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Abstract: Visual odometry (VO) refers to incremental estimation of the motion state of an agent (e.g.,
vehicle and robot) by using image information, and is a key component of modern localization and
navigation systems. Addressing the monocular VO problem, this paper presents a novel end-to-end
network for estimation of camera ego-motion. The network learns the latent subspace of optical flow
(OF) and models sequential dynamics so that the motion estimation is constrained by the relations
between sequential images. We compute the OF field of consecutive images and extract the latent
OF representation in a self-encoding manner. A Recurrent Neural Network is then followed to
examine the OF changes, i.e., to conduct sequential learning. The extracted sequential OF subspace
is used to compute the regression of the 6-dimensional pose vector. We derive three models with
different network structures and different training schemes: LS-CNN-VO, LS-AE-VO, and LS-RCNN-
VO. Particularly, we separately train the encoder in an unsupervised manner. By this means, we
avoid non-convergence during the training of the whole network and allow more generalized and
effective feature representation. Substantial experiments have been conducted on KITTI and Malaga
datasets, and the results demonstrate that our LS-RCNN-VO outperforms the existing learning-based
VO approaches.

Keywords: visual odometry; deep learning; optical flow subspace; recurrent neural network

1. Introduction

Vision-based ego-motion estimation, termed as VO, is the process of estimating the
ego-motion of an agent (e.g., vehicle and robot) using the input of a single or multiple
cameras attached to it. VO operates by incrementally estimating the pose of the agent,
including rotation and translation, through examining the changes between the consecutive
images caused by the motion. Compared to the conventional wheeled odometry, VO
has comprehensive advantages in terms of cost, accuracy, and reliability. It constitutes
the foundation of the visual positioning systems such as simultaneous localization and
mapping (SLAM) and structure from motion (SFM) [1–6].

Classic geometry-based VO approaches rely on the geometric constraints extracted
from imagery for pose estimation. They typically consist of a complicated pipeline includ-
ing camera calibration, feature detection, feature matching (or tracking), outlier rejection
(e.g., RANSAC), motion estimation, scale estimation, and local optimization (Bundle Ad-
justment) [7–9]. In virtue of Convolutional Neural Network (CNN) representational power,
learning-based VO in the last few years has seen increasing attention and achieved promis-
ing progress because of its desirable properties of robustness to image noise and camera
calibration independence. Learning-based VO can be divided into three categories: ab-
solute pose regression (APR) [10,11], relative pose regression (RPR) [12–16], and optical
flow (OF)-based approaches [17,18]. The APR approaches extract the high-dimensional
features from a single image using a base convolutional neural network (CNN) such as
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VGG or ResNet and then regress these features to the absolute camera pose relative to the
world coordinate through a fully connected layer. The APR approaches achieved good
results in some specific scenes, but lack generalization ability to new scenarios. The APR
approaches are more closely related to approximate pose estimation via image retrieval
than accurate pose estimation via 3D geometry [19]. The RPR approaches estimate the
pose of a test image relative to one or more training images rather than in absolute scene
coordinates. They usually stack two consecutive images as input, extract relative geometric
features between them, and regress the relative camera pose using a trained CNN. How-
ever, the PRP approaches are prone to overfitting as they combine the feature extraction
with motion estimation as a single training problem. OF-based approaches extract OF
field between consecutive images, and accordingly estimate camera pose. It has commonly
agreed that OF field implies geometric motion; thus, OF-based approaches are closer to
the idea of classical method. Gabriele et al. [18] suggested that the OF field subspace is
highly nonlinear and can be used for leaning VO. They proposed a framework (LS-VO)
that jointly trains the OF subspace estimation and ego-motion estimation. Two network
tasks are mutually reinforcing to better generalize OF field representation and ego-motion
estimation. However, this framework does not consider time-sequence information, that is,
it does not model motion dynamics between sequential images. In addition, the perfor-
mance of both OF extraction and OF subspace estimation in the LS-VO is limited. These
shortcomings limit the performance of the LS-VO.

In this work, we propose a novel network architecture for camera ego-motion estima-
tion by using recurrent neural networks through learning optical flow. The framework of
the method is illustrated in Figure 1. Our network computes the OF field between con-
secutive frame pairs of a sequence of images using the up-to-date OF extraction network
(PWC-Net), and extract the latent OF representation in a self-encoding manner (CNN
Encoder). A Recurrent Neural Network (RNN) is then followed to examine the OF changes
and connections on the sequence of images, i.e., to conduct sequential learning. The ex-
tracted sequential OF subspace is used to compute the regression of the 6-dimensional
pose vector. In the bottom path, a decoder is used to reconstruct the OF so that the encoder
can be trained separately in an unsupervised manner with a pixel-wise squared Root Mean
Squared Log Error (RMSLE) loss.

Figure 1. Framework of the method. A sequence of images is input into PWC-Net to extract optical flow (OF) field between
the rolling pairs of consecutive frames. A convolutional neural network (CNN) encoder with multiple convolution layers
is followed to learn the latent OF representation. An Recurrent Neural Network (RNN) is used to model sequential OF
dynamics and relations between consecutive frame pairs. The sequential OF subspace extracted by the encoder is fed into
the RNN to compute the regression of the 6D pose vector. The extracted OF subspace is also fed into a decoder with an
inverse architecture to the encoder. The decoder reconstructs the OF field so that the encoder can be trained separately in an
unsupervised manner with a pixel-wise squared Root Mean Squared Log Error (RMSLE) loss.
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Our main contributions are as follows. (1) We propose an R-CNN architecture to
learn effective latent OF representation and further to model OF dynamics and sequential
relations so that the motion estimation is constrained by the relations between sequential
OF features, thereby alleviating errors. (2) We develop an encoder–decoder architecture
to train the OF encoder separately in an unsupervised manner. By this means, we avoid
non-convergence during the training of the whole network and allow more generalized
and effective feature representation. (3) We use PWC-Net proposed by Sun et al. [20], an
up-to-date OF extraction network, to generate OF filed with better quality. (4) In the basis
of structure of Figure 1, we derive the three VO models with different network architectures
and different training schemes, including LS-CNN-VO, LS-AE-VO, and LS-RCNN-VO. We
conduct substantial experiments on KITTI and Malaga datasets to prove the effectiveness
of the sequential modeling and the unsupervised encoder pretraining. The results show
that our LS-RCNN-VO outperforms the existing learning-based VO approaches.

2. Related Works
2.1. Geometry-Based VO

Geometry-based VO methods can be divided into feature-based methods and direct
methods. Feature-based methods estimate motion based on geometric constraints extracted
from imagery [7–9], while direct methods optimize the photometric error of the whole
image or local area to estimate motion. Specifically, the feature-based methods detect and
track a set of sparse salient features between consecutive frames and then calculate the
pose parameters by analyzing the position changes of the feature points in the consecutive
images. A representative work is ORB-SLAM2 proposed by Mur-Artal et al. [7]. It utilizes
ORB for feature extraction and tracking, and selects keyframes to construct 3D points and
perform a closed-loop detection for motion estimation. Compared with the feature-based
methods, the direct methods calculate the gradient of pixel gray-level rather than position
changes. In theory, better accuracy and stability can be obtained because they try to use
the pixels of the entire image [21]. With the emergence of some open source projects using
the direct methods such as SVO [22] and LSD-SLAM [23], the direct methods have become
an active topic in VO domain. However, the direct methods are not very suitable for
large-scale motion (such as intelligent vehicles) due to their heavy computation.

2.2. Learning-Based VO

Using machine learning to solve VO problem is a relatively new but rapidly evolving
subject. As more and more public datasets provide the ground truth of pose information,
supervised learning becomes possible. Kendall et al. [10] proposed a convolutional network
(PoseNet) based on GoogLeNet structure for 6-DoF camera relocalization. It is a typical
APR approach that attempts to retrieve the absolute pose of a test image. It achieved
good results, both indoor and large scale outdoor in a trained environment, but was lack
of popularization in new scenarios. Ronald et al. [11] proposed a VidlLoc network that
is a recurrent model for performing 6-DoF localization of video-clips. They found that,
by considering short sequences, the pose estimates are smoothed, and the localization
error can be drastically reduced. A typical RPR VO was DeepVO network proposed by
Wang et al. [12] which used the stacked consecutive images as input to estimate relative
camera pose. They used CNN to learn effective feature representation and an RNN to
model sequential dynamics and relations. DeepVO realized an end-to-end pose estimation
and achieved competitive performance in terms of accuracy and generalization ability.
Wang et al. [13] also presented ESP-VO network, which infers poses and estimation un-
certainties in a unified framework. Considering that features contribute discriminately to
different motion patterns, Xue et al. [14] proposed GFS-VO that learns the rotation and
translation separately with a dual-branch recurrent network (decoupled pose estimation).
To enhance feature selection, they introduce a context-aware guidance mechanism to force
each branch to distill related information for specific motion patterns. Xue et al. [15] carry
forward the idea of sequence learning and further proposed Beyond Tracking framework,
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which incorporates two additional components called Memory and Refining. The Memory
module preserves longer time information by adopting an adaptive context selection strat-
egy. The Refining module ameliorates previous outputs by employing a spatial-temporal
feature reorganization mechanism. Based on an RPR approach, Ronald et al. proposed
VINet [24] that performs sequence-to-sequence learning and fusion of images and inertial
measurement unit (IMU) for motion estimation. By incorporating the domain information,
VINet mitigates drift errors. As OF reflects the geometric motion, it is commonly accepted
to learn visual odometry. In the early stage, OF was used to train regression algorithms
such as K-Nearest-Neighbors [25], Gaussian Process [26], and Support Vector Machines [27]
for pose estimation. The existing representative OF-based approaches was proposed by
Gabriele et al. [17,18]. In [17], they used dense OF field as input to learning latent feature
representative. They designed three different CNN structures for feature extraction to
verify local and global relationships. They showed that the approach is robust with respect
to blur, luminance, and contrast anomalies. In [18], they proposed LS-VO network that
uses an autoencoder network to extract a nonlinear representation of the OF manifold. In
the model, the latent OF space is learned jointly with estimation task.

As supervised learning requires expensive ground truth, learning-based VO has also
been studied in an unsupervised manner. Unsupervised learning-based VOs use auxiliary
visual cues, such as depth [28,29] and optical flow [20], as guiding signals. Zhou et al. [30]
proposed a framework (SfMLearner) for jointly training a depth CNN and a pose estimation
CNN from unlabeled video sequences. They used the view synthesis as a supervision
signal: given one input view of a scene, synthesize a new image of the scene seen from
a different camera pose. They synthesize a target view given a per-pixel depth in that image,
plus the pose and visibility in a nearby view. Li et al. proposed UndeepVO [16], which was
trained by using stereo image pairs to recover the scale and tested by using consecutive
monocular images. Almalioglu et al. [31] proposed a generative unsupervised learning
framework (GANVO) that uses deep convolutional Generative Adversarial Networks to
predict 6-DoF pose and monocular depth map of the scene from unlabeled RGB image
sequences. They created a supervisory signal by warping view sequences and assigning the
reprojection minimization to the objective loss function. These works achieve promising
results in both pose and depth estimation.

2.3. Learning-Based Optical Flow Estimation

The variational method based on the assumption of constant brightness and spa-
tial consistency has been the commonly used OF computation method. However, it
needs to solve complex optimization problems with an expensive computational cost.
Dosovitskiy et al. [32] pioneered the learning-based OF estimation method and proposed
FlowNet, which solves the OF estimation problem as a supervised learning task. However,
FlowNet cannot compete with classic variational methods. Mayers et al. [33] modified
the model to FlowNet2 by using a stacked architecture that includes warping the second
image with intermediate optical flow, thereby dramatically decreasing the estimation er-
ror. To improve computation efficiency, Black et al. [34] developed a compact network
called SPYNet, which adopts a spatial-pyramid formulation to deal with large motions.
SPYNet achieves similar performance to FlowNet, but the parameters used by the model
are much less than FlowNet. More recently, Sun et al. [20] proposed a more compact and
efficient network called PWC-Net. It was designed according to the established principles:
pyramidal processing, warping, and the use of a cost volume. It outperforms all existing
learning-based optical flow extractor.

3. Method

Figure 1 shows the framework of our method which is mainly composed of three
parts: optical flow extractor, optical flow encoder and decoder, and RNN. The architecture
can be divided into two branches: motion estimate (top) and OF encoder-decoder (bottom).
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3.1. Optical Flow Extractor: PWC-Net

We use PWC-Net proposed by Sun et al. [20] to generate the OF field for consecutive
rolling image pairs. PWC-Net is a compact and effective CNN model for estimating OF
field that uses the current OF estimate to warp the CNN features of the second image.
It then uses the warped features and the features of the first image to construct a cost
volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times
smaller in size and easier to train than FlowNet2 [33]. Furthermore, it outperforms all
published learning-based OF networks. We use the pretrained weights as detailed in [20].

3.2. Encoder–Decoder and Pretraining of the Encoder

The encoder is to learn the latent OF representation, i.e., to generate OF subspace.
As explained in Section 1, the decoder with an inverse architecture to the encoder is to
reconstruct the OF field so that the encoder can be trained separately in an unsupervised
manner (the bottom path of Figure 1). The process of encoding and decoding is shown in
Figure 2. The parameter settings of the encoder and decoder are shown in Table 1.

Figure 2. The process of encoding and decoding.
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Table 1. Parameter settings of the encoder and the decoder.

Layer Kernel Size Stride Channels Output Size

Input OF - - - - (1280,384,2)
Encoder Conv1 7 × 7 2 64 (640,192,64)

Conv2 5 × 5 2 128 (320,96,128)
Conv3 5 × 5 2 256 (160,48,256)

Conv3_1 3 × 3 1 256 (160,48,256)
Conv4 3 × 3 2 512 (80,24,512)

Conv4_1 3 × 3 1 512 (80,24,512)
Conv5 3 × 3 2 512 (40,12,512)

Conv5_1 3 × 3 1 512 (40,12,512)
Conv6 3 × 3 2 1024 (20,6,1024)

Decoder Deconv5 4 × 4 2 512 (40,12,512)
flow5 3 × 3 1 2 (40,12,2)

Deconv4 4 × 4 2 512 (80,24,512)
flow4 3 × 3 1 2 (80,24,2)

Deconv3 4 × 4 2 256 (160,48,256)
flow3 3 × 3 1 2 (160,48,2)

Deconv2 4 × 4 2 128 (320,96,128)
flow2 3 × 3 1 2 (320,96,2)

The encoder is composed of 9 convolutional layers, each followed by a Relu activation
function. The Xavier method is used for initialization. The encoder generates an OF
subspace with 1024 channels, each with a resolution of 20 × 6. The OF subspace is then
recovered in the decoder with four decoding layers, each followed by a stacking and an
upsampling operation. Take the example of the first decoding layer, the deconvolution layer
Deconv5 deconvolves the tensor (20 × 6 × 1024) produced by Conv6 and generates a new
tensor a size of 40 × 12 × 512. It is then stacked with the 40 × 12 × 512 tensor generated
by the layer Conv5_1 to generate a new tensor a size of 40 × 12 × 1024. We convolve it
using the convolution layer (flow 5) to generate a recovered optical flow (40 × 12 × 2). The
recovered optical flow is upsampled through bilinear interpolation for the use of the next
decoding layer. With the use of the four decoding layers, the OF subspace is recovered to
the original OF field. During the training of the encoder, we use the recovered OF field as
the supervision signal and compare it with the original OF field generated by PWC-Net. We
use a pixel-wise squared RMSLE loss to represent their gaps. The loss function is defined as

lae = ∑
i

∥∥∥log
(

û(i) + 1
)
− log

(
u(i) + 1

)∥∥∥2

2
(1)

where û(i) represents the recovered optical flow vector of the i-th pixel and u(i) is the
corresponding input optical flow vector.The weights of the encoder network are learned
by minimizing the gaps without the need of the ground truth of the OF filed; thus, it is
unsupervised learning. By this means, we can use a large amount of data to learn the
encoder network, thereby generating more generalized and effective feature representation.
It should be noted that the training of the encoder in our method is different from that in
LS-VO. In LS-VO, the encoder is jointly trained by estimating the pose and restoring the
optical flow, which relies on the expensive ground truth of the poses.

Another reason to pretrain the encoder separately is that our method combines the
CNN encoder with the RNN for sequential modeling. If they are jointly trained at the same
time, the training would be difficult to converge. To avoid this situation, we have adopted
the separate training, that is, pretrain the encoder in an unsupervised manner and then
train the subsequent RNN in a supervised way. The detailed training process is explained
in the following section (Section 3.4).
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3.3. The RNN for Sequential Modeling

Following the CNN encoder, a deep RNN is designed to conduct sequential learning,
i.e., to model the dynamics and relations among a sequence of OF subspace. RNN is
currently the preferred network for processing time series data and is widely used in many
fields [35,36]. We use a Long Short-term Memory (LSTM) network as our RNN that is
capable of learning long-term dependencies by introducing which previous hidden state to
be discarded or retained for updating the current state. The internal structure of an LSTM
unit is shown in Figure 3.

Figure 3. The internal structure of an Long Short-term Memory (LSTM) unit where � and ⊕ denote
element-wise product and addition of two vectors, respectively.

Given the input xt at time t, an LSTM unit has two transmission states, the memory
cell state ct−1 and the hidden state ht−1 passed down from the previous LSTM unit. The
working process of the LSTM can be explained by the following formula,

i = tanh(Wc · [ht−1, xt] + bc) (2)

f t = σ
(

W f · [ht−1, xt] + b f

)
(3)

it = σ(Wi · [ht−1, xt] + bi) (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

where xt and ht−1 are spliced as [ht−1,xt]. σ is sigmoid nonlinearity. tan is hyperbolic
tangent nonlinearity. W terms denote corresponding weight matrices. b terms denote bias
vectors. i is the input data with a value between −1 and 1. ft, it, and ot are gate signals
with a value between 0 and 1. ft is used as the forget gate signal to control whether ct−1
should be discarded or retained. it is to modulate i. ot is used as the output gate signal to
control the output of the LSTM unit (ht). ct and ht are updated as

ct = ft � ct−1 ⊕ it � i (6)

ht = ot � tanh(Ct) (7)

where � and ⊕ are element-wise product and addition of two vectors.
Appropriate LSTM network layers should be determined to achieve optimized per-

formance. Fewer layers may weaken the quality of sequential learning, while more layers
may cause issues like gradient disappearing and non-global convergence. In our design,
two layers of LSTM are used, each with 1000 hidden states, as illustrated in the following
section (Section 3.4).
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3.4. Architectures and Training Schemes of Three VOs

Figure 1 gives the complete architecture of our network containing OF extractor,
encoder, RNN, and the encoder training path. Actually, the pose can be estimated even
without the RNN as LS-VO [18] does. To evaluate and compare the effectiveness of the
RNN and different training schemes, we derive three VOs from Figure 1 with different
architectures and training schemes and compare their performances:

• LS-CNN-VO: This VO does not use RNN, and its architecture is shown in Figure 4.
In this VO, the CNN encoder is not pretrained. Instead, we directly train the CNN
encoder together with the four layers of fully connected (FC) layers to compute the
6-dimensional pose vector (3 translations and 3 rotations). The kernel size and the
stride of the max-pooling are 2 × 2.

• LS-AE-VO: This VO has the same architecture as LS-CNN-VO but with a differ-
ent training scheme. We pretrain the encoder by using the approach described in
Section 3.2. Next, we fix the encoder and train the four FC layers. Furthermore, we
jointly train the encoder and the FC layers with fine-tuning.

• LS-RCNN-VO: This VO has the complete architecture using the RNN, followed by
two FC layers, as shown in Figure 5. The RNN consists of the two layers of LSTM with
the memory cell state and the hidden states of an LSTM being the input of the other
one. Each LSTM layer has 1000 hidden states. On the basis of the training process of
LS-AE-VO, we fix the pretrained encoder and train the two layers of LSTM together
with the two FC layers as a pose regression problem. In LS-RCNN-VO, a rolling of
each five images is truncated as a sequence of images as the input of the network. The
output of the model is the pose of the current frame relative to its previous frame,
which takes its previous four frames into considerations.

Figure 4. The architecture of LS-CNN-VO and LS-AE-VO models in their end-to-end form.

Figure 5. The architecture of LS-RCNN-VO model in its end-to-end form.
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4. Experiments and Results

Experiments were conducted on KITTI VO benchmark dataset [37] and Malaga
dataset [38]. KITTI dataset provides 22 image sequences captured from highway, rural,
and urban scenarios, ranging from 500 m to 5000 m with a driving speed up to 90 km/h.
The first 11 sequences (sequences 00–10) provide the ground truth obtained from high-
precision GPS and laser sensors. The frame rate is 10 fps, and the image resolution is
1226 × 370 pixels. We resized the images to 1280 × 384 as the input of our models. All
image sequences were used as training samples for unsupervised pretraining of the encoder.
When conducting supervised training of the pose estimation, we used sequences 00, 02,
08, and 09 as training samples. The remaining sequences—03, 04, 05, 06, 07, and 10, were
used as testing samples. Malaga dataset provides 15 images of sequences captured from
urban scenarios, ranging from 340 m to 9200 m. The frame rate is 20 fps, and the image
resolution is 1024 × 768. We also resized the images to 1280 × 384. Same as the LS-VO [18],
we used sequence 01, 04, 06, 07, 08, 10, and 11 as training samples, sequence 02, 03, and 09
as testing samples.

Our model was implemented in a workstation with Intel (R) coreTM i7-9800X (3.8 GHz)
8 core processor (Intel, Santa Clara, CA, USA) and 4 NVIDIA GTX 2080Ti graphic cards
(NVIDIA, Santa Clara, CA, USA) in PyTorch framework with Adam as the optimizer.
During the training and hyperparameters optimization, we used the mainstream settings
for most of the parameters such as optimizer, activation function, initialization method,
and dropout. We used the largest batch size allowed by the capacity of the graphic memory.
When training LS-CNN-VO and LS-AE-VO, the batch size was set to 64. When training
LS-RCNN-VO, the batch size was set to 16. Dropout and early stopping techniques were
introduced to prevent the models from overfitting. We adjusted initial learning rate and
its decline rate in terms of the change of the loss value. The initial learning rate was
set to 10−4 and multiplied by 0.316 for every 20 epochs of training, which gave the best
result. The LS-CNN-VO was trained for about 80 epochs and took about 9 h. LS-AE-VO
took 15 h to train the encoder and the supervised fine-tuning. The LS-RCNN-VO was
trained for 60 epochs and took about 5 h. During testing, LS-RCNN-VO took 80 ms per
frame to achieve end-to-end pose prediction, among which PWC-Net consumes 28 ms for
calculation of OF field.

4.1. Comparison of the Three Proposed VO Models

We tested the three proposed VO models on the testing samples of KITTI and Malaga
datasets. We evaluated them according to the KITTI VO/SLAM evaluation metrics defined
in [37], i.e., the average translation error (ATE) and the average rotational error (ARE).

Figure 6 shows the ATE and the ARE of the three models versus path length and driv-
ing speed on the KITTI dataset. In general, LS-RCNN-VO achieves the best accuracy while
LS-CNN-VO performs worst. That LS-AE-VO performs better than LS-CNN-VO implies
the effectiveness of encoder unsupervised pretraining. That LS-RCNN-VO performs better
than LS-AE-VO implies the effectiveness of the RNN. It can be seen from Figure 6a,b that
the ATE and the ARE of LS-RCNN-VO decrease as the length increases. This indicates
that LS-RCNN-VO can alleviate the drift error by modeling sequential relations so that the
motion estimation is constrained by the relations between sequential images. Considering
that the approaches may be affected by the driving speed, we also evaluated our models in
terms of different driving speeds, as shown in Figure 6c,d. In general, the models perform
well at higher driving speeds. Especially, the ARE does not affect by the driving speed.
This indicates that the learning-based VO can still work at a high driving speed (relatively
low frame rate), while the geometry-based VO often causes tracking failure at a high
driving speed.
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Figure 6. Comparison of the average translation error (ATE) and the average rotational error (ARE)
of the three models at different path lengths and speeds on KITTI dataset. (a) ATE versus path length,
(b) ARE versus path length, (c) ATE versus speed, and (d) ARE versus speed.

Figure 7 shows the ATE and the ARE of the three models versus path length and
driving speed on the testing samples of Malaga dataset. The same tendency can be found
on KITTI dataset.

We also tested and evaluated the three proposed VO models according to the absolute
translation root mean square error (AT-RMSE), which evaluates the global consistency by
comparing the absolute distances between the estimated and the ground truth trajectory,
as defined in [39]. Figure 8 compares the moving trajectories detected by the three models
with the ground truth for the sequences 03, 04, 05, 06, 07, and 10 of KITTI dataset, while
Figure 9 compares the moving trajectories detected by the three models with the ground
truth for the sequences 02, 03, and 09 of Malaga dataset. The corresponding AT-RMSEs
are listed in Tables 2 and 3. It also shows that LS-RCNN-VO performs best, followed by
LS-AE-VO and LS-CNN-VO.

Table 2. Comparison of absolute translation root mean square error (AT-RMSE) (m) of the three
models on the KITTI dataset.

Sequence 03 04 05 06 07 10

LS-CNN-VO 35.0 4.9 50.8 34.7 23.1 39.5
LS-AE-VO 23.3 3.7 20.4 22.4 21.0 25.6

LS-RCNN-VO 14.9 2.2 11.1 9.3 15.0 9.7
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Figure 7. Comparison of the ATE and the ARE of the three models at different path lengths and
speeds on Malaga dataset. (a) ATE versus path length, (b) ARE versus path length (c) ATE versus
speed, and (d) ARE versus speed.

Figure 8. Comparison of the moving trajectories detected by the three models with the ground truth for sequence 03 (a),
04 (b), 05 (c), 06 (d), 07 (e), and 10 (f) of KITTI dataset.
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Figure 9. Comparison of the moving trajectories detected by the three models with the ground truth for sequence 02 (a),
03 (b), and 09 (c) of Malaga dataset.

Table 3. Comparison of absolute translation root mean square error (AT-RMSE) (m) of the three
models on the Malaga dataset.

Sequence 02 03 09

LS-CNN-VO 125.8 35.6 67.8
LS-AE-VO 69.3 28.8 32.4

LS-RCNN-VO 21.3 9.0 15.2

4.2. Comparison with Other Works

We compared our LS-RCNN-VO model with other works, including ORB-SLAM2-
M [7] (the monocular version), LS-VO [18], DeepVO [12], ESP-VO [13], GFS-VO [14],
BeyondTracking [15], UnDeepVO [16], and SfMLearner [30]. It should be noted that all
these works are monocular-vision-based approaches. ORB-SLAM2-M is a representative
geometry-based VO with open source code and reaches impressive robustness and ac-
curacy while the others are representative learning-based VOs. LS-VO employs the OF
based approach while DeepVO, ESP-VO, GFS-VO, and BeyondTracking are the RPR-based
approach. UnDeepVO and SfMLearner adopt unsupervised training.

Firstly, we compared our model with ORB-SLAM2-M and LS-VO according to the
KITTI VO/SLAM evaluation metrics defined in [37]. Table 4 shows the results of the three
works on all samples of KITTI and Malaga datasets. For the Malaga dataset, there is no high
precision GPS ground truth. We used the ORB-SLAM2 stereo VO [7] as Ground truth as its
performance, comprising bundle adjustment and loop-closure detection, is much higher
than any monocular method. It can be seen that our model significantly outperformed LS-
VO. The superiority of our model to LS-VO demonstrates that by adding RNN sequential
modeling and improving the OF subspace, motion estimation can be significantly improved.
However, as shown in Table 4, LS-VO uses a smaller size of the image as input, which may
degrade its performance. Actually, LS-VO is a light CNN model with lean architecture and
focuses on achieving robustness to non-ideal conditions (blur images) and performances
on smaller input images. Compared with ORB-SLAM2-M (a classic geometry-based
monocular VO), our method has great advantages in translation estimation. This indicates
that the learning-based VO can well overcome the scale ambiguity that is often the problem
of classic geometry-based VO.
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Table 4. Comparison with other works according to average translation error (ATE) and average
rotational error (ARE).

Dataset

ORB-SLAM2-M LS-VO LS-RCNN-VO
1240 × 376 300 × 94 280 × 384

ATE (%) ARE ATE (%) ARE ATE (%) ARE
(◦/100 m) (◦/100 m) (◦/100 m)

KITTI 20.32 0.25 10.71 2.90 1.57 0.56
Malaga 28.67 0.27 15.56 6.90 3.65 1.05

Second, we compared our model with the other six works that are all learning-based
VO. The reason to separate the comparison is that these six works used slightly different
evaluation metrics, i.e., Root Mean Square Errors (RMSE) of the relative translational and
rotational errors for all sub-sequences of lengths (100 m, 200 m, . . . 800 m), as defined in [39].
The results are listed in Table 5. It can be seen that our model outperforms the six works. The
superiority of our model to DeepVO, ESP-VO, GFS-VO, and BeyondTracking demonstrates
that extracting latent motion features from the optical flow is better than extracting features
directly from images. Among these RPR-based approaches, BeyondTracking presents
a similar performance as our method because it exploits two additional memory and
refining network components to preserve and distill valuable features. Meanwhile, our
method achieves better performance than the unsupervised approaches, SfmLearner, and
UndeepVO.

Table 5. Comparison with other works according to Root Mean Square Errors (RMSE) of the relative translational and
rotational errors on the KITTI dataset.

Method Sequence Average03 04 05 06 10

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel
DeepVO [12] 8.49 6.89 7.19 6.97 2.62 3.61 5.42 5.82 8.11 8.83 6.36 6.42
ESP-VO [13] 6.72 6.46 6.33 6.08 3.35 4.93 7.24 7.29 9.77 10.2 6.68 6.99
GFS-VO [14] 5.44 3.32 2.91 1.30 3.27 1.62 8.50 2.74 6.32 2.33 5.28 2.26

BeyondTracking [15] 3.32 2.10 2.96 1.76 2.59 1.25 4.93 1.90 3.94 1.72 3.54 1.74
UnDeepVO [16] 5.00 6.17 5.49 2.13 3.40 1.50 6.20 1.98 10.6 4.65 6.14 3.28
SfMLearner [30] 10.8 3.92 4.49 5.24 18.7 4.10 25.9 4.80 14.3 3.30 14.8 4.27
LS-RCNN-VO 6.47 2.18 1.66 0.73 2.21 0.75 4.66 1.71 2.07 1.40 3.41 1.35

5. Conclusions

This paper presents a novel end-to-end network for camera ego-motion estima-
tion. Leveraging the power of deep Recurrent-CNN, this new paradigm learns a lower-
dimensional OF space and models sequential dynamics. The motion estimation is con-
strained by the relations between sequential images. The architecture is composed of
two branches, i.e. motion estimate and OF encoder learning. The branch of the motion
estimate computes the OF field using the up-to-date OF network and extracts the latent
OF representation with a CNN encoder. A Recurrent Neural Network is then followed to
conduct the sequential learning. The extracted sequential OF subspace is used to regress the
6-dimensional pose vector. The branch of the OF encoder–decoder pretrains the encoder in
an unsupervised manner. By this means, we avoid non-convergence during the training of
the whole network and allow more generalized and effective feature representation. We
derive the three models with different network structures and different training schemes,
including LS-CNN-VO, LS-AE-VO, and LS-RCNN-VO. We tested the three models on
KITTI and Malaga datasets. In general, LS-RCNN-VO achieves the best performance while
LS-CNN-VO performs worst. That LS-AE-VO performs better than LS-CNN-VO implies
the effectiveness of the unsupervised encoder pretraining. That LS-RCNN-VO performs
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better than LS-AE-VO implies the effectiveness of sequential modeling. We also compare
our LS-RCNN-VO with other monocular VO algorithms. The results demonstrate that our
LS-RCNN-VO outperforms the existing learning-based VO approaches.

It can be concluded that learning optical flow using R-CNNs is effective for ego-motion
estimation. We will further use depth and ego-motion information for frame-frame image
reconstruction to extend the work to an unsupervised learning manner, which can avoid
expensive ground truth and achieve generalization ability. We will also consider extending
the work to a full SLAM system with loop-closure checking in a Network manner to
improve the estimation accuracy.
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