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Abstract: Early and objective autism spectrum disorder (ASD) assessment, as well as early inter-
vention are particularly important and may have long term benefits in the lives of ASD people.
ASD assessment relies on subjective rather on objective criteria, whereas advances in research point
to up-to-date procedures for early ASD assessment comprising eye-tracking technology, machine
learning, as well as other assessment tools. This systematic review, the first to our knowledge of its
kind, provides a comprehensive discussion of 30 studies irrespective of the stimuli/tasks and dataset
used, the algorithms applied, the eye-tracking tools utilised and their goals. Evidence indicates that
the combination of machine learning and eye-tracking technology could be considered a promising
tool in autism research regarding early and objective diagnosis. Limitations and suggestions for
future research are also presented.
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1. Introduction

The Diagnostic and Statistical Manual of Mental Disorders defines autism spectrum
disorder (ASD) as a highly complicated neurodevelopmental disorder with complex etiolog-
ical causes [1] characterised by social communication/interaction difficulties and repetitive
behaviours/interests [2], prevalent in 1% of the world’s population [3]. It was first intro-
duced by Kanner [4], who described it as involving “resistance to change” and “need for
sameness”. Asperger in [5] defined ASD as “autistic psychopathy,” meaning autism (self)
and psychopathy (personality). ASD reaches a high male-to female ratio, attaining an
average of 4:1, a steep increase to 10:1 in “high functioning autism” or Asperger syndrome
and a fall to 2:1 in people presenting comorbidity with moderate-to-severe intellectual
disability [6].

In addition to reduced social interaction and communication, restricted, repetitive,
and stereotyped behaviour, people with ASD tend to show a deficit in eye gaze, a charac-
teristic which cannot cause autism [2] but which constitutes an important item in several
diagnostic tests [7]. Eye gaze deficits of ASD people are related both to social and non-social
stimuli. As far as social and facial stimuli are concerned, individuals with ASD are likely to
have difficulties to preferentially attend both biological motion, i.e., gestures of the body,
expressions of the face, as well as the eyes of others [8]. In other words, individuals with
ASD tend to show visual differences in visual attention to faces, compared to typically
developing ones. Regarding non-social stimuli, individuals with ASD appear to show
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differences in comparison with typically developing people, i.e., impaired global and intact
local visual processing [9].

Early ASD assessment and intervention have long-term outcomes for ASD children
and their families, who require educational, medical, social, and economic support to
improve the quality of their lives. ASD assessment challenges professionals, as there are
not any well-established biophysiological diagnostic tests [10,11]. Thus, diagnosis is usu-
ally based on behavioural assessment, employing standardised tools of high validity and
reliability, such as the Autism Diagnostic Observation Schedule (ADOS) [7] and the Autism
Diagnostic Interview-Revised (ADI-R) [12]. These tools, broadly recognised in research, are
presented as the gold standard for ASD diagnosis regarding clinical settings [13,14]. Never-
theless, their utilisation requires numerous materials, takes considerable time and is rather
costly [10,11]. In addition, complex clinical protocols are included, whereas experienced
and trained interviewers, who can affect the diagnostic procedure, are required [10,11,15].
Taken together, these challenges can often lead to a delayed diagnosis, resulting in a delay
regarding the onset of early intervention [11]. Literature shows that when interventions
start before ASD children reach age 5, children show a significantly increased success
rate (67%), in comparison with the 11% success rate when interventions start later than
age 5 [16].

Eye-tracking technology is considered an advantageous approach to ASD research, as
it offers the ability to detect autism and features of it [8,17] earlier and in a more objective
and reliable way than conventional assessment [18]. There has been a steep increase in the
number of eye-tracking studies concerning autism during the last decade, either due to
easier access to eye-tracking technology [19], or because of the special devices and software
devised contributing to easier and less-expensive recording of eye-tracking data [18].

Eye-tracking instruments are often combined with modern artificial intelligence tech-
niques, such as machine learning, a data driven technique, based on advanced learning of
mathematics, statistical estimation, and theories of information [20] in which the computer
algorithm is trained in order to analyse a set of data observed and learns the latent patterns
in a statistical approach [20,21]. Machine learning can contribute to autism research by
providing a less biased and reproducible second opinion [22], i.e., early autism screen-
ing [23] and diagnosis enhancement [20], as well as different behaviours [24] and brain
activity observation [25]. Moreover, machine learning can be a valid biomarker-based
technique that can contribute to objective ASD diagnosis [26]. Machine learning has also
been applied in the Internet of Things (IoT) systems for ASD assessment [27,28]. Finally,
regarding intervention, the quality of life of ASD people can be improved by assistive
technology in the training of children with autism spectrum disorders [29].

Our Contribution

This systematic review provides a comprehensive discussion of the literature con-
cerning machine learning and eye-tracking ASD studies conducted since 2015. To our
knowledge, although machine learning and eye-tracking technology hold promise for
earlier and more objective autism diagnosis, this is the first systematic review study con-
cerning machine learning and eye-tracking ASD studies, irrespective of the stimuli/tasks
and dataset used, the algorithms applied, the eye-tracking tools utilised, and their goals.
The only systematic review, similar to this one, presents 11 papers about early ASD assess-
ment which applied ML models related only to children’s social visual attention (SVA) [26].
Thus, the present study reviews machine learning and eye-tracking technology ASD stud-
ies formulating the hypothesis that machine learning and eye-tracking technology can
contribute to an earlier and more objective ASD detection.

2. Method
Search Strategy

The present study is an extended version of the systematic review presented on
7 July 2021, in the 10th International Conference on Modern Circuits and Systems Tech-
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nologies. Studies were selected on 2 different dates, i.e., on 24 December 2020, and on
19 September 2021, from the PubMed® database. Searches on the database were carried out
by the first author and aimed at identifying English, full-text articles, published after 2015,
utilising the following Boolean string ((((eye-tracking) OR (gaze)) OR (eye movement))
AND (autism)) AND (Machine Learning). Studies complying with the following inclusion
criteria were selected: (a) patient groups had an ASD diagnosis, although there were also
participants with ASD and ASD+ADHD diagnosis in [30]; (b) control groups consisted
of TD participants apart from one study with Low/Medium/High ASD risk and ASD
participants only [31]; (c) participants’ ages ranged from toddlers to adults; (d) the aim
of the studies was ASD detection using machine learning combined with eye-tracking
technology. PRISMA recommendations concerning how to avoid the risk of bias were
considered. Thus, the first author initially selected study abstracts and then he assessed
full texts to check the inclusion criteria. Information relevant to the study was extracted,
such as the aim of the study, ASD assessment, participants, eye-tracking tasks/stimuli, EM
measures, ML models, data reduction techniques, results, and conclusions.

3. Results
3.1. Review Flow

The PRISMA 2020 flow diagram of study selection is presented in Figure 1. Searches
on PubMed® identified 33 articles and one systematic review study. Fifteen of the articles
were removed after their title and abstract had been screened. Twelve more articles were
identified in the reference lists of chosen articles. Therefore, the present systematic review
involves 30 articles and one systematic review study.

Figure 1. PRISMA 2020 flow diagram of study selection.

3.2. Selected Studies of the Systematic Review

The selected studies are presented in Table 1 according to the stimuli and/or their topic.
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Table 1. Selected studies.

Authors Groups N Age Machine Learning Models Type of Study/Stimuli Main Results

Jiang et al. (2019)
ASD 23 8–17 years

RF Emotion recognition study
Differences concerning response time and eye

movements, but no difference concerning emotion
recognition accuracy. High Classification accuracy (86%).TD 35 8–34 years

Jiang et al. (2020)

ASD 13

M = 12.13 years
RF Regressor Emotion recognition study

High prediction accuracy on SRS-2 total score (R2 = 0.325)
and its subscales. RBS-R predicted with high accuracy
(R2 = 0.302) concerning total score but not its subscales.

ASD + ADHD 8

ADHD 3

TD 36 M = 12.50 years

Nag et al. (2020)
ASD 16 6–17 years Elastic Net/Standard Logistic

Regression Classifiers Emotion recognition study A classification accuracy of 0.71 was achieved across all
trials by the model.TD 17 8–17 years

Król and Król (2019)
ASD 21 11–29 years Facial features landmark

detection algorithm/DNN Emotion recognition study Emotion recognition task played the most important role
in ASD and TD participants discrimination.TD 23 10–21 years

Ahuja et al (2020)
ASD 35 15–29 years SVM/Multi-layer Perceptron

Regressor
Video-based study: watching some

ordinary videos
Individuals with an autism diagnosis were classified with

a really high accuracy (92.5%).TD 25 19–30 years

Carette et al. (2017)
ASD 17

8–10 years LSTM
Video-based study: eye-tracking while

watching a joint-attention video
The status of 83% of ASD patients was validated using a

neural network.TD 15

Carette et al. (2019)
ASD 29 M = 8 years NB, Logistic Regression, SVM,

RF, ANN
Video-based study: watching

stimulating videos for eye gaze

The single hidden layer model consisting of 200 neurons
had the best performance in discerning ASD participants

(accuracy = 92%).

TD 30

Wan et al. (2019)
ASD 37 4–6 years SVM

Video-based study: watching a muted
video in which a woman was

mouthing the alphabet

Only the difference in time spent on fixating at the
moving mouth and body was significant enough to

differentiate ASD from TD children with a high
accuracy (85.1%).

TD 37

Elbattah et al. (2019)
ASD 29

M = 7.88 years k-means Video-based study: stimuli from
Carette et al. 2019

Autoencoder provided better cluster separation showing
a relationship between faster eye movement and higher

ASD symptom severity.TD 30

Reimann et al. (2021)
HFA 33 M = 20.25 years

ANN
Video-based study: two or more

characters engaged in conversation

ASD participants spent less time looking to the center of
the face i.e., the nose. There were no significant

differences compared to TD participants concerning eye
and mouth looking time.TD 36 M = 20.83 years
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Table 1. Cont.

Authors Groups N Age Machine Learning Models Type of Study/Stimuli Main Results

Tsuchiya et al. (2021)

ASD 39 M = 10.3 years

LOO method
Video-based study: social and

preferential paradigms

Accuracy of 78% was achieved, and the area under curve
(AUC) of the best-fit algorithm was 0.84. The

cross-validation showed an AUC of 0.74 and the
validation in the second control group was of 0.91.

TD 102 M = 9.5 years

Second control
group 24 M = 10.4 years

Liu et al. (2015)

ASD 21 M = 7.85 years

K-means, SVM Image-based study: pictures of
Chinese female faces

The SVM that was based on BoW histogram features
containing combined variables obtained from k-means

clustering performed better in ASD discrimination
(AUC = 0.92), (accuracy = 86.89%).

TD-age
matched 21 M = 7.73 years

TD-IQ matched 20 M = 5.69 years

Liu et al. (2016)

ASD 29

4–11 years
K-means, RBF kernel SVM

Image-based study: memorising an
amount of faces (Caucasian and

Chinese) and recognising them among
some additional Caucasian and

Chinese faces

RBF kernel SVM that was applied on all faces performed
better than SVM applied on other race faces and same

race faces (accuracy = 88.51%).

TD-age
matched 29

TD-IQ matched 29 M = 5.74 years

Vu et al. (2017)
ASD 16

2–10 years kNN
Image-based study: different types of
content (social scene, human face and
object) and time of exposure (1s, 3s, 5s)

“Social scene” stimulus combined with 5s exposure time
reached the highest classicification accuracy at 98.24%.TD 16

Kang et al. (2020a) LFA 77 3–6 years K-means, SVM

Image-based study: watching images
randomly, i.e., other-race faces,

own-race strange faces and own-race
familiar faces

The classification accuracy that combined three types of
faces reached a highest accuracy of 84.17% (AUC = 0.89)

with 120 features selected.TD 80

Kang et al. (2020b)
ASD 49

3–6 years SVM
Image-based/Electroencephalography
(EEG) study: watching photos of an

own-race and another-race young girl

The combination of eye-tracking data with EEG data
reached the highest classification accuracy (85.44%) and

AUC (0.93) with 32 features selected.TD 48

Wang et al. (2015)
HFA 20 M = 30.8 years

SVM
Image-based study: passively viewing

natural scene images

ASD people have atypical visual attention throughout
multiple levels and categories of objects when compared

with TD people.TD 19 M = 32.3 years

Jiang and Zhao (2017)
HFA 20 M = 30.8 years Deep Neural Network (DNN),

SVM

Image-based study: use of
eye-tracking data from Wang et al.
(2015). Fisher score method was

performed aiming at finding the most
discriminative images

An automatic approach contributed to a better
understanding of ASD people attention traits without

depending on any previously acquired knowledge of the
disorder with high accuracy (92%).TD 19 M = 32.3 years

Tao & Shyu (2019)
ASD 14

M = 8 years CNN, LSTM

Image-based study: Saliency4ASD
grand challenge eye movement

dataset (social and non-social images
depicting either people, or objects, or

naturalistic scenes)

The six-layer CNN-LSTM architecture with batch
normalization achieved the best ASD discrimination

performance (accuracy = 74.22%).
TD 14
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Table 1. Cont.

Authors Groups N Age Machine Learning Models Type of Study/Stimuli Main Results

Liaqat et al. (2021) ASD 14 M = 8 years

A synthetic saccade approach
called STAR-FC where data

were input to a deep learning
classifier, an image-based

approach with a sequence of
fixation maps that were fed into

a CNN or an RNN.

Image-based study: Saliency4ASD
grand challenge eye movement

dataset (social and non-social images
depicting either people, or objects, or

naturalistic scenes)

Image-based approaches showed a slightly better
performance compared with synthetic saccade

approaches concerning both accuracy and AUC. A
relatively high prediction accuracy (67.23%) was reached
on the validation dataset and on the test dataset (62.13%).

TD 14

He et al. (2021)

HFA 26 M = 5.08 years

kNN
Image-based study: computerised

visual-orienting task with gaze and
non-gaze directional cues

Performance: TD>HFA>LFA, Non-gaze directional cues
also contributed to group distinction suggesting that

people with ASD show domain-general visual orienting
deficits, Classification accuracy of 81.08%.

LFA 24 M = 4.98 years

TD 24 M = 5.24 years

Li et al. (2018)
ASD 53 4–7 years

SVM Image-based study: images of
children’s mothers

SVM on 40 video frames was the best model
(accuracy = 93.7%).TD 136 6–8 years

Li et al. (2019)

ASD Dataset 1 53
4–7 years

SVM, LSTM Image-based study: images of
children’s mothers

LSTM in combination with accumulative histograms on
dataset 2 achieved best ASD discrimination performance

(accuracy = 92.60%).
ASD Dataset 2 83

TD 136 6–8 years

Yaneva et al. (2018)
HFA 18 M = 37 years

Logistic Regression
Web-browsing study: eye-movement

observation while Browsing and
Searching on specific web pages

Search task achieved a best performance of 0.75 and
Browse task achieved a best performance of 0.71 when

training on selected media took place.TD 18 M = 33.6 years

Yaneva et al. (2020) HFA 19 M = 41 years Logistic Regression

Web-browsing study: eye-movement
observation while Browsing (30 s) and
Synthesizing information (<120 s) on

specific web pages

Search task brought the best results (0.75), first Browse
task and Synthesis task scored slightly lower, 0.74 and

0.73, respectively, whereas the Browse task of the present
study scored a little lower (0.65).TD 25 M = 32.2 years

Canavan et al. (2017)

Low/High
ASD risk 94 2–10 years

Random Regression Forests,
C4.5 DT, PART

Gaze and Demographic
Features Study

A high classification accuracy was reached regarding
PART (96.2%), C4.5 (94.94%) and Random Regression

Forest (93.25%) when outliers were removed.

Low/Medium/High
ASD risk 71 11–20 years

Medium ASD
risk 68 21–30 years

Medium ASD
risk 4 31–40 years

ASD 20 60+ years



Electronics 2021, 10, 2982 7 of 18

Table 1. Cont.

Authors Groups N Age Machine Learning Models Type of Study/Stimuli Main Results

Vabalas et al. (2020)

Training ASD 15 M = 33.1 years

SVM Movement imitation study

ASD and non-ASD participants were classified with 73%
accuracy regarding kinematic measures and with 70%
accuracy regarding eye movement. When eye-tracking
and kinematic measures were combined an increased

accuracy was achieved (78%).

Training TD 15 M = 32.2 years

Test ASD 7 M = 28.16 years

Test TD 7 M = 27.90 years

Lin et al. (2021)

TD
(preliminary
experiment)

107 M = 24.84 years
Logistic regression, NB, kNN,
SVM, DT, RF, GBDT and an

Ensemble Model

VR Interaction Study: A scenario with
real-life objects depicting a couple in

the garden with their dog

The Ensemble Model achieved the best performance in
the preliminary experiment (accuracy = 0.73). 77% of

ASD participants in the test experiment were effectively
verified as showing high levels of autistic traits.ASD (test

experiment) 22 M = 12.68 years

Drimalla et al. (2020)
ASD 37 22–62 years

RF

Social Interaction Task (SIT) Study:
sitting in front of a computer screen
taking part in a small conversation

with a woman, whose part had been
recorded before

Facial expressions and vocal characteristics provided the
best accuracy (73%), sensitivity (67%), and specificity

(79%). Gaze behavior did not provide any evidence about
significant group differences.TD 43 18–49 years

Zhao et al. (2021)
ASD 20 M = 99.6 months

SVM, LDA, DT, RF
Face-to-face conversation study: A
structured interview with a female

interviewer

The SVM classifier achieved the highest accuracy
reaching (92.31%) with the use of only three features, i.e.,
length of total session, mouth in the first session, whole

body in the third session.TD 23 M = 108.8 months

ANN Artificial Neural Network, ASD Autism Spectrum Disorder, CNN Convolutional Neural Network approach, DT Decision Tree, DNN Deep Neural Network, FXS-F Fragile X Syndrome-Females, FXS-M
Fragile X Syndrome-Males, GBDT Gradient Boosting Decision Tree, HFA High-functioning Autism, High-HMM Hidden Markov Model, kNN k Nearest Neighbour, LDA Linear Discriminant Analysis, LOO
leave-one-out method, LSTM Long Short-term Memory, NB Naïve Bayes, RF Random Forest, RNN Recurrent Neural Network, SVM Support Vector Machine, TD Typically Developed, VR Virtual Reality.
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4. Discussion

The studies presented employed various eye-tracking instruments, applied machine
learning in different ways, distributed several tasks, and had a wide range of sample sizes,
age groups, and functional skills of participants. Specifically, four emotion recognition
studies, seven video-based, twelve image-based, two web-browsing, one gaze and demo-
graphic features, one movement imitation, one virtual reality (VR) interaction, one social
interaction task (SIT), and one face-to-face conversation study are presented.

4.1. Emotion Recognition Studies

Four eye-tracking and machine learning studies which distributed emotion recognition
tasks were identified. In [32] a facial emotion recognition task was employed. Random
Forest was applied to classify eye fixations of ASD and TD participants according to their
task performance, gaze information, and face features. Results pointed to differences
concerning response time and eye movements but no difference concerning emotion
recognition accuracy. A high classification accuracy (86%) was achieved. In [30] the authors
carried out one more eye-tracking and emotion recognition study and created a Random
Forest regressor to predict an SRS-2 score [33] measuring social impairment and RBS-R
score [34] measuring restricted, repetitive, and stereotyped behaviours and interests. ASD,
ADHD, ASD+ADHD and TD participants were recruited. A high prediction accuracy was
achieved on the SRS-2 total score (R2 = 0.325) and its subscales. RBS-R was also predicted
with high accuracy (R2 = 0.302) concerning total score but not its subscales. In another
study, the researchers compared the gaze and emotion recognition between ASD and
TD children wearing Google Glass [35]. Three trials were conducted using 125 images.
Elastic net model was applied as a base classifier. Elastic net classifiers, in addition to
standard logistic regression classifiers, were trained on subsets of the features as well as
three separate trials for various ablations. A classification accuracy of 0.71 was achieved
across all trials by the model. Elastic net models showed a better performance compared
to logistic regression ablation models utilised in most of the tasks. Due to the limited
sample size, the authors did not manage to make a machine learning classifier that could
outperform other classifiers in which only age and gender features were utilised.

Finally, Ref. [36] conducted a study in which the eye-movements of ASD and age- and
IQ-matched TD participants were measured in three tasks containing facial stimuli. Partici-
pants were asked to observe a face (the Freeview task), recognise the emotional expression
of this face (the Emotion recognition task), or evaluate whether the brow or the mouth in a
particular face was wider (the Brow/Mouth task). The authors applied a facial features
landmark detection algorithm [37], which finds key points related to several features of the
face in an automatic way. Additionally, for each trial, visual information obtained from
the surrounding area of the subject’s fixation locations was fed to a deep learning neural
network classifier regarding emotion recognition. More particularly, a masked version
of the face was presented in the trial made by a convolution of the initial image with a
Gaussian filter and a smooth kernel density estimation. This version concerned the fixation
distribution, preserving the areas of the face image on which the participant fixated and
blurring the remaining ones. In this way, the ML algorithm contributed to face emotion
decoding of the masked image. Additionally, regarding emotion recognition, a measure
utilising the visual information obtained by the participant’s scan path was created. The
emotion recognition task played the most important role in revealing differences between
the participants. Specifically, TD participants achieved the highest accuracy (92%), and the
ML algorithm achieved the same accuracy by using the TD participants’ data. However,
ASD individuals achieved a lower accuracy (85%), whereas an accuracy of 90% was reached
by the algorithm when the same set of images was given. ASD participants appeared to
face difficulties with paying attention to the appropriate parts of the face in order to extract
information related to emotion recognition when compared with TD participants.

Taken together, the above-mentioned studies show that emotion recognition can lead
to valuable results in some eye-tracking and machine learning ASD studies. Specifically,
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in [36], emotion recognition task played the most important role in revealing differences
between ASD and TD participants. Additionally, a high prediction accuracy was achieved
in [30] regarding social impairment and restricted, repetitive, and stereotyped behaviours
and interests. On the other hand, although there was a high classification accuracy in [32],
there were no differences between ASD and TD participants when emotion recognition
accuracy was taken into account. Finally, Elastic net models hold promises for future
research when some of the constraints encountered in [35] are overcome.

4.2. Video-Based Studies

We identified seven studies which used videos with different stimuli. One study
tracked young ASD and TD individuals’ gaze while they were watching four short
videos [38]. Five features were calculated for each video, i.e., standard deviation of gaze
points, standard deviation of difference in gaze points, standard deviation between the
gaze and annotated object of interest, root mean square error (RMSE) between the gaze
and annotated object of interest, and delay in looking at the object of interest. An SVM
with a third-degree polynomial kernel was applied for ASD and TD classification. CARS
scores were utilised to assess the severity of autism. A multi-layer perceptron regressor
was employed. When all four videos were linked, and their features were combined into
one feature vector, a high accuracy was achieved regarding autism detection with object
of interest annotation (98.3%) and autism detection without object of interest annotation
(93.3%). Additionally, videos were trimmed and 15 second random segments were pre-
sented. Particularly, the average accuracy was approximately 95.75% with the object of
interest annotated, whereas a mean of 92.5% was achieved when the object of interest was
not annotated. A proof-of-concept regression model was developed to estimate the severity
of the condition, thus achieving a mean absolute error regarding CARS of 2.03. In another
study, a 10 second video clip was displayed to children [39]. It was a muted video in which
a woman was mouthing the alphabet. The goal of the study was to evaluate the fixation
time spent on various areas of the female’s face. Permutation tests were used for AOI
discrimination weight testing. The results showed that only the difference in time spent on
fixating at the moving mouth and body was significant enough to differentiate ASD from
TD children. SVM with fivefold-cross validation concerning the fixation time on AOIs was
computed with an aim to differentiate ASD participants achieving high accuracy (85.1%),
sensitivity (86.5%), and specificity (83.8%).

An automatic method based on two Long Short-Term Memory (LSTM) hidden layers
of 20 neurons, each utilising different fitness values focusing on the cascade eye movements,
i.e., amplitude, duration, acceleration, was used in [3]. ASD and TD children were asked
to watch a joint-attention video while their gaze was being recorded. By employing a
neural network, the status of 83% of ASD children with a confidence higher than 95%
was validated. In [22], ASD and TD children were asked to watch videos that could be
stimulating for their eye gaze. A visual representation of their eye gaze, i.e., scan paths,
was created. Because the scan paths were few, image augmentation was used to produce
synthetic samples by operating image transformations aiming at uncertainty reduction and
accuracy increase. Data dimension was reduced by scaling all images down, converting
them to greyscale, and using PCA. Traditional ML models, i.e., Naïve Bayes, SVM, and RF
were applied. ANN were employed as well, including a single hidden layer consisting of
50, 200 and 500 neurons in addition to two hidden layers consisting of 80 and 40 neurons.
Tenfold-cross validation was utilised. Results showed that traditional ML models had an
average AUC of 0.7 when compared with ANN that achieved an accuracy higher than
90%. Specifically, the single hidden layer model consisting of 200 neurons had the best
performance in discerning ASD participants (accuracy = 92%). Therefore, simple neural
network models and a small dataset can be thought of as a promising approach reaching
high classification accuracy.

ASD and TD children looked at the same social stimuli of [22] in [40]. The study
aimed at ASD stratification concerning ASD eye movement clusters in relationship with
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the severity of disorder symptoms. Individual scan paths were made and scaled down for
dimension reduction. There was a comparison of four feature extraction methods, i.e., scan
paths conversion into grayscale, PCA, the t-Distributed Stochastic Neighbour Embedding
technique (t-SNE) [41], and the autoencoder. Three k values were selected (k = 2, k = 3,
k = 4) resulting in three clustering structures. According to the results obtained, when the
k value was increased, the quality of clusters decreased. Moreover, clusters were poorly
separated when either pixel-based features, or PCA, or t-SNE were used. On the contrary,
autoencoder provided better cluster separation showing a relationship between faster eye
movement and higher ASD symptom severity.

In [42], high-functioning ASD and age- and IQ-matched TD individuals participated
in a free-viewing paradigm and watched movie clips presenting two or more characters
engaged in conversation. An artificial neural network was trained for the segmentation
of stimuli of 22 movie clips which were naturalistic and dynamic. Both ASD and TD
individuals opted for gazing at specific features of the face. ASD participants paid less
attention to the face in general than TD ones. Specifically, ASD participants spent less
time looking at the centre of the face, i.e., the nose. However, there were no significant
differences compared to TD participants when eye and mouth looking time were concerned.
Furthermore, individual looking time rates showed a convergence to a stable mean, as
more data were added. In other words, the combinations of 1, 3, 5, 8, and 11 movie clips
showed that gaze duration on core features of the face turned out to be increasingly stable
within-subject, within-group, and between-group levels.

Gazefinder was used to create the best-fit diagnostic algorithm with an aim to dis-
tinguish school-aged and adolescent ASD individuals from TD individuals of the same
age [10]. The diagnostic performance was evaluated in two ways: the first was an ML
procedure known as the leave-one-out (LOO) method. The second was a test in another
control group, i.e., an independent sample of the same age range, aiming at the diagnos-
tic predictability of the best-fit diagnostic algorithm validation. Social and preferential
paradigms were utilised. The sensitivity (74%), specificity (80%), and accuracy (78%) were
relatively high and the area under curve (AUC) of the best-fit algorithm was 0.84. The
cross-validation showed an AUC of 0.74 and the validation in the second control group
was 0.91. Concerning its diagnostic performance, the best-fit algorithm performed in
accordance with the diagnostic assessment tools for ASD.

The results of the video-based studies provide evidence that they can play an impor-
tant role in ASD research as well. Specifically, the SVM algorithm brought high classification
accuracy [39] even when the object of interest was not annotated [38]. The dataset size also
played an important role as a high classification accuracy can be achieved by applying
LSTM [3], whereas a broader dataset could have decreased both uncertainty and overfitting.
On the contrary, simple neural network models combined with a small dataset could be a
promising approach to reaching high classification accuracy [22]. In [40], the autoencoder
provided better cluster separation, pointing to a relationship between faster eye movement
and higher ASD symptom severity. The Artificial Neural Network applied in [42] showed
that ASD participants spent less time looking at the centre of human faces, i.e., the nose of
people engaged in conversations. Finally, Gazefinder, used to create the best-fit diagnostic
algorithm, managed to distinguish school-aged and adolescent ASD individuals from TD
individuals of the same age [10].

4.3. Image-Based Studies

Twelve studies employing images as stimuli were found. The first study, aiming
to classify ASD and TD children, distributed pictures of Chinese female faces [43]. A
posteriori AOIs were created from features based on eye gaze coordinates, eye motion, and
a combination of variables extracted for each image per subject when k-means clustering
was applied. An a priori AOI approach was applied as well and was computed on
combined variables as a baseline feature extraction method, thus contributing to the
comparison of the performance of different SVMs. A selection of eye gaze coordinates in
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addition to eye motion features were consequently depicted by using N-Gram modelling
combined with the orderless frequency Bag of Words (BoW). Five different SVMs were
trained. The SVM, which was based on BoW histogram features with combined variables
obtained from k-means clustering, performed better in ASD discrimination (AUC = 0.92,
Accuracy = 86.89%). In a study conducted by the same authors, ASD and TD children
were asked to memorise many faces (Caucasian and Chinese) and recognise them between
some additional Caucasian and Chinese faces [21]. For the definition of a posteriori
AOIs, k-means clustering was utilised. Feature representation per image, concerning
each subject, was provided by histogram feature extraction. There were differences in
the features selected for clustering faces of the same race, faces of other races and all
faces. The leave-one-out cross-validation strategy was applied for training set and test
set separation, whereas a radial basis function (RBF) kernel SVM was trained aiming at
image-level classification. RBF kernel SVM applied on all faces performed better than SVM
applied on other race faces and same race faces (accuracy = 88.51%, sensitivity = 93.10%,
specificity = 86.21%, AUC = 0.89). In [11], images were distributed as stimuli consisting of
different types of content (social scene, human face, and object) and time of exposure (1 s,
3 s, 5 s). The aim of the study was to differentiate ASD from TD children by employing a
kNN algorithm. “Social scene” stimulus combined with a 5 s exposure time reached the
highest classification accuracy at 98.24% and was the most effective stimulus. Additionally,
a 5 s exposure time reached the highest accuracy (95.24%).

In [44], low-functioning ASD and TD children were asked to see other-race faces, own-
race strange faces, and own-race familiar faces as experimental stimuli. Specifically, the
authors wanted to explore whether ASD children would show a difference in face- fixation
patterns concerning the different types of faces in comparison with TD children. A K-means
clustering algorithm was applied to divide each image into 64 Areas of Interest (AOIs),
whereas the features were selected by utilising the minimal redundancy and maximal
relevance (mRMR) algorithm. Support Vector Machine (SVM) was applied, based on
eye-tracking data, to distinguish low-functioning ASD children from TD ones. Overall, the
highest classification accuracy concerning unfamiliar, other-race faces was 72.50% (AUC
= 0.77) with 32 of the 64 features selected. The highest classification accuracy concerning
own-race strange faces was 70.63% (AUC = 0.76) with 18 features selected. Finally, the
highest classification accuracy concerning own-race familiar faces was 78.33% (AUC =
0.84) with 48 features selected. The classification accuracy combining three types of faces
reached a highest accuracy of 84.17% (AUC = 0.89) with 120 features selected.

In [45], electroencephalography (EEG) and eye-tracking data were combined for ASD
children identification. SVM was applied. ASD and TD children participated in EEG
recording and in an eye-tracking task, in which photos of an own-race young girl and of
another-race young girl were displayed. There were eight a priori AOIs. ASD participants
made less gazes on the face, nose and mouth concerning not only other-race, but also
own-race faces. A minimum-redundancy-maximum-relevance method [46] was applied
for feature selection computing. Own-race face, other-race face and both types of face SVM
classification accuracy was compared showing that both types of face models achieved the
best performance (accuracy = 75.89%, AUC = O.87). The combination of eye-tracking data
with EEG data reached the highest classification accuracy (85.44%) and AUC (0.93) with
32 features selected.

In [47], the authors recruited high-functioning ASD and TD people and asked them to
passively view 700 natural scene images using a novel, three-layered SVM saliency-model,
which contained pixel-level attributes (e.g., contrast), object-level attributes (e.g., shape),
and semantic-level attributes (e.g., faces) regarding 5551 annotated objects. According to the
results, ASD individuals had a stronger bias for central fixation and their attention toward
low-level saliency was stronger, whereas their attention toward semantic-level saliency was
weaker. Specifically, ASD individuals paid less attention to faces and objects of another’s
gaze in comparison with TD individuals. The statistical significance of this effect increased
at later fixations. The stronger bias for central fixation in ASD individuals was associated
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with a slower saccade velocity. Regarding temporal analysis, the attentional differences of
ASD individuals were more prominent at later fixations, when the importance of semantic-
level effects increased. The computational saliency model results were confirmed by direct
analysis of fixation characteristics, which showed that ASD individuals had an increased
saliency for text and operability, i.e., objects that are mechanical and manipulable. Finally,
low-level and/or object-level saliency cannot solely explain the semantic saliency difference
shown in ASD individuals. The researchers of a recent study [48] were greatly inspired
by the above-mentioned study [47]. The same eye-tracking data were used and a feature
selection, based on the Fisher score method [49], was performed, aiming at finding the
most discriminative images. Their goal was to obtain image features from natural scenes in
an automatic way, using deep neural networks (DNNs) and finally utilising these features
to differentiate ASD from TD people by training a linear SVM. The results revealed that
TD participants could be better classified by what they looked at, instead of by the way
they shifted their gaze. Moreover, images that had high Fischer scores could effectively
distinguish the two groups of subjects. The bias for central fixation in ASD was the most
differential information. The automatic approach proposed in this study contributed to a
better understanding of ASD peoples’ attention traits without depending on any previously
acquired knowledge of the disorder, achieving a high classification accuracy (92%).

CNN and LSTM were combined for ASD and TD children classification according
to their scan paths [50]. The Saliency4ASD grand challenge eye movement dataset, i.e.,
an eye movement dataset publicly released for ASD classification algorithms evaluation
containing eye movement data of 14 TD and 14 ASD children, was used [51]. Gaze data
from ASD and TD children participating in a free-viewing task of 300 social and non-social
images depicting either people, or objects, or naturalistic scenes were utilised. The Sal-GAN
neural network [52] was used to create the reference saliency map followed by features ex-
traction from the patches associated with eye gaze coordinates existing in the saliency map.
The extracted features were fed to two CNN-LSTM architectures that showed differences
concerning the number of layers. The six-layer CNN-LSTM architecture with batch normal-
isation achieved the best ASD discrimination performance (accuracy = 74.22%). In [53], the
Saliency4ASD grand challenge eye movement dataset was used for ASD and TD children
differentiation as well [51]. Two ML methods for ASD prediction were proposed. The first
was a synthetic saccade approach called STAR-FC in which there was a representation of a
typical non-ASD individual’s baseline scan path in combination with the real scan path
and other auxiliary data that were input into a deep learning classifier. The second was
a more holistic, image-based approach, according to which, the input image, combined
with a sequence of fixation maps, was fed to a Convolutional Neural Network (CNN) or a
Recurrent Neural Network (RNN). The image-based approaches showed a slightly better
performance when compared with synthetic saccade approaches concerning both accuracy
and AUC. A relatively high prediction accuracy (67.23%) was reached on the validation
dataset and on the test dataset (62.13%). High and low-functioning ASD and TD children
participated in a study in which a computerised visual-orienting task was distributed [15].
At the centre of a screen, a directional cue was presented, which was either the gaze of a
human face, or the gaze of a cartoon face, or a pointing finger, or an arrow. Four pictures
of objects were also presented in four directions around this directional cue, one of which
was the target and the rest were the confounds. Participants were requested to follow the
directional cue, to look at the picture of the target object, and fixate on the target to receive
rewarding feedback. A KNN algorithm was applied reaching an overall classification
accuracy of 81.08%. TD participants performed better than high-Functioning ASD ones,
whereas high-Functioning ASD participants performed better than low-Functioning ASD
ones. Non-gaze directional cues also contributed to group distinction, suggesting that
people with ASD show domain-general visual orienting deficits.

In [54], there was an attempt to create an early ASD diagnosis tool based on raw videos
recorded at home. The authors used a dataset of videos of ASD and TD children looking at
their mothers’ images on a computer screen. The tracking learning detection algorithm was



Electronics 2021, 10, 2982 13 of 18

used to extract features as eye gaze trajectories from videos. Additionally, an accumulative
histogram was introduced to examine gaze patterns of ASD and TD children derived from
the trajectories of eye movements based on various amounts of video frames (20, 40, 50,
and 100 video frames). SVM was applied to differentiate ASD from TD children. Principal
component analysis (PCA) combined with kernel PCA (KPCA) were used for feature
extraction and data dimension reduction. All the models reached an accuracy higher than
77%. However, the highest accuracies were achieved when KPCA was used. Additionally,
SVM on 40 video frames was the best model (accuracy = 93.7%). There was one additional
study by the same authors in which the same dataset was used, whereas an additional
dataset of ASD children was added to balance the ASD and TD participants [55]. The
tracking learning detection algorithm was used to extract features as eye gaze trajectories
from videos. Then, features were divided into angle and length. Accumulative and
non-accumulative histograms were created for single and combined features. These two
histograms were fed to six three-layer LSTM networks for classification. Additionally,
KPCA was computed for data reduction in order to feed six SVMs. SVM performance and
LSTM performance were compared. Features based on accumulative histograms brought
better results than those based on non-accumulative ones. Moreover, LSTM networks were
6.2% more accurate than SVM. LSTM, in combination with accumulative histograms on
dataset 2, achieved the best ASD discrimination performance concerning accuracy (92.60%),
sensitivity (91.9%), and specificity (93.4%). There was a balance between the ASD and
TD participants when compared with the previous study [54], increasing the ML model’s
validity. However, there was no controlled-setting and direct eye-movement measurement
that could improve the accuracy and objectivity of the study.

Taken together, most image-based studies applied either the SVM algorithm on its own
or combined with other algorithms. More particularly, in [43], the SVM, which was based
on BoW histogram features with combined variables obtained from k-means clustering,
performed better in ASD discrimination. In a study by the same authors, RBF kernel
SVM applied on all faces showed the best performance [21]. SVM was applied in [44]
based on eye-tracking data and reached the highest accuracy when three types of faces
were combined. In [45], SVM was applied as well and the combination of eye-tracking
data with EEG data reached the highest classification accuracy. A novel three-layered
SVM saliency-model was applied in [47], showing that ASD people have atypical visual
attention throughout multiple levels and categories of objects compared with TD ones.
Linear SVM differentiated ASD from TD people without depending on any previously
acquired knowledge of the disorder, achieving a high classification accuracy [48]. In [54],
SVM on 40 video frames achieved the best discrimination accuracy. In one additional
study by the same authors, the same dataset and an additional dataset of ASD children
were used to balance the ASD and TD participants [55]. The LSTM networks were 6.2%
more accurate than the SVM. The KNN algorithm was applied in two studies and a
very good performance was achieved [11,15]. There were also two studies in which
classification accuracy was lower. Specifically, the six-layer CNN-LSTM architecture with
batch normalization achieved the best ASD discrimination performance between ASD
and TD children [50]. Finally, an image-based approach with a sequence of fixation maps
showed a slightly better performance concerning accuracy in ASD classification compared
with a synthetic saccade approach called STAR-FC [53].

4.4. Web-Browsing Studies

The two web-browsing studies identified employed web-browsing tasks [18,56]. The
first study used eye-tracking technology aiming to observe the eye movements of high-
functioning ASD adults and non-ASD participants while they were doing two tasks on
some web pages: Browsing and Searching [56]. Page-specific and generic Areas of Interest
(AOIs) were defined. A logistic regression algorithm was applied. Search tasks achieved
a best performance of 0.75 and Browse tasks achieved a best performance of 0.71 when
training on selected media took place. Generic AOIs are more appropriate for tasks like
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the Browse task, whereas tasks, such as the Search task, need page-specific AOIs. Some
additional variables, i.e., participant gender, the level of visual complexity of the web
pages, or the correct answer AOI in the Search tasks, did not significantly influence the
classification performance. The most recent study [18] contained similar tasks with the
previous one. Specifically, the Browse task was the same as the one distributed in the first
study, but the search time was limited to thirty seconds per page. In this way, difficulty was
increased and there was a better results classification. Additionally, a Synthesis task was
introduced, which was similar with the Search task in the first study, but asked participants
to find at least two distinct elements on the page, compare them, and find a third element
that was not explicit. The maximum time limit allowed per web page was 120 s. Generic
and page-specific AOIs were defined but more extraction configurations were added than
in the previous paper. Logistic regression algorithm was applied. Results showed that
all tasks showed discrimination power and the classification accuracy achieved in this
study was comparable to the accuracy in the previous study. Search task brought the best
results (0.75), first Browse task and Synthesis task scored slightly lower, i.e., 0.74 and 0.73,
respectively, whereas the Browse task of the present study scored a little lower (0.65). The
increase in task difficulty, i.e., Synthesis task addition, did not bring better discrimination
accuracy. In addition, both groups had different web-browsing strategies even when a
web-browsing time limit existed. Finally, the content and granularity level and the AOIs
present can affect the classification accuracy, unlike elements, such as the visual complexity
of the pages and gender of the participants.

4.5. Gaze and Demographic Features Study

One study combining Gaze and Demographic features, such as age and gender, was
carried out for autism classification [31]. Three machine learning classifiers, i.e., random
regressions forests, C4.5 decision trees, and PART, were tested on participants with low
-, medium -, and high-risk for ASD, and ASD participants as well. A high classification
accuracy was reached regarding PART (96.2%), C4.5 (94.94%) and Random Regression
Forest (93.25%), when outliers were removed.

4.6. Movement Imitation Study

In a study which dealt with eye gaze and motion tracking, ASD and TD adults were
asked to be engaged in a simple movement imitation task [57]. SVM algorithm with radial
basis function (RBF) was applied for classification. A combination of SVM-RFE, t-test,
mRMR and ReliefF rankings was made for the generalisation of classifier predictions
improvement. T-test with bagging and wrapped t-test were used for feature selection
stability improvement. ASD and non-ASD participants were classified with 73% accuracy
regarding kinematic measures, and with 70% accuracy regarding eye movement. When
eye-tracking and kinematic measures were combined, an increased accuracy was achieved
(78%). Overfitting and stable feature selection issues were overcome by applying nested
validation and feature selection, which aimed at selection stability. The experimental condi-
tion containing the most discriminative features between ASD and non-ASD participants
was when non-ASD participants successfully imitated unusual movement kinematics,
whereas ASD participants failed to do so.

4.7. Virtual Reality (VR) Interaction Study

Virtual reality (VR) interaction was applied to ASD individuals as well [58]. A scenario
with real-life objects depicting a couple in the garden with their dog was presented to see
children’s visual mechanism. First, a preliminary experiment was carried out and then
the scenario was distributed to TD adults aiming at building a machine learning model
with two groups of people (low autistic traits group and high autistic traits group). Then,
a test experiment took place in which the scenario was distributed to a group of young
ASD males with the aim to evaluate machine learning models. Seven machine learning
models were applied (Logistic regression, Naïve Bayes Classifier, kNN, SVM, Decision Tree,
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Random Forest, Gradient Boosting Decision Tree (GBDT)) and an eighth Ensemble Model
that combined the previous models. The Ensemble Model achieved the best performance in
the preliminary experiment (accuracy = 0.73, precision = 0.68, recall = 0.81, f1-score = 0.74
and AUC = 0.90). Additionally, 77% of the ASD participants in the test experiment were
effectively verified as showing high levels of autistic traits. In other words, this model can
predict high autistic traits and has good generalisation ability.

4.8. Social Interaction Task (SIT) Study

There was one study in which ASD and TD adults were asked to participate in a
Social Interaction Task (SIT) [59]. Specifically, they sat in front of a computer screen and
were informed that they were going to take part in a small conversation with a woman,
whose part had been recorded. They were asked to behave like they were taking part in
a natural conversation. The participants’ face, gaze behaviour, and voice were recorded
while taking part in the interaction. The Random Forest approach was applied. The best
accuracy (73%), sensitivity (67%), and specificity (79%) were reached only when facial
expressions and vocal characteristics were considered. Gaze behaviour did not provide
any evidence about significant group differences. One possible explanation could be that
the eye gaze measurement was of low precision.

4.9. Face-to-Face Conversation Study

Eye-tracking technology was also applied in face-to-face conversations for ASD and
TD children classification [60]. The combination of visual fixation and conversation length
data was examined to evaluate if the ML model performance could be improved. Partici-
pants’ gaze was recorded while they were engaged in a structured interview with a female
interviewer. The conversation consisted of four sessions arranged in chronological order:
general questions, hobby sharing, yes/no questions, and question raising. Moreover, four
Areas of Interest (AOIs) were analysed (eyes, mouth, whole face, and whole body). Four
ML classifiers were utilised for classification, i.e., support vector machine (SVM), linear
discriminant analysis (LDA), decision tree (DT), and random forest (RF). The SVM classifier
achieved the highest accuracy, reaching 92.31% with the use of only three features, i.e.,
length of total session, mouth in the first session, whole body in the third session. The
accuracy was higher than that acquired when using only visual fixation features (maximum
accuracy: 84.62%), or only session-length features (maximum accuracy: 84.62%), showing
that the combination of features could lead to accurate ASD and TD children classification.

5. Limitations

The limitations of the study could be summarised as follows: (a) studies were selected
only from the PubMed® database; (b) search on PubMed® was carried out by using
only one Boolean string; (c) only articles published after 2015 were included; and (d) the
selected studies mainly utilised machine learning and eye-tracking technology. Future
research could search for studies in more databases i.e., Scopus®, use more keywords while
searching for articles, include studies published before 2015, and identify studies utilising
additional tools/techniques for ASD assessment.

6. Conclusions

The present systematic review study involved 30 articles and 1 systematic review study
concerning Machine Learning and eye-tracking ASD studies conducted since 2015. They
were identified in PubMed® Database and most of them employed image and video stimuli.
There were also four emotion recognition studies two of which found results of increased
significance. In addition, there were two web-browsing studies, one gaze and demographic
features study, one movement imitation study, one virtual reality (VR) interaction study,
one social interaction task (SIT) study and one face-to-face conversation study.

It is difficult to compare the results of all the above-mentioned studies as they included
different tasks and datasets, applied different algorithms, utilised different eye-tracking
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tools and had different goals. Moreover, there were limitations in some studies, such as
limited sample size, difficulty to create and/or choose an appropriate algorithm/task and
find significant eye-tracking results. Despite these differences and limitations, the results
obtained showed that most of the studies utilised Machine Learning and eye-tracking
technology for ASD classification and reached an accuracy higher than 80%. Additionally,
there were five studies that applied Machine Learning and eye-tracking technology with a
different approach. Finally, when Eye-tracking and Machine Learning were combined with
Kinematic Measures and Electroencephalography (EEG), classification accuracy increased
showing that multimodal assessment can be more reliable and accurate.

Therefore, the formulated hypothesis is supported, for the present systematic review
study, and Machine Learning and eye-tracking technology appear to contribute to an earlier
and more objective ASD detection. Regarding suggestions for future research, Machine
Learning and eye-tracking technology could be used to identify not only ASD, but other
disorders, such as anxiety and schizophrenia. The combination of Machine Learning
and eye-tracking technology with other technological approaches could be promising for
future research as well. Internet of Things (IoT)-based systems, for instance, could be
considered as one more developing method used not only to improve ASD diagnosis, but
also the Quality of Life of autistic people. Future research could also deal with assistive
technology in the training of children with autism spectrum disorders, as it can play an
important role in improving the quality of life of ASD children, whereas it is also thought
to have potentials in intervention programmes and ASD research. Finally, we would also
like to involve and apply Machine Learning, eye-tracking and other tools used for ASD
assessment in our future research, i.e., systematic reviews and experiments.

Author Contributions: Conceptualization, K.-F.K., C.K.S.-D., P.S. and G.F.F.; methodology, K.-F.K.;
validation, K.-F.K.; investigation, K.-F.K.; resources, K.-F.K.; data curation, K.-F.K., G.F.F.; writing—
original draft preparation, K.-F.K.; writing—review and editing, K.-F.K., C.K.S.-D.; supervision,
C.K.S.-D., P.S. and G.F.F.; project administration, C.K.S.-D., P.S. and G.F.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957406.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Casanova, M.F. The Neuropathology of Autism. Brain Pathol. 2007, 17, 422–433. [CrossRef] [PubMed]
2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association:

Washington, DC, USA, 2013.
3. Carette, R.; Cilia, F.; Dequen, G.; Bosche, J.; Guerin, J.-L.; Vandromme, L. Automatic Autism Spectrum Disorder Detection Thanks

to Eye-Tracking and Neural Network-Based Approach. In Proceedings of the International Conference on IoT Technologies for
Healthcare, Angers, France, 24–25 October 2017; Springer: Cham, Switzerland; pp. 75–81.

4. Kanner, L. Autistic Disturbances of Affective Contact. Nerv. Child 1943, 2, 217–250.
5. Asperger, H. Die “autistischen Psychopathen” Im Kindesalter. Eur. Arch. Psychiatry Clin. Neurosci. 1944, 117, 76–136. [CrossRef]
6. Fombonne, E. Epidemiology of Pervasive Developmental Disorders. Pediatr. Res. 2009, 65, 591–598. [CrossRef]
7. Lord, C.; Rutter, M.; DiLavore, P.C.; Risi, S. ADOS. Autism Diagnostic Observation Schedule. Manual; Western Psychological Services:

Los Angeles, CA, USA, 2001.
8. Klin, A.; Shultz, S.; Jones, W. Social Visual Engagement in Infants and Toddlers with Autism: Early Developmental Transitions

and a Model of Pathogenesis. Neurosci. Biobehav. Rev. 2015, 50, 189–203. [CrossRef]
9. Nayar, K.; Voyles, A.C.; Kiorpes, L.; Di Martino, A. Global and Local Visual Processing in Autism: An Objective Assessment

Approach. Autism Res. 2017, 10, 1392–1404. [CrossRef]
10. Tsuchiya, K.J.; Hakoshima, S.; Hara, T.; Ninomiya, M.; Saito, M.; Fujioka, T.; Kosaka, H.; Hirano, Y.; Matsuo, M.; Kikuchi, M.

Diagnosing Autism Spectrum Disorder without Expertise: A Pilot Study of 5-to 17-Year-Old Individuals Using Gazefinder. Front.
Neurol. 2021, 11, 1963. [CrossRef]

11. Vu, T.; Tran, H.; Cho, K.W.; Song, C.; Lin, F.; Chen, C.W.; Hartley-McAndrew, M.; Doody, K.R.; Xu, W. Effective and Efficient Visual
Stimuli Design for Quantitative Autism Screening: An Exploratory Study. In Proceedings of the 2017 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI), Orlando, FL, USA, 16–19 February 2017; pp. 297–300.

http://doi.org/10.1111/j.1750-3639.2007.00100.x
http://www.ncbi.nlm.nih.gov/pubmed/17919128
http://doi.org/10.1007/BF01837709
http://doi.org/10.1203/PDR.0b013e31819e7203
http://doi.org/10.1016/j.neubiorev.2014.10.006
http://doi.org/10.1002/aur.1782
http://doi.org/10.3389/fneur.2020.603085


Electronics 2021, 10, 2982 17 of 18

12. Lord, C.; Rutter, M.; Le Couteur, A. Autism Diagnostic Interview-Revised: A Revised Version of a Diagnostic Interview for
Caregivers of Individuals with Possible Pervasive Developmental Disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [CrossRef]
[PubMed]

13. Goldstein, S.; Ozonoff, S. Assessment of Autism Spectrum Disorder; Guilford Publications: New York, NY, USA, 2018.
14. Kamp-Becker, I.; Albertowski, K.; Becker, J.; Ghahreman, M.; Langmann, A.; Mingebach, T.; Poustka, L.; Weber, L.; Schmidt, H.;

Smidt, J. Diagnostic Accuracy of the ADOS and ADOS-2 in Clinical Practice. Eur. Child Adolesc. Psychiatry 2018, 27, 1193–1207.
[CrossRef]

15. He, Q.; Wang, Q.; Wu, Y.; Yi, L.; Wei, K. Automatic Classification of Children with Autism Spectrum Disorder by Using a
Computerized Visual-Orienting Task. PsyCh J. 2021, 10, 550–565. [CrossRef] [PubMed]

16. Fenske, E.C.; Zalenski, S.; Krantz, P.J.; McClannahan, L.E. Age at Intervention and Treatment Outcome for Autistic Children in a
Comprehensive Intervention Program. Anal. Interv. Dev. Disabil. 1985, 5, 49–58. [CrossRef]

17. Frank, M.C.; Vul, E.; Saxe, R. Measuring the Development of Social Attention Using Free-Viewing. Infancy 2012, 17, 355–375.
[CrossRef] [PubMed]

18. Yaneva, V.; Eraslan, S.; Yesilada, Y.; Mitkov, R. Detecting High-Functioning Autism in Adults Using Eye Tracking and Machine
Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1254–1261. [CrossRef] [PubMed]

19. Sasson, N.J.; Elison, J.T. Eye Tracking Young Children with Autism. J. Vis. Exp. JoVE 2012, 61, 3675. [CrossRef] [PubMed]
20. Bone, D.; Goodwin, M.S.; Black, M.P.; Lee, C.-C.; Audhkhasi, K.; Narayanan, S. Applying Machine Learning to Facilitate Autism

Diagnostics: Pitfalls and Promises. J. Autism Dev. Disord. 2015, 45, 1121–1136. [CrossRef] [PubMed]
21. Liu, W.; Li, M.; Yi, L. Identifying Children with Autism Spectrum Disorder Based on Their Face Processing Abnormality: A

Machine Learning Framework. Autism Res. 2016, 9, 888–898. [CrossRef]
22. Carette, R.; Elbattah, M.; Cilia, F.; Dequen, G.; Guérin, J.-L.; Bosche, J. Learning to Predict Autism Spectrum Disorder Based on

the Visual Patterns of Eye-Tracking Scanpaths. In Proceedings of the HEALTHINF, Prague, Czech Republic, 22–24 February 2019;
pp. 103–112.

23. Peral, J.; Gil, D.; Rotbei, S.; Amador, S.; Guerrero, M.; Moradi, H. A Machine Learning and Integration Based Architecture for
Cognitive Disorder Detection Used for Early Autism Screening. Electronics 2020, 9, 516. [CrossRef]

24. Crippa, A.; Salvatore, C.; Perego, P.; Forti, S.; Nobile, M.; Molteni, M.; Castiglioni, I. Use of Machine Learning to Identify Children
with Autism and Their Motor Abnormalities. J. Autism Dev. Disord. 2015, 45, 2146–2156. [CrossRef] [PubMed]

25. Zhou, Y.; Yu, F.; Duong, T. Multiparametric MRI Characterization and Prediction in Autism Spectrum Disorder Using Graph
Theory and Machine Learning. PLoS ONE 2014, 9, e90405. [CrossRef]

26. Minissi, M.E.; Giglioli, I.A.C.; Mantovani, F.; Raya, M.A. Assessment of the Autism Spectrum Disorder Based on Machine
Learning and Social Visual Attention: A Systematic Review. J. Autism Dev. Disord. 2021, 1–16. [CrossRef]

27. Alam, M.E.; Kaiser, M.S.; Hossain, M.S.; Andersson, K. An IoT-Belief Rule Base Smart System to Assess Autism. In Proceedings
of the 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT),
Dhaka, Bangladesh, 13–15 September 2018; pp. 672–676.

28. Hosseinzadeh, M.; Koohpayehzadeh, J.; Bali, A.O.; Rad, F.A.; Souri, A.; Mazaherinezhad, A.; Rezapour, A.; Bohlouli, M. A Review
on Diagnostic Autism Spectrum Disorder Approaches Based on the Internet of Things and Machine Learning. J. Supercomput.
2020, 77, 2590–2608. [CrossRef]

29. Syriopoulou-Delli, C.K.; Gkiolnta, E. Review of Assistive Technology in the Training of Children with Autism Spectrum Disorders.
Int. J. Dev. Disabil. 2020, 1–13. [CrossRef]

30. Jiang, M.; Francis, S.M.; Tseng, A.; Srishyla, D.; DuBois, M.; Beard, K.; Conelea, C.; Zhao, Q.; Jacob, S. Predicting Core
Characteristics of ASD Through Facial Emotion Recognition and Eye Tracking in Youth. In Proceedings of the 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020;
pp. 871–875.

31. Canavan, S.; Chen, M.; Chen, S.; Valdez, R.; Yaeger, M.; Lin, H.; Yin, L. Combining Gaze and Demographic Feature Descriptors
for Autism Classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China,
17–20 September 2017; pp. 3750–3754.

32. Jiang, M.; Francis, S.M.; Srishyla, D.; Conelea, C.; Zhao, Q.; Jacob, S. Classifying Individuals with ASD through Facial Emotion
Recognition and Eye-Tracking. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 6063–6068.

33. Bruni, T.P. Test Review: Social Responsiveness Scale–Second Edition (SRS-2). J. Psychoeduc. Assess. 2014, 32, 365–369. [CrossRef]
34. Bodfish, J.W.; Symons, F.J.; Lewis, M.H. The Repetitive Behavior Scale (Western Carolina Center Research Reports). Morganton

NC West. Carol. Cent. 1999.
35. Nag, A.; Haber, N.; Voss, C.; Tamura, S.; Daniels, J.; Ma, J.; Chiang, B.; Ramachandran, S.; Schwartz, J.; Winograd, T. Toward

Continuous Social Phenotyping: Analyzing Gaze Patterns in an Emotion Recognition Task for Children with Autism through
Wearable Smart Glasses. J. Med. Internet Res. 2020, 22, e13810. [CrossRef]

36. Król, M.E.; Król, M. A Novel Machine Learning Analysis of Eye-Tracking Data Reveals Suboptimal Visual Information Extraction
from Facial Stimuli in Individuals with Autism. Neuropsychologia 2019, 129, 397–406. [CrossRef]

http://doi.org/10.1007/BF02172145
http://www.ncbi.nlm.nih.gov/pubmed/7814313
http://doi.org/10.1007/s00787-018-1143-y
http://doi.org/10.1002/pchj.447
http://www.ncbi.nlm.nih.gov/pubmed/33847077
http://doi.org/10.1016/S0270-4684(85)80005-7
http://doi.org/10.1111/j.1532-7078.2011.00086.x
http://www.ncbi.nlm.nih.gov/pubmed/32693486
http://doi.org/10.1109/TNSRE.2020.2991675
http://www.ncbi.nlm.nih.gov/pubmed/32356755
http://doi.org/10.3791/3675
http://www.ncbi.nlm.nih.gov/pubmed/22491039
http://doi.org/10.1007/s10803-014-2268-6
http://www.ncbi.nlm.nih.gov/pubmed/25294649
http://doi.org/10.1002/aur.1615
http://doi.org/10.3390/electronics9030516
http://doi.org/10.1007/s10803-015-2379-8
http://www.ncbi.nlm.nih.gov/pubmed/25652603
http://doi.org/10.1371/journal.pone.0090405
http://doi.org/10.1007/s10803-021-05106-5
http://doi.org/10.1007/s11227-020-03357-0
http://doi.org/10.1080/20473869.2019.1706333
http://doi.org/10.1177/0734282913517525
http://doi.org/10.2196/13810
http://doi.org/10.1016/j.neuropsychologia.2019.04.022


Electronics 2021, 10, 2982 18 of 18

37. Bulat, A.; Tzimiropoulos, G. How Far Are We from Solving the 2d & 3d Face Alignment Problem? (And a Dataset of 230,000 3d
Facial Landmarks). In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 1021–1030.

38. Ahuja, K.; Bose, A.; Jain, M.; Dey, K.; Joshi, A.; Achary, K.; Varkey, B.; Harrison, C.; Goel, M. Gaze-Based Screening of Autistic
Traits for Adolescents and Young Adults Using Prosaic Videos. In Proceedings of the 3rd ACM SIGCAS Conference on Computing
and Sustainable Societies, Guayaquil, Ecuador, 15–17 June 2020; p. 324.

39. Wan, G.; Kong, X.; Sun, B.; Yu, S.; Tu, Y.; Park, J.; Lang, C.; Koh, M.; Wei, Z.; Feng, Z. Applying Eye Tracking to Identify Autism
Spectrum Disorder in Children. J. Autism Dev. Disord. 2019, 49, 209–215. [CrossRef]

40. Elbattah, M.; Carette, R.; Dequen, G.; Guérin, J.-L.; Cilia, F. Learning Clusters in Autism Spectrum Disorder: Image-Based
Clustering of Eye-Tracking Scanpaths with Deep Autoencoder. In Proceedings of the 2019 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1417–1420.

41. Van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
42. Reimann, G.E.; Walsh, C.; Csumitta, K.D.; McClure, P.; Pereira, F.; Martin, A.; Ramot, M. Gauging Facial Feature Viewing

Preference as a Stable Individual Trait in Autism Spectrum Disorder. Autism Res. 2021, 14, 1670–1683. [CrossRef]
43. Liu, W.; Yu, X.; Raj, B.; Yi, L.; Zou, X.; Li, M. Efficient Autism Spectrum Disorder Prediction with Eye Movement: A Machine

Learning Framework. In Proceedings of the 2015 International Conference on Affective Computing and Intelligent Interaction
(ACII), Xi’an, China, 21–24 September 2015; pp. 649–655.

44. Kang, J.; Han, X.; Hu, J.-F.; Feng, H.; Li, X. The Study of the Differences between Low-Functioning Autistic Children and Typically
Developing Children in the Processing of the Own-Race and Other-Race Faces by the Machine Learning Approach. J. Clin.
Neurosci. 2020, 81, 54–60. [CrossRef]

45. Kang, J.; Han, X.; Song, J.; Niu, Z.; Li, X. The Identification of Children with Autism Spectrum Disorder by SVM Approach on
EEG and Eye-Tracking Data. Comput. Biol. Med. 2020, 120, 103722. [CrossRef]

46. Peng, H.; Long, F.; Ding, C. Feature Selection Based on Mutual Information Criteria of Max-Dependency, Max-Relevance, and
Min-Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

47. Wang, S.; Jiang, M.; Duchesne, X.M.; Laugeson, E.A.; Kennedy, D.P.; Adolphs, R.; Zhao, Q. Atypical Visual Saliency in Autism
Spectrum Disorder Quantified through Model-Based Eye Tracking. Neuron 2015, 88, 604–616. [CrossRef]

48. Jiang, M.; Zhao, Q. Learning Visual Attention to Identify People with Autism Spectrum Disorder. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3267–3276.

49. Hart, P.E.; Stork, D.G.; Duda, R.O. Pattern Classification; Wiley: Hoboken, NJ, USA, 2000.
50. Tao, Y.; Shyu, M.-L. SP-ASDNet: CNN-LSTM Based ASD Classification Model Using Observer Scanpaths. In Proceedings of the

2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, China, 8–12 July 2019; pp. 641–646.
51. Duan, H.; Zhai, G.; Min, X.; Che, Z.; Fang, Y.; Yang, X.; Gutiérrez, J.; Callet, P.L. A Dataset of Eye Movements for the Children

with Autism Spectrum Disorder. In Proceedings of the 10th ACM Multimedia Systems Conference, Amherst, MA, USA, 18–21
June 2019; pp. 255–260.

52. Pan, J.; Ferrer, C.C.; McGuinness, K.; O’Connor, N.E.; Torres, J.; Sayrol, E.; Giro-i-Nieto, X. Salgan: Visual Saliency Prediction with
Generative Adversarial Networks. arXiv 2017, arXiv:1701.01081.

53. Liaqat, S.; Wu, C.; Duggirala, P.R.; Cheung, S.S.; Chuah, C.-N.; Ozonoff, S.; Young, G. Predicting ASD Diagnosis in Children with
Synthetic and Image-Based Eye Gaze Data. Signal Process. Image Commun. 2021, 94, 116198. [CrossRef]

54. Li, J.; Zhong, Y.; Ouyang, G. Identification of ASD Children Based on Video Data. In Proceedings of the 2018 24th International
Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 367–372.

55. Li, J.; Zhong, Y.; Han, J.; Ouyang, G.; Li, X.; Liu, H. Classifying ASD Children with LSTM Based on Raw Videos. Neurocomputing
2020, 390, 226–238. [CrossRef]

56. Yaneva, V.; Ha, L.A.; Eraslan, S.; Yesilada, Y.; Mitkov, R. Detecting Autism Based on Eye-Tracking Data from Web Searching Tasks.
In Proceedings of the 15th International Web for All Conference, Lyon, France, 23–25 April 2018; pp. 1–10.

57. Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Applying Machine Learning to Kinematic and Eye Movement Features of a
Movement Imitation Task to Predict Autism Diagnosis. Sci. Rep. Nat. Publ. Group 2020, 10, 8346. [CrossRef]

58. Lin, Y.; Gu, Y.; Xu, Y.; Hou, S.; Ding, R.; Ni, S. Autistic Spectrum Traits Detection and Early Screening: A Machine Learning Based
Eye Movement Study. J. Child Adolesc. Psychiatr. Nurs. 2021. [CrossRef]

59. Drimalla, H.; Scheffer, T.; Landwehr, N.; Baskow, I.; Roepke, S.; Behnia, B.; Dziobek, I. Towards the Automatic Detection of
Social Biomarkers in Autism Spectrum Disorder: Introducing the Simulated Interaction Task (SIT). NPJ Digit. Med. 2020, 3, 25.
[CrossRef]

60. Zhao, Z.; Tang, H.; Zhang, X.; Qu, X.; Hu, X.; Lu, J. Classification of Children with Autism and Typical Development Using
Eye-Tracking Data From Face-to-Face Conversations: Machine Learning Model Development and Performance Evaluation. J.
Med. Internet Res. 2021, 23, e29328. [CrossRef]

http://doi.org/10.1007/s10803-018-3690-y
http://doi.org/10.1002/aur.2540
http://doi.org/10.1016/j.jocn.2020.09.039
http://doi.org/10.1016/j.compbiomed.2020.103722
http://doi.org/10.1109/TPAMI.2005.159
http://doi.org/10.1016/j.neuron.2015.09.042
http://doi.org/10.1016/j.image.2021.116198
http://doi.org/10.1016/j.neucom.2019.05.106
http://doi.org/10.1038/s41598-020-65384-4
http://doi.org/10.1111/jcap.12346
http://doi.org/10.1038/s41746-020-0227-5
http://doi.org/10.2196/29328

	Introduction 
	Method 
	Results 
	Review Flow 
	Selected Studies of the Systematic Review 

	Discussion 
	Emotion Recognition Studies 
	Video-Based Studies 
	Image-Based Studies 
	Web-Browsing Studies 
	Gaze and Demographic Features Study 
	Movement Imitation Study 
	Virtual Reality (VR) Interaction Study 
	Social Interaction Task (SIT) Study 
	Face-to-Face Conversation Study 

	Limitations 
	Conclusions 
	References

