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Abstract: The optimal power flow (OPF) is a vital tool for optimizing the control parameters of a
power system by considering the desired objective functions subject to system constraints. Meta-
heuristic algorithms have been proven to be well-suited for solving complex optimization problems.
The whale optimization algorithm (WOA) is one of the well-regarded metaheuristics that is widely
used to solve different optimization problems. Despite the use of WOA in different fields of appli-
cation as OPF, its effectiveness is decreased as the dimension size of the test system is increased.
Therefore, in this paper, an effective whale optimization algorithm for solving optimal power flow
problems (EWOA-OPF) is proposed. The main goal of this enhancement is to improve the exploration
ability and maintain a proper balance between the exploration and exploitation of the canonical
WOA. In the proposed algorithm, the movement strategy of whales is enhanced by introducing
two new movement strategies: (1) encircling the prey using Levy motion and (2) searching for prey
using Brownian motion that cooperate with canonical bubble-net attacking. To validate the proposed
EWOA-OPF algorithm, a comparison among six well-known optimization algorithms is established
to solve the OPF problem. All algorithms are used to optimize single- and multi-objective functions
of the OPF under the system constraints. Standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE
118-bus test systems are used to evaluate the proposed EWOA-OPF and comparative algorithms for
solving the OPF problem in diverse power system scale sizes. The comparison of results proves that
the EWOA-OPF is able to solve single- and multi-objective OPF problems with better solutions than
other comparative algorithms.

Keywords: optimization; metaheuristic algorithms; optimal power flow; whale optimization algorithm

1. Introduction

Over the past decades, metaheuristic algorithms (MAs) have become more prevalent in
solving optimization problems in various fields of industry and science [1]. The widespread
usage of MAs for solving different optimization problems verified their ability for solv-
ing complex problems with difficulties such as non-linear constraints, multi-modality
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of the problem, and a non-convex search landscape [1,2]. Metaheuristics are a class of
general-purpose stochastic algorithms that can be applied to any optimization problem [3].
Despite exact algorithms, metaheuristics allow tackling complex problems by providing
satisfactory solutions in a reasonable time [4]. MAs estimate the approximate optimal
solution of the problem by sampling the solution space to find or generate better solutions.
Many combinatorial optimization problems were solved using metaheuristic algorithms
in diverse engineering fields such as civil, mechanical, electrical, industrial, and system
engineering. Several new optimization algorithms have been proposed recently due to
the emergence of the no free lunch (NFL) theorem [5], which states that no particular opti-
mization algorithm can solve all problems of all kinds of complexities. It is also discovered
that using the same algorithm on the same problem yields varied results depending on the
various parameter settings.

The inspiration and imitation of creatures’ behaviors led to many effective metaheuris-
tics to find the optimum solution for different problems. The MAs based on their source of
inspiration can be broadly classified into two main categories: evolutionary and swarm
intelligence algorithms. The algorithms that imitate an evolutionary phenomenon in nature
are classified as evolutionary algorithms. These algorithms improve a randomly generated
population of solutions for a particular optimization problem by employing evolutionary
principles. Genetic algorithm (GA) [6], genetic programming (GP) [7], evolution strategy
(ES) [8], evolutionary programming (EP) [9], and differential evolution (DE) [10] are the
most well-known algorithms in this category. Swarm intelligence algorithms mimic simple
behaviors of social creatures in which the individuals cooperate and interact collectively
to find promising regions. Some of the best known and recently proposed swarm intelli-
gence algorithms are particle swarm optimization (PSO) [11], the bat algorithm (BA) [12],
krill herd (KH) [13], the grey wolf optimizer (GWO) [14], the whale optimization algo-
rithm (WOA) [15], the salp swarm algorithm (SSA) [16], the squirrel search algorithm
(SSA) [17], the African vultures optimization algorithm (AVOA), and the Aquila optimizer
(AO) [18] algorithm.

