation results. These results will be transmitted to the PS-DDR

through the DMA. As shown in Figure 12, we divide the storage space of the PS-DDR into

Figure 10. The diagram of the input data reordering module.

Electronics 2021, 10, 282 15 of 24

The efficient calculation of PEs requires not only feature values but also parameters.
For the fundamental network, the multiplying factors of the fused activation layer in each
layer are two fixed values, which can be directly initialized in the read-only memory (ROM).
The other parameters of each layer are stored in external memory due to the high volume.
Figure 11 illustrates the parameter storage module, which contains the DDR controller and
parameters buffer. The parameters buffer is used to provide parameters to PEs. The DDR
controller is responsible for interacting with the PL-DDR though the MIG IP core. It is used
to read parameters from the PL-DDR according to the control signals and store them in the
parameters buffer.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 25

Figure 10. The diagram of the input data reordering module.

The efficient calculation of PEs requires not only feature values but also parameters.

For the fundamental network, the multiplying factors of the fused activation layer in each

layer are two fixed values, which can be directly initialized in the read-only memory

(ROM). The other parameters of each layer are stored in external memory due to the high

volume. Figure 11 illustrates the parameter storage module, which contains the DDR con-

troller and parameters buffer. The parameters buffer is used to provide parameters to PEs.

The DDR controller is responsible for interacting with the PL-DDR though the MIG IP

core. It is used to read parameters from the PL-DDR according to the control signals and

store them in the parameters buffer.

Figure 11. The diagram of the parameter storage module, which is composed of a Double Data Rate (DDR) controller and

parameters buffer.

During inference phase, the parameters of each layer need to be reused multiple

times in the operation. For the fundamental network, the data amount of b̂ , γ′, and β is

small. Thus, these parameters of a layer can be stored in Brams. Nevertheless, it is not

feasible to cache all weights in a large layer. Therefore, they are cached in FIFO and dis-

carded immediately after a single use. In this case, we read them from the PL-DDR mul-

tiple times to meet the computing demand. The time spent for repeatedly reading weights

is completely overlapped by the calculation time, which ensures the acceleration perfor-

mance.

With the provided parameters and feature maps, the processing array can obtain the

corresponding calculation results. These results will be transmitted to the PS-DDR

through the DMA. As shown in Figure 12, we divide the storage space of the PS-DDR into

Figure 11. The diagram of the parameter storage module, which is composed of a Double Data Rate (DDR) controller and
parameters buffer.

During inference phase, the parameters of each layer need to be reused multiple times
in the operation. For the fundamental network, the data amount of b̂, γ′, and β is small.
Thus, these parameters of a layer can be stored in Brams. Nevertheless, it is not feasible
to cache all weights in a large layer. Therefore, they are cached in FIFO and discarded
immediately after a single use. In this case, we read them from the PL-DDR multiple
times to meet the computing demand. The time spent for repeatedly reading weights is
completely overlapped by the calculation time, which ensures the acceleration performance.

With the provided parameters and feature maps, the processing array can obtain
the corresponding calculation results. These results will be transmitted to the PS-DDR
through the DMA. As shown in Figure 12, we divide the storage space of the PS-DDR into
several subspaces, which are used to store the results of different stages. Among them,
two subspaces constitute a set of memories for alternately storing input and output feature
values of a layer. In particular, if the output values are related to the route layer, they are
stored in another subspace to avoid being overwritten. The results of the current layers
will be rewritten into the input data reordering module as the input feature map of the
following layer. When all the network calculations are achieved, the output feature maps
of the final layer will be transmitted to the host PC via the Ethernet interface. The host PC
runs NMS and obtains the detection results of the remote sensing image.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 25

several subspaces, which are used to store the results of different stages. Among them,

two subspaces constitute a set of memories for alternately storing input and output feature

values of a layer. In particular, if the output values are related to the route layer, they are

stored in another subspace to avoid being overwritten. The results of the current layers

will be rewritten into the input data reordering module as the input feature map of the

following layer. When all the network calculations are achieved, the output feature maps

of the final layer will be transmitted to the host PC via the Ethernet interface. The host PC

runs NMS and obtains the detection results of the remote sensing image.

Figure 12. The diagram of the storage strategy in the processing system (PS)-DDR.

5. Experimental Evaluation and Results

In this section, we evaluate the performance of the proposed design by several ex-

periments. The evaluation experiments were divided into two parts. First, the quantized

fundamental network was trained and tested on a publicly available remote sensing im-

age scene dataset to evaluate its detection metrics and obtain hybrid-type parameters for

FPGA implementation. We then implemented the quantized network on the FPGA using

the proposed architecture and tested the implementation processing performance. The

experimental settings and detailed experimental results are provided below.

5.1. Experimental Settings

5.1.1. Dataset Description

A large-scale and challenging dataset for object detection in aerial images (DOTA-v1.0)

was used to evaluate the performance of the quantized fundamental network. This dataset

contains 2806 aerial images with resolution ranges from 800 × 800 to 4000 × 4000. The fully

annotated images in this dataset contain 188,282 instances of 15 object categories: plane

(PL), baseball diamond (BD), bridge (BR), ground track field (GTF), small vehicle (SV),

large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC), storage tank (ST),

soccer-ball field (SBF), roundabout (RA), harbor (HA), swimming pool (SP), and helicop-

ter (HC). We used the training set of the DOTA dataset to train the quantized fundamental

network and used the validation set to test it. In the training phase, all images were

cropped to 1024 × 1024-pixel patches by the DOTA development kit in the experiment.

Standard data augmentation tricks including random crops, rotations, and hue, satura-

tion, and exposure shifts were applied to the images during the training phase. Following

previous work [4], the images were first cropped with a stride of 512 pixels in the testing

phase. The detection results of each patch were then combined to obtain the results of the

original images. Samples of the DOTA dataset are shown in Figure 13.

Figure 12. The diagram of the storage strategy in the processing system (PS)-DDR.

Electronics 2021, 10, 282 16 of 24

5. Experimental Evaluation and Results

In this section, we evaluate the performance of the proposed design by several ex-
periments. The evaluation experiments were divided into two parts. First, the quantized
fundamental network was trained and tested on a publicly available remote sensing im-
age scene dataset to evaluate its detection metrics and obtain hybrid-type parameters for
FPGA implementation. We then implemented the quantized network on the FPGA using
the proposed architecture and tested the implementation processing performance. The
experimental settings and detailed experimental results are provided below.

5.1. Experimental Settings
5.1.1. Dataset Description

A large-scale and challenging dataset for object detection in aerial images (DOTA-v1.0)
was used to evaluate the performance of the quantized fundamental network. This dataset
contains 2806 aerial images with resolution ranges from 800× 800 to 4000× 4000. The fully
annotated images in this dataset contain 188,282 instances of 15 object categories: plane
(PL), baseball diamond (BD), bridge (BR), ground track field (GTF), small vehicle (SV),
large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC), storage tank (ST),
soccer-ball field (SBF), roundabout (RA), harbor (HA), swimming pool (SP), and helicopter
(HC). We used the training set of the DOTA dataset to train the quantized fundamental
network and used the validation set to test it. In the training phase, all images were cropped
to 1024 × 1024-pixel patches by the DOTA development kit in the experiment. Standard
data augmentation tricks including random crops, rotations, and hue, saturation, and
exposure shifts were applied to the images during the training phase. Following previous
work [4], the images were first cropped with a stride of 512 pixels in the testing phase. The
detection results of each patch were then combined to obtain the results of the original
images. Samples of the DOTA dataset are shown in Figure 13.

5.1.2. Experimental Procedure

To quickly evaluate the quantized fundamental network and obtain the hybrid-type
parameters for FPGA implementation, we adopted a fine-tuning for the quantized network
training. In our previous work [4], we obtained the weight parameters that perform best
on the DOTA validation set. The weight parameter was used to initialize the quantized
network. The quantized network was then trained for 20 epochs. The weight parameters
were optimized by an Adam optimization method with a weight decay of 0.0005. A multi-
step learning rate was adopted. The detailed settings of the learning rate for this experiment
are shown in Table 1. The batch size was set to 14. This experiment was performed on two
NVIDIA Titan Xp GPUs with PyTorch 1.2.0 and TorchVision 0.4.0.

Table 1. The setting of the learning rate for the experiment.

Epoch 1 2–11 12–20

Learning rate 0.000001 0.0001 0.00001

Electronics 2021, 10, 282 17 of 24
Electronics 2021, 10, x FOR PEER REVIEW 17 of 25

.

(a) (b)

.

(c) (d)

.

(e) (f)

Figure 13. Some images in the validation set of the dataset for object detection in aerial images (DOTA-v1.0).

Electronics 2021, 10, 282 18 of 24

To test the hardware implementation processing performance, we performed the
quantized network on a hardware platform with a Xilinx ZYNQ xc7z035 SoPC chip and
two Micron DDR3 SDRAMs. DDR3 SDRAMs were used as the PL-DDR and PS-DDR,
respectively. The proposed design was implemented with Very-High-Speed Integrated
Circuit Hardware Description Language (VHDL) and synthesized with Vivado Design
Suite 2017.2. The codes on the embedded processor ARM and host PC were designed
with C and python, respectively. The power results were obtained by the Vivado Power
Analysis tool. For the fundamental network, the number of output channels is a multiple of
32, except for the last layer. Thus, we chose 32 PEs to build the processing array based on a
trade-off between resource overhead and calculation time. For the last layer, the unneeded
PEs were not activated.

5.2. Performance Evaluation

Table 2 presents the hardware resource utilization of our design. The utilized values
of the look-up-table (LUT), Flip Flop (FF), Bram, and digital signal processing (DSP)
were 83,240, 108,883, 369, and 192, respectively. The Brams were primarily consumed
by the on-chip buffers. The embedded DSP slices were mainly used to implement the
calculations of the network. As shown in Table 2, the available resources of the Xilinx ZYNQ
xc7z035 SoPC are limited. However, with our implementation method, the large-scale
fundamental network was successfully deployed on the SoPC platform with appropriate
resource utilization.

Table 2. The hardware resource utilization of the design.

Resource LUT FF Bram DSP

Available 171,900 343,800 500 900
Utilization 83,240 108,883 369 192

Utilization (%) 48.4% 31.7% 74% 21.3%

To evaluate the performance of the hardware implementation, we used the throughput
of the hardware implementation and detection accuracy as evaluation criteria. The through-
put performance was defined as the total operations divided by the required execution
time. The total operations reflect the complexity of the network in terms of operations. For
the FPGA implementation in this design, the total operations of the quantized fundamental
network are 379 GOPs. For the input feature maps with a size of 1024 × 1024 × 3, it
takes 3.4 s to get the output results of the last layer on the Xilinx ZYNQ xc7z035 FPGA.
‘GOP/s’ is an abbreviation of giga-operations per second. The proposed design achieved
an overall throughput of 111.5 GOP/s for the quantized fundamental network under the
200MHz working frequency of the FPGA. Moreover, the mAP is most commonly used to
evaluate the accuracy of object detection [41]. It indicates the mean accuracy of each class
considering recall and precision. Generally, a higher mAP indicates better performance.
Experiments show that our hardware implementation deployed on a ZYNQ xc7z035 device
achieves a 69.32% mAP on the DOTA dataset. Some results on the DOTA dataset are shown
in Figure 14. It can be seen that the arbitrarily oriented objects can be correctly detected by
our hardware implementation on the FPGA.

Electronics 2021, 10, 282 19 of 24

Electronics 2021, 10, x FOR PEER REVIEW 19 of 25

‘GOP/s’ is an abbreviation of giga-operations per second. The proposed design achieved

an overall throughput of 111.5 GOP/s for the quantized fundamental network under the

200MHz working frequency of the FPGA. Moreover, the mAP is most commonly used to

evaluate the accuracy of object detection [41]. It indicates the mean accuracy of each class

considering recall and precision. Generally, a higher mAP indicates better performance.

Experiments show that our hardware implementation deployed on a ZYNQ xc7z035 de-

vice achieves a 69.32% mAP on the DOTA dataset. Some results on the DOTA dataset are

shown in Figure 14. It can be seen that the arbitrarily oriented objects can be correctly

detected by our hardware implementation on the FPGA.

(a) (b)

(c) (d)

Electronics 2021, 10, x FOR PEER REVIEW 20 of 25

 (e) (f)

Figure 14. Some results on the DOTA dataset that were detected by our hardware architecture on Xilinx ZYNQ xc7z035

SoPC.

5.3. Performance Comparison

Several comparative experiments were conducted to show the effectiveness of our

implementation. Firstly, the proposed FPGA-based hardware design was compared with

different off-the-shelf platforms. We implemented the fundamental network on an Intel

Xeon Gold 5120T with 128 GB DDR4 DRAM and an NVIDIA Titan Xp GPU with 12 GB

GDDR5X memory. The main results of the CPU, the GPU, and the proposed design are

listed in Table 3. Notably, a strategy of network quantitation was adopted on these plat-

forms when mapping the fundamental network. The Thermal Design Power (TDP) values

of the CPU and GPU were 105 W and 250 W, respectively. According to the power report

supplied by the Vivado Design Suite, the total on-chip power of our hardware architecture

was only 5.96 W. Therefore, our design is suitable for deployment in power-limited appli-

cation scenarios. We can see from Table 3 that the GPU has obvious advantages in terms

of throughput among the platforms. The throughput of the GPU was 89.6 times that of

the CPU and 47.3 times that of the proposed design, respectively. Compared with the

CPU, the energy efficiency of our hardware architecture was 33.4 times higher. Addition-

ally, the energy efficiency of our hardware architecture reached 89% of that of the GPU.

Thus, our hardware architecture had better performance and energy efficiency than the

CPU, and its energy efficiency was comparable with GPU at 1.6 GHz. In addition, our

design is scalable. The performance and energy efficiency can be improved by increasing

the number of PEs. As shown in the experimental results in Table 3, the detection accuracy

of our implementation on the FPGA was only 0.18% lower than the mAP of the quantized

fundamental network deployed on the GPU. We concluded that the reason for the limited

accuracy loss was that we had fused some operations for hardware implementation. This

degree of accuracy loss is acceptable in practical applications.

Figure 14. Some results on the DOTA dataset that were detected by our hardware architecture on Xilinx ZYNQ xc7z035 SoPC.

Electronics 2021, 10, 282 20 of 24

5.3. Performance Comparison

Several comparative experiments were conducted to show the effectiveness of our
implementation. Firstly, the proposed FPGA-based hardware design was compared with
different off-the-shelf platforms. We implemented the fundamental network on an Intel
Xeon Gold 5120T with 128 GB DDR4 DRAM and an NVIDIA Titan Xp GPU with 12 GB
GDDR5X memory. The main results of the CPU, the GPU, and the proposed design
are listed in Table 3. Notably, a strategy of network quantitation was adopted on these
platforms when mapping the fundamental network. The Thermal Design Power (TDP)
values of the CPU and GPU were 105 W and 250 W, respectively. According to the power
report supplied by the Vivado Design Suite, the total on-chip power of our hardware
architecture was only 5.96 W. Therefore, our design is suitable for deployment in power-
limited application scenarios. We can see from Table 3 that the GPU has obvious advantages
in terms of throughput among the platforms. The throughput of the GPU was 89.6 times
that of the CPU and 47.3 times that of the proposed design, respectively. Compared
with the CPU, the energy efficiency of our hardware architecture was 33.4 times higher.
Additionally, the energy efficiency of our hardware architecture reached 89% of that of the
GPU. Thus, our hardware architecture had better performance and energy efficiency than
the CPU, and its energy efficiency was comparable with GPU at 1.6 GHz. In addition, our
design is scalable. The performance and energy efficiency can be improved by increasing
the number of PEs. As shown in the experimental results in Table 3, the detection accuracy
of our implementation on the FPGA was only 0.18% lower than the mAP of the quantized
fundamental network deployed on the GPU. We concluded that the reason for the limited
accuracy loss was that we had fused some operations for hardware implementation. This
degree of accuracy loss is acceptable in practical applications.

Table 3. The evaluation results on the Central Processing Unit (CPU), the Graphic Processing Unit
(GPU), and the proposed architecture on the field-programmable gate array (FPGA).

Platform CPU GPU FPGA

Device Intel Xeon Gold 5120T NVIDIA Titan Xp Xilinx ZYNQ xc7z035
Technology (nm) 14 16 28
Frequency (MHz) 2200 1582 200

Power (W) 105 250 5.96
Accuracy (mAP) 0.6750 0.6750 0.6732

Throughput (GOP/s) 58.9 5279.4 111.5
Power Efficiency (GOP/s/W) 0.56 21.12 18.71

[Ratio] [1.0] [37.7] [33.4]

The proposed design was also compared with related, state-of-the-art works. The
performance comparison is shown in Table 4, wherein the relevant references are indicated.
In Reference [42], a novel method to implement the YOLOv1 network framework on an
FPGA is presented. However, the implementation allocated independent hardware re-
sources for convolution and fully connected layers. This method limits the utilization of
available resources. This design used 800 DSPs and its performance was only 18.82 GOP/s.
In Reference [43], a Tiny-YOLOv2 algorithm was implemented on an FPGA, which con-
tains nine convolutional layers and six max-pooling layers. As shown in Table 4, this
work reported a low resource overhead, which is hardware-friendly for implementation.
However, its processing performance was significantly limited—only 21.6 GOP/s. The
authors of [44] successfully deployed Yolov2 on the Xilinx ZYNQ xc7z020 FPGA, a chip
with limited resources. However, the design consumes almost all the DSPs on the chip,
211/220. Therefore, this design has limited expansion capabilities. In Reference [45], the
YOLOv2 model was implemented on a Xilinx ZCU102 FPGA with an overall performance
of 102.5 GOP/s, at a 300 MHz clock frequency. However, this design has extremely high
requirements for computing resources—600 DSPs. Among the related works listed in Table
4, the [46] has the highest processing performance, reaching 500 GOP/s. Meanwhile, this
design occupies the most logical resources, consuming more than 1000 DSPs and Brams. It

Electronics 2021, 10, 282 21 of 24

is difficult to deploy the design in resource-limited scenarios. The processing performance
of a design is closely related to resource overhead and operating frequency [12]. Hence,
for a fair comparison, we considered the performance density, which is defined as the
number of operations that one DSP slice executes in one cycle [13]. Compared with the
above works, our design not only has superior processing speed but also performs best
in performance density, which reached 2.90 OP/DSP/cycle. The comparison with these
related works demonstrates that our design can strike a satisfactory balance between re-
source consumption and computing time cost and is suitable for deployment on embedded
devices with a limited resource budget.

Table 4. The performance comparison of our design and those of previous works.

[42] [43] [44] [45] [46] Our Work

Platform ZC706 Cyclone V ZYNQ XC7Z020 ZCU102 Arria-10 GX1150 ZYNQ xc7z035
Frequency (MHz) 200 117 150 300 190 200

Network YOLOv1 Tiny-YOLOv2 YOLOv2 YOLOv2 YOLOv2 Improved
YOLOv2

Image Size N/A 416 × 416 416 × 416 416 × 416 288 × 288 1024 × 1024

Precision 32-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 8-bit
fixed

8-bit fixed W
float BN&A 3

LUTs N/A 113 K N/A 95 K 145 K 1 82 K
FFs N/A N/A N/A 90 K N/A 107 K

Brams N/A N/A N/A 246 1027 2 369
DSPs 800 122 211 609 1092 192

Performance (GOP/s) 18.82 21.6 33.49 102.5 500 111.5
Performance Density

(OP/DSP/cycle) 0.12 1.51 1.06 0.56 2.41 2.90

1 The reported logical cells are ALM. 2 The model of the reported RAM is M20K, and its storage size is 20 Kb. We converted it into 36 Kb
storage. 3 W: weight, BN&A: batch normalization and activation.

6. Discussion

We implemented an improved YOLOv2 network on an FPGA for large-scale optical
remote sensing image object detection. Our implementation is a hardware/software co-
design, which improves generalizability and flexibility. Compared with related works, we
have significant advantages in hardware resource requirements. Therefore, in pursuit of
further improving performance, we can improve the processing speed of our design by
appropriately increasing the number of PEs. In future work, we will focus on improving the
resource overhead and computing performance of the proposed architecture. To achieve
this goal, we aim to implement the proposed design on a Xilinx MP-SoC board with a large
on-chip memory. The external memories can be replaced by taking full advantage of the
on-chip UltraRAMs. In this case, the design could perform at an even faster rate while
using less power.

7. Conclusions

In this paper, we propose a hardware implementation method for CNN-based optical
remote sensing object detection under power-limited conditions. First, we optimized the
fundamental network for hardware implementation. The optimization mainly includes
three aspects: network quantization, layer fusion, and the unified implementation of mul-
tiple convolutions. With these optimization methods, we effectively reduced the scale of
the network and the resource requirements during deployment. We further propose a
hardware architecture for the CNN-based remote sensing object detection model based on
these optimizations. In this architecture, a PE is proposed to implement multiple types of
convolutions in the network. An efficient data storage and access scheme is also proposed,
and it achieves low-latency calculations and a high memory bandwidth utilization rate.
We deployed an improved YOLOv2 network on a Xilinx ZYNQ xc7z035 FPGA using the
proposed hardware architecture. The experimental results show that our design achieves
an overall throughput of 111.5 GOP/s and an energy efficiency of 18.71 GOP/s/W under
the 200 MHz working frequency of the FPGA. Compared with the CPU, the proposed accel-

Electronics 2021, 10, 282 22 of 24

erator improves energy efficiency by 33.4 times. Additionally, the energy efficiency of our
hardware architecture can reach 89% of that of the GPU. Moreover, the performance of the
proposed accelerator can be further improved by increasing the number of PEs. The total
on-chip power of our hardware architecture was only 5.96 W, which is much lower than the
power consumption of the CPU and the GPU. In addition, experimental results tested on
the DOTA dataset show that the proposed design can strike an excellent balance between
hardware resource overhead and time cost. The detection accuracy of our implementation
on the FPGA is only 0.18% lower than the mAP of the quantized fundamental network
deployed on the GPU. Furthermore, several recent advanced FPGA-based implementations
were compared to verify the superiority of the proposed hardware accelerator.

Author Contributions: Conceptualization, N.Z. and X.W.; methodology, N.Z. and X.W.; software,
N.Z., X.W., and W.L.; validation, N.Z., X.W., and W.L.; formal analysis, N.Z. and W.L.; investigation,
N.Z. and X.W.; resources, H.C. and W.L.; writing—original draft preparation, N.Z.; writing—review
and editing, N.Z., X.W., and W.L.; supervision, H.C.; project administration, H.C.; funding acquisition,
H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R & D Program of China under Grant
No. 2017YFB0502800 and Grant No. 2017YFB0502804, the MYHT Program of China under Grant
No. B0201.

Acknowledgments: This work was supported by the Chang Jiang Scholars Program under Grant
T2012122 and the Hundred Leading Talent Project of Beijing Science and Technology under Grant
Z141101001514005.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117,

11–28. [CrossRef]
2. Zeng, D.; Zhang, S.; Chen, F.; Wang, Y. Multi-scale CNN based garbage detection of airborne hyperspectral data. IEEE Access

2019, 7, 104514–104527. [CrossRef]
3. He, H.; Yang, D.; Wang, S.C.; Wang, S.Y.; Li, Y. Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder

network and structural similarity loss. Remote Sens. 2019, 11, 1015. [CrossRef]
4. Liu, W.; Ma, L.; Wang, J.; Chen, H. Detection of Multiclass Objects in Optical Remote Sensing Images. IEEE Geosci. Remote Sens.

2018, 16, 791–795. [CrossRef]
5. Zhu, M.; Xu, Y.; Ma, S.; Li, S.; Ma, H.; Han, Y. Effective Airplane Detection in Remote Sensing Images Based on Multilayer Feature

Fusion and Improved Nonmaximal Suppression Algorithm. Remote Sens. 2019, 11, 1062. [CrossRef]
6. Liu, W.; Long, M.; He, C. Arbitrary-Oriented Ship Detection Framework in Optical Remote-Sensing Images. IEEE Geosci. Remote

Sens. 2018, 15, 937–941. [CrossRef]
7. Gong, Z.; Zhong, P.; Hu, W.; Hua, Y. Joint learning of the center points and deep metrics for land-use classification in remote

sensing. Remote Sens. 2019, 11, 76. [CrossRef]
8. Qi, B.; Shi, H.; Zhuang, Y.; Chen, H.; Chen, L. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

Sensors 2018, 18, 1328. [CrossRef] [PubMed]
9. Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A Review of the Status of Satellite Remote Sensing and Image

Processing Techniques for Mapping Natural Hazards and Disasters. Prog. Phys. Geogr. 2009, 33, 183–207. [CrossRef]
10. Zhou, G.; Zhang, R.; Liu, N.; Huang, J.; Zhou, X. On-Board Ortho-Rectification for Images Based on an FPGA. Remote Sens. 2017,

9, 874. [CrossRef]
11. Du, Q.; Nekovei, R. Fast real-time onboard processing of hyperspectral imagery for detection and classification. J. Real-Time Image

Process. 2009, 4, 273–286. [CrossRef]
12. Li, L.; Zhang, S.; Wu, J. Efficient Object Detection Framework and Hardware Architecture for Remote Sensing Images. Remote

Sens. 2019, 11, 2376. [CrossRef]
13. Liu, Z.; Chow, P.; Xu, J.; Jiang, J.; Dou, Y.; Zhou, J. A Uniform Architecture Design for Accelerating 2D and 3D CNNs on FPGAs.

Electronics 2019, 8, 65. [CrossRef]
14. Wei, X.; Liu, W.; Chen, L.; Ma, L.; Chen, H.; Zhuang, Y. FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks

for Remote Sensing Applications. Sensors 2019, 19, 924. [CrossRef] [PubMed]
15. PD, S.M.; Lin, J.; Zhu, S.; Yin, Y.; Liu, X.; Huang, X.; Song, C.; Zhang, W.; Yan, M.; Yu, H.; et al. A scalable network-on-chip

microprocessor with 2.5 D integrated memory and accelerator. IEEE Trans. Circuits Syst. Regul. Pap. 2017, 64, 1432–1443.
16. Li, W.; He, C.; Fu, H.; Zheng, J.; Dong, R.; Xia, M.; Yu, L.; Luk, W. A Real-Time Tree Crown Detection Approach for Large-Scale

Remote Sensing Images on FPGAs. Remote Sens. 2019, 11, 1025. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2016.03.014
http://doi.org/10.1109/ACCESS.2019.2932117
http://doi.org/10.3390/rs11091015
http://doi.org/10.1109/LGRS.2018.2882778
http://doi.org/10.3390/rs11091062
http://doi.org/10.1109/LGRS.2018.2813094
http://doi.org/10.3390/rs11010076
http://doi.org/10.3390/s18051328
http://www.ncbi.nlm.nih.gov/pubmed/29693585
http://doi.org/10.1177/0309133309339563
http://doi.org/10.3390/rs9090874
http://doi.org/10.1007/s11554-008-0106-9
http://doi.org/10.3390/rs11202376
http://doi.org/10.3390/electronics8010065
http://doi.org/10.3390/s19040924
http://www.ncbi.nlm.nih.gov/pubmed/30813259
http://doi.org/10.3390/rs11091025

Electronics 2021, 10, 282 23 of 24

17. Lei, C.; Xin, W.; Wenchao, L.; He, C.; Liang, C. Hardware Implementation of Convolutional Neural Network Based Remote
Sensing Image Classification Method. In Proceedings of the 9th International Conference on Communications, Signal Processing, and
Systems, Online, 14–16 December 2020; Liang, Q., Wang, W., Liu, X., Na, Z., Li, X., Zhang, B., Eds.; Springer: Singapore, 2020;
pp. 140–148.

18. Mohammadnia, M.R.; Shannon, L. A multi-beam Scan Mode Synthetic Aperture Radar processor suitable for satellite operation.
In Proceedings of the 2016 IEEE 27th International Conference on Application-Specific Systems, Architectures and Processors
(ASAP), London, UK, 6–8 July 2016; pp. 83–90.

19. Gonzalez, C.; Bernabe, S.; Mozos, D.; Plaza, A. FPGA implementation of an algorithm for automatically detecting targets in
remotely sensed hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4334–4343. [CrossRef]

20. Yap, J.W.; Yussof, Z.M.; Salim, S.I.M. A scalable FPGA based accelerator for Tiny-YOLO-v2 using OpenCL. Int. J. Embed. Syst.
2019, 8, 206–214.

21. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2015; pp. 161–170.

22. Peemen, M.; Setio, A.A.; Mesman, B.; Corporaal, H. Memory-centric accelerator design for convolutional neural networks. In
Proceedings of the 2013 IEEE 31st International Conference (ICCD), Asheville, NC, USA, 6–9 October 2013; pp. 13–19.

23. Sun, F.; Wang, C.; Gong, L.; Xu, C.; Xu, C.C.; Zhang, Y.W.; Lu, Y.T.; Li, X.; Zhou, X. A High-Performance Accelerator for Large-Scale
Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing
with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC),
Guangzhou, China, 28 May 2018; pp. 1–9.

24. Li, H.; Fan, X.; Li, J.; Wei, C.; Zhou, X.; Wang, L. A high performance FPGA-based accelerator for large-scale Convolutional
Neural Networks. In Proceedings of the 26th International Conference on Field Programmable Logic and Applications (FPL),
Lausanne, Switzerland, 29 August–2 September 2016; pp. 34–42.

25. Zhou, Y.; Jiang, J. An FPGA-based accelerator implementation for deep convolutional neural networks. In Proceedings of the
2015 4th International Conference on Computer Science and Network Technology, ICCSNT 2015, Harbin, China, 19–20 December
2015; Volume 1, pp. 829–832.

26. Li, Z.; Wang, L.; Guo, S.; Deng, Y.; Dou, Q.; Zhou, H.; Lu, W. Laius: An 8-bit fixed-point CNN hardware inference engine. In
Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China, 12–15 December
2017.

27. Fan, H.; Liu, S.L.; Ferianc, M.; Ng, H.C.; Que, Z.Q.; Liu, S.; Niu, X.Y.; Luk, W. A real-time object detection accelerator with
compressed SSDLite on FPGA. In Proceedings of the 2018 International Conference on Field-Programmable Technology (FPT),
Okinawa, Japan, 11–15 December 2018.

28. Liang, S.; Yin, S.; Liu, L.; Luk, W.; Wei, S. FP-BNN: Binarized neural network on FPGA. Neurocomputing 2017, 275, 1072–1086.
[CrossRef]

29. Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H. A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN for
Object Detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1861–1873. [CrossRef]

30. Jiao, L.; Luo, C.; Cao, W.; Zhou, X.; Wang, L. Accelerating low bit-width convolutional neural networks with embedded FPGA. In
Proceedings of the 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 4–8
September 2017; pp. 1–4.

31. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object
detection in aerial images. arXiv 2017, arXiv:1711.10398. Available online: https://arxiv.org/abs/1711.10398 (accessed on 27
January 2018).

32. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), Columbus, OH, USA,
23–28 June 2014; pp. 580–587.

33. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings
of the Computer Vision–European conference on computer vision 2016, Amsterdam, The Netherlands, 11–14 October 2016;
pp. 21–37.

34. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242. Available online: https://arxiv.org/
abs/1612.08242 (accessed on 25 December 2016).

35. Nakahara, H.; Yonekawa, H.; Fujii, T.; Sato, S. A Lightweight YOLOv2: A Binarized CNN with A Parallel Support Vector
Regression for an FPGA. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 25–27 February 2018; pp. 31–40.

36. Li, F.; Chen, H.; Liu, Z.; Zhang, X.D.; Jiang, M.S.; Wu, Z.Z.; Zhou, K.Q. Deep learning-based automated detection of retinal
diseases using optical coherence tomography images. Biomed. Opt. Express 2019, 10, 6204–6226. [CrossRef] [PubMed]

37. Kheradpisheh, S.R.; Ghodrati, M.; Ganjtabesh, M.; Masquelier, T. Deep Networks Can Resemble Human Feed-Forward Vision in
Invariant Object Recognition. Sci. Rep. 2016, 6, 32672. [CrossRef] [PubMed]

http://doi.org/10.1109/JSTARS.2015.2504427
http://doi.org/10.1016/j.neucom.2017.09.046
http://doi.org/10.1109/TVLSI.2019.2905242
https://arxiv.org/abs/1711.10398
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
http://doi.org/10.1364/BOE.10.006204
http://www.ncbi.nlm.nih.gov/pubmed/31853395
http://doi.org/10.1038/srep32672
http://www.ncbi.nlm.nih.gov/pubmed/27601096

Electronics 2021, 10, 282 24 of 24

38. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,
arXiv:1502.03167v3. Available online: https://arxiv.org/abs/1502.03167 (accessed on 13 February 2015).

39. Abdelouahab, K.; Pelcat, M.; Serot, J.; Berry, F. Accelerating CNN inference on FPGAs: A survey. arXiv 2018, arXiv:1806.01683.
Available online: https://arxiv.org/abs/1806.01683 (accessed on 26 May 2018).

40. Zhang, N.; Wei, X.; Chen, L.; Chen, H. Three-level Memory Access Architecture for FPGA-based Real-time Remote Sensing
Image Processing System. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing
(ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–6.

41. Tao, Y.; Ma, R.; Shyu, M.L.; Chen, S.C. Challenges in Energy-Efficient Deep Neural Network Training With FPGA. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020.

42. Zhao, R.; Niu, X.; Wu, Y.; Luk, W.; Liu, Q. Optimizing CNN-based object detection algorithms on embedded FPGA platforms. In
Proceedings of the International Symposium on Applied Reconfigurable Computing, Delft, The Netherlands, 3–7 April 2017; pp.
255–267.

43. Wai, Y.J.; bin Mohd Yussof, Z.; bin Salim, S.I.; Chuan, L.K. Fixed Point Implementation of Tiny-Yolo-v2 using OpenCL on FPGA.
Int. J. Adv. Comput. Sci. Appl. 2018, 9, 506–512. [CrossRef]

44. Lv, H.; Zhang, S.; Liu, X.; Liu, S.; Liu, Y.; Han, W.; Xu, S. Research on Dynamic Reconfiguration Technology of Neural Network
Accelerator Based on Zynq. J. Phys. Conf. Ser. 2020, 1650, 032093. [CrossRef]

45. Zhang, S.; Cao, J.; Zhang, Q.; Zhang, Q.; Zhang, Y.; Wang, Y. An FPGA-Based Reconfigurable CNN Accelerator for YOLO. In
Proceedings of the 2020 IEEE 3rd International Conference on Electronics Technology (ICET), Chengdu, China, 8–12 May 2020;
pp. 74–78.

46. Xu, K.; Wang, X.; Liu, X.; Cao, C.; Li, H.; Peng, H.; Wang, D. A dedicated hardware accelerator for real-time acceleration of
YOLOv2. J. Real Time Image Process. 2020, 412–423. [CrossRef]

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1806.01683
http://doi.org/10.14569/IJACSA.2018.091062
http://doi.org/10.1088/1742-6596/1650/3/032093
http://doi.org/10.1007/s11554-020-00977-w

	Introduction
	Background
	Convolutional Layer
	Standard Convolution
	Dilated Convolution
	Transposed Convolution

	Batch-Normalization Layer
	Activation Function
	Pooling Layer

	Optimization for Implementation
	Network Quantization
	Layer Fusion
	Unified Implementation of Multiple Convolutions
	Loop Optimization for Standard Convolutions
	Transformation Method for Other Convolutions

	Hardware Implementation
	Processing Engine Architecture Design
	Data Storage and Transmission

	Experimental Evaluation and Results
	Experimental Settings
	Dataset Description
	Experimental Procedure

	Performance Evaluation
	Performance Comparison

	Discussion
	Conclusions
	References