On the other hand, the optimal power flow (OPF) is a non-linear and non-convex
problem that is considered one of the power system’s complex optimization problems [19].
OPF adjusts both continuous and discrete control variables to optimize specified objective
functions by satisfying the operating constraints [20]. From the perspective of industries
and power companies, minimizing the operational cost and maximizing the reliability
of power systems are two primary objectives. Since a slight modification in power flow
can considerably raise the running expense of power systems, the OPF focuses on the
economic aspect of operating power systems [21]. Non-linear programming [22], Newton
algorithm [23], and quadratic programming [24] are some of the classical optimization
algorithms that have been employed to tackle the OPF problem. Although these algorithms
can sometimes find the global optimum solution, they have some drawbacks such as
getting trapped in local optima, a high sensitivity to initial potions, and the inability to
deal with non-differentiable objective functions [25–27]. Thus, it is essential to develop
effective optimization algorithms to overcome these shortcomings and deal with such
challenges efficiently.

Regarding MA, the whale optimization algorithm (WOA) is a swarm-based algorithm
inspired by the hunting behavior of humpback whales in nature. The humpback whales
use the bubble-net hunting technique to encircle and catch their prey that are in collections
of fishes close to water level. The whales go down the surface and dive into the prey,
then swarm in a spiral-shaped path while they start creating bubbles. The whales’ spiral
movement radius narrows when prey get closer to the surface, enabling them to attack.
WOA consists of three phases: encircling the prey, bubble-net attacking, and searching
for the prey. WOA has been used to solve a wide range of optimization problems in
different applications including feature selection [28], software defect prediction [29],
clustering [30,31], classification [32,33], disease diagnosis [34], image segmentation [35,36],
scheduling [37], forecasting [38,39], parameter estimation [40], global optimization [41], and
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photovoltaic energy generation systems [42,43]. Even though WOA is employed to tackle a
wide variety of optimization problems, it still has flaws such as premature convergence,
the imbalance between exploration and exploitation, and local optima stagnation [44,45].

This paper proposes an effective whale optimization algorithm for solving the optimal
power flow problem (EWOA-OPF). The EWOA-OPF improves the movement strategy of
whales by introducing two new movement strategies: (1) encircling the prey using Levy
motion and (2) searching for prey using Brownian motion that cooperate with canonical
bubble-net attacking. The reason for these changes is to maintain an appropriate balance
between exploration and exploitation and enhance the exploration ability of the WOA,
resulting in more precise solutions when solving problems. To validate the proposed
EWOA-OPF algorithm, a comparison among well-known optimization algorithms is es-
tablished under single- and multi-objective functions of the OPF. Standard IEEE 6-bus,
IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems are used to evaluate the proposed
EWOA-OPF and comparative algorithms for solving OPF problems in diverse power sys-
tem scale sizes. The results were compared with four state-of-the-art algorithms consisting
of particle swarm optimization (PSO) [11], krill herd (KH) [13], the grey wolf optimizer
(GWO) [14], and the whale optimization algorithm (WOA) [15] and two recently proposed
algorithms, the salp swarm algorithm (SSA) [16] and the Aquila optimizer (AO) [18] al-
gorithm. The comparison of results proves that the EWOA-OPF can solve single- and
multi-objective OPF problems with better solutions than other comparative algorithms.

The rest of the paper is organized as follows: the related works are reviewed in
Section 2. Section 3 presents the OPF problem formulation and objective functions. Section 4
contains the mathematical model of WOA. Section 5 presents the proposed EWOA-OPF.
The experimental evaluation of EWOA-OPF and comparative algorithms on OPF is pre-
sented in Section 6. Finally, the conclusion and future work are given in Section 7.

2. Related Work

The purpose of optimization is to find the global optimum solution among numerous
candidate solutions. Traditional optimization methods have several drawbacks when
solving complex and complicated problems that require considerable time and cost op-
timization. Metaheuristic algorithms have been proven capable of handling a variety of
continuous and discrete optimization problems [46] in a wide range of applications in-
cluding engineering [47–49], industry [50,51], image processing and segmentation [52–54],
scheduling [55,56], photovoltaic modeling [57,58], optimal power flow [59,60], power
and energy management [61,62], planning and routing problems [63–65], intrusion detec-
tion [66,67], feature selection [68–72], spam detection [73,74], medical diagnosis [75–77],
quality monitoring [78], community detection [79], and global optimization [80–82]. In
the following, some representative metaheuristic algorithms from the swarm intelligence
category used in our experiments are described. Then, some metaheuristic algorithms were
used to solve OPF are highlighted.

Swarm intelligence algorithms mimic the collective behavior of creatures in nature
such as birds, fishes, wolves, and ants. The main principle of these algorithms is to deal
with a population of particles that can interact with each other. Eberhart and Kennedy
proposed the particle swarm optimization (PSO) [11] method, which simulates bird flocks’
foraging and navigation behavior. It is derived from basic laws of interaction amongst
birds, which prefer to retain their flight direction considering their current direction, the
local best position gained so far, and the global best position that the swarm has discovered
thus far. The PSO algorithm concurrently directs the particles to the best optimum solutions
by each individual and the swarm. The krill herd (KH) [13] algorithm is a population-based
metaheuristic algorithm based on the krill individual herding behavior modeling. The KH
algorithm repeats the three motions and searches in the same direction until it finds the
optimum answer. Other krill-induced movements, foraging activity, and random diffusion
all have an impact on the position.
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Another well-known swarm intelligence algorithm is the grey wolf optimizer (GWO) [14],
which is inspired by grey wolves in nature that look for the best approach to pursue prey.
In nature, the GWO algorithm uses the same method, following the pack hierarchy to
organize the wolves’ pack’s various responsibilities. GWO divides pack members into
four divisions depending on each wolf’s involvement in the hunting process. The four
groups are alpha, beta, delta, and omega, with alpha being the finest hunting solution
yet discovered. The salp swarm algorithm (SSA) [16] is another recent optimizer that is
based on natural salp swarm behavior. As a result, it creates and develops a set of random
individuals within the problem’s search space. Following that, the chain’s leader and
followers must update their location vectors. The leader salp will assault in the direction of
a food supply, while the rest of the salps can advance towards it. The Aquila optimizer
(AO) [18] is one of the latest proposed algorithms in the swarm intelligence category that
simulates the prey-catching behavior of Aquila in nature. In AO, four methods were used
to emulate this behavior consisting of selecting the search space by a high soar with a
vertical stoop, exploring within a diverge search space by contour flight with short glide
attack, exploiting within a converge search space by low flight with slow descent attack,
and swooping by walk and grab prey.

Regardless of the nature of the algorithm, the majority of the metaheuristics, especially
the population-based algorithms, have two standard contrary criteria in the search process:
the exploration of the search space and the exploitation of the gained best solutions. In
exploitation, the promising regions are explored more thoroughly for generating similar
solutions to improve the previously obtained solution. In exploration, non-explored regions
must be visited to be sure that all regions of the search space are evenly explored and that the
search is not only limited to a reduced number of regions. Excessive exploitation decreases
diversity and leads to premature convergence, whereas excessive exploration leads to
gradual convergence [83]. Thus, metaheuristic algorithms try to balance between the
exploration and exploitation that has a crucial impact on the performance of the algorithm
and the gained solution [84]. Furthermore, real-world problems require achieving several
objectives that are in conflict with one another such as minimizing risks, maximizing
reliability, and minimizing cost. There is only one objective function to be optimized and
only one global solution to be found in a single-objective problem. However, in multi-
objective problems, as there is no single best solution, the aim is to find a set of solutions
representing the trade-offs among the different objectives [85].

Although metaheuristic algorithms have several merits over classical optimization
algorithms, such as the simple structure, independence to the problem, the gradient-free
nature, and finding near-global solutions [14], they may encounter premature convergence,
local optima entrapment, and the loss of diversity. In this regard, improved variants of these
algorithms have been proposed, each of which adapted to tackle such weaknesses [86–88].
Additionally, the significant growth of metaheuristic algorithms has resulted in a trend
of solving OPF problems by using population-based metaheuristic algorithms. In the
literature, the OPF was solved by using black hole (BO) [89], teaching–learning based
optimization (TLBO) [90] algorithms, the krill herd (KH) algorithm [91], the equilibrium
optimizer (EO) algorithm [92], and the slime mould algorithm (SMA) [93]. Additionally,
some studies used the modified and enhanced version of the canonical swarm intelligence
algorithms for solving OPF with different test systems such as the modified shuffle frog
leaping algorithm (MSLFA) for multi-objective optimal power flow [94] that added a
mutation strategy to overcome the problem of being trapped in local optima.

Another work proposed an improved grey wolf optimizer (I-GWO) [95] to improve the
GWO search strategy with a dimension learning-based hunting search strategy to deal with
exploration and exploitation imbalances and premature convergence weaknesses. In [96],
quasi-oppositional teaching–learning based optimization (QOTLBO) proposed to improve
the convergence speed and quality of obtained solutions by using quasi-oppositional
based learning (QOBL). In [97], particle swarm optimization with an aging leader and
challengers (ALC-PSO) algorithm was applied to solve the OPF problem by using the
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concept of the leader’s age and lifespan. The aging mechanism can avoid the premature
convergence of PSO and result in better convergence. An improved artificial bee colony
optimization algorithm was based on orthogonal learning (IABC) [98] to adjust exploration
and exploitation. In [99], the modified sine–cosine algorithm (MSCA) was aimed to reduce
the computational time with sufficient improvement in finding the optimal solution and
feasibility. The MSCA benefits from using Levy flights cooperated by the strategy of the
canonical sine–cosine algorithm to avoid local optima. In the high-performance social
spider optimization algorithm (NISSO) [100], the canonical SSO algorithm was modified
by using two new movement strategies that resulted in faster convergence to the optimal
solution and finding better solutions in comparison to comparative algorithms.

3. OPF Problem Formulation and Objective Functions

The optimal power flow (OPF) is regarded as a fundamental tool for the effective
design and operation of the power networks. The main aim of OPF is to find the optimum
values of control variables for different objective functions while satisfying the system
equality and inequality constraints within the permitted boundaries. The mathematical
formulation and description of OPF single- and multi-objective functions are presented in
detail as follows.

3.1. OPF Problem Formulation

The OPF is a non-linear and non-convex optimization problem that aims to find the
best set of the power system’s control variables and satisfy the desired objective function.
The OPF problem is mathematically formulated [101] as shown in Equation (1):

Min F(x, u)
Subject to : g(x, u) = 0,
h(x, u) ≤ 0,

(1)

where F is the objective function to be minimized, x is the vector of dependent (state)
variables, u is the vector of independent (control) variables, and g and h represent equality
and inequality constraints, respectively. Accordingly, vector x, which consists of slack bus
power PG1, load bus voltage VL, generator reactive power output QG, and transmission
line loading Sl, is presented by Equation (2),

x = [PG1, VL1, . . . , VLNL, QG1, . . . , QGNG, Sl1, . . . , SlNTL] (2)

where NL, NG, and NTL are the number of load buses, number of generators, and number of
transmission lines, respectively. u is the vector of control variables, consisting of generator
active power outputs PG (except at the slack bus PG1), generator voltages VG, transformer
tap settings T, and shunt VAR compensations QC, which is presented as Equation (3),

u = [PG2, . . . , PGNG, VG1, . . . , VGNG, T1, . . . , TNT , QC1, . . . , QCNC] (3)

where NT and NC are the number of the regulating transformer and VAR compensator
units, respectively.
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3.2. OPF Objective Functions

In this paper, two objectives are considered to deal with the OPF problem: an eco-
nomical issue, the total fuel cost minimization of power generation, and a technical issue,
which is a voltage profile improvement.

Case 1: Total fuel cost minimization.

The total fuel cost minimization is considered as the single-objective function for the
OPF problem, which is a quadratic function of real power generations of generators in a
system. The minimization of the overall fuel cost of a power generator is considered and
calculated by Equation (4),

f1 =
NG

∑
i=1

fi(PGi) =
NG

∑
i=1

(ai + bi PGi + ci P2
Gi) (4)

where ai, bi, and ci are the cost coefficients of the i-th generator. For PGi (in MW), ai, bi, and
ci are considered in $/hr, $/MWh, and S/MW2h. The voltages of all load buses are limited
in the range of 0.95 to 1.05 p.u.

Case 2: Voltage profile improvement.

The purpose of this multi-objective function is to minimize the fuel cost and improve
the voltage profile by minimizing the load bus voltage deviations from 1.0 p.u. The
objective function is calculated as shown in Equation (5),

f2 =
NG

∑
i=1

(ai + bi PGi + ci P2
Gi) + Wv

NL

∑
i=1
|Vi − 1.0| (5)

where the weighting factor Wv = 200. Notice that Equation (5) merges two objectives with
a weight in a single equation to properly handle the multi-objective problem.

4. The Whale Optimization Algorithm (WOA)

The whale optimization algorithm (WOA) [15] is inspired by the hunting behavior
used by humpback whales in nature. The humpback whales use the bubble-net hunting
technique to encircle and catch their prey that are in groups of small fishes. In WOA,
the best whale position is considered as prey position X* and the other whales update
their position according to the X*. In WOA, three behaviors of whales are encircling prey,
bubble-net attacking (exploitation), and searching for prey (exploration), modeled as in the
following definitions.

Encircling prey: The first step in the whales’ hunting process is surrounding the prey.
Whales can detect the position of the prey and begin to surround them. Therefore, in WOA,
the current best whale X* is considered as prey or being close to the prey. All other whales
update their position according to the X* by Equations (6) and (7):

D = |C× X∗(t)− X(t)| (6)

X(t + 1) = X∗(t)− A× D (7)

where t is the iteration counter and D is the calculated distance between the prey X*(t) and
the whale X(t). A and C are coefficient vectors that are calculated by Equations (8) and (9):

A = 2× a× r− a(t) (8)

C = 2× r (9)

where the value of a is linearly decreased from 2 to 0 over the course of the iterations, and r
is a random number in [0, 1].
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Bubble-net attacking: Whales spin around the prey within a shrinking encircling
technique or spiral updating position. This behavior is modeled by Equation (10),

X(t + 1) =
{

X∗(t)− A× D i f p < 0.5
D′ × ebl × cos(2× π × l) + X∗(t) i f p ≥ 0.5

(10)

where p is a random number in [0,1] and shows the probability of updating whales’
positions based on a shrinking encircling technique (if p < 0.5) or a spiral updating position
(if p > 0.5). A is a random value in [−a, a] where a is linearly decreased from 2 to 0 over
the course of the iterations. In the spiral updating position, D’ represents the distance
between the current whale X and the prey X*, b represents a constant used to define the
spiral movement shape, and l is a random number in [−1, 1].

Searching for prey: In order to find new prey, whales conduct a global search through
the search space. This is completed when the absolute value of vector A value is greater
or equal to 1, and it will be an exploration, else it will be exploitation. In the exploration
phase, the whales update their position concerning a random whale Xrand instead of the
best whale X*, which is calculated using Equations (11) and (12):

D = |C× Xrand − X(t)| (11)

X(t + 1) = Xrand − A× D (12)

where Xrand is a randomly selected whale from the current population.

5. Effective Whale Optimization Algorithm to Solve Optimal Power Flow
(EWOA-OPF)

While WOA is easy to implement and applicable for solving a wide range of optimiza-
tion problems, it has insufficient performance to solve complex problems. The algorithm
suffers from premature convergence to local optima and an insufficient balance between
exploration and exploitation. Such problems lead to inadequate performance of the WOA
when used to solve complex problems. Motivated by these considerations, an enhanced
version of the WOA algorithm named the effective whale optimization algorithm (EWOA-
OPF) is proposed for solving the optimal power flow problem. Since maintaining an
appropriate balance between exploration and exploitation can prevent premature conver-
gence and control the global search ability of the algorithm, the canonical WOA’s strategies,
encircling the prey and searching for prey, are replaced by two new movement strategies.
This modification aims to enhance the exploitative and explorative capabilities of WOA
which leads to obtaining accurate solutions when solving problems. In the following, the
proposed EWOA-OPF is explained in detail.

Initializing step: N whales are randomly generated and distributed in the search
space within the predefined range [LB, UB] using Equation (13).

Xi,j(t) = LBj + (UBj − LBj)× rand(0, 1) (13)

where Xij is the position of the i-th whale in the j-th dimension, LBj and UBj are the lower
and upper bound of the j-th dimension, and the rand is a uniformly distributed random
variable between 0 and 1, respectively. The fitness value of whale Xi in the t-th iteration is
calculated by the fitness function f (Xi (t)), and the whale with better fitness is considered
as X*, which is the best solution obtained.

Encircling prey using Levy motion: Whales update their position by considering the
position of X* and the Levy-based pace scale PSL by Equation (14),

Xi,j(t + 1) = X∗j (t) + 0.5× C× PSL
i,j (14)
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where Xj*(t) is the j-th dimension of the best whale, C is a linearly decreased coefficient
from 1 to 0 over the course of iterations, and PSL

i,j is the j-th dimension of the i-th row of
pace scale calculated by Equation (15).

PSL
i,j = ML

i,j × (Xj
∗(t)×ML

i,j − Xi,j(t)) (15)

ML
i,j is a randomly generated number based on Levy movement, which is calculated

by Equation (16),

M =
u

|v|1/β
× 0.05 (16)

where u and v follow the Gaussian distribution which is calculated by Equations (17) and (18),

u ∼ (0, σ2
u) , v ∼ (0, σ2

v ) (17)

σu =

[
Γ(1 + β)× sin(πβ/2)

Γ((1 + β)/2)× β× 2β−1/2

]1/β

, σv = 1 (18)

where Γ is a Gamma function and β = 1.5.
Bubble-net attacking: Whales spin around the prey within a shrinking encircling

technique and spiral updating position. This behavior is as same as canonical WOA and
calculated by Equations (19) and (20),

D′ = |X∗(t)− X(t)| (19)

Xi,j(t + 1) = D′ × ebl × cos(2× π × l) + Xj
∗(t) (20)

where D’ is the distance between the current whale X and the prey X*, b represents a
constant used to define the spiral movement shape by the whales, and l is a random
number in [−1, 1].

Searching for prey using Brownian motion: Whales update their position by consid-
ering the position of X* and the Brownian-based pace scale PSB by Equation (21),

Xi,j(t + 1) = Xi,j(t) + A× rand× PSB
i,j (21)

where A is a decreasing coefficient calculated by Equation (8), rand is a random number,
and PSB is Brownian-based pace scale which is calculated by Equation (22),

PSB
i,j = MB

i,j × (Xj
∗(t)−MB

i,j × Xi,j(t)) (22)

where MB
i,j is a random number based on normal distribution representing the Brownian motion.

After determining the new position of the whales, their fitness is calculated and the
prey position X* is updated. The search process is iterated until the predefined number of
iterations (MaxIter) is reached. The pseudo-code of the proposed EWOA-OPF is shown
in Algorithm 1.
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Algorithm 1 The EWOA-OPF algorithm

Input: N, D, MaxIter
Output: The global optimum (X*)

1: Begin
2: iter = 1.
3: Randomly distribute N whales in the search space.
4: Evaluating the fitness and set X*.
5: While iter ≤MaxIter
6: For i = 1: N
7: Caculating coefficients a, A, C, and l.
8: For j = 1: D
9: If (p < 0.5)
10: If (|A| < 1)
11: stepsizei,j = ML

i,j × (ML
i,j × Xj

∗(t)− Xi,j(t))
12: Xi,j(t + 1) = Xj

∗(t) + 0.5× C× stepsizei,j
13: Elseif (|A| ≥ 1) and (iter < MaxIter/3)
14: stepsizei,j = MB

i,j × (Xj
∗(t)−MB

i,j × Xi,j(t))
15: Xi,j(t + 1) = Xi,j(t) + A× rand× stepsizei,j
16: End if
17: Elseif (p > 0.5)
18: D′ = |X∗(t)− X(t)|
19: Xi,j(t + 1) = D′ × ebl × cos(2× π × l) + Xj

∗(t)
20: End if
21: End for
22: End for
23: Evaluating fitness and update X*.
24: iter = iter + 1.
25: End while
26: Return the global optimum (X*).
27: End

6. Experimental Evaluation

In this section, the performance evaluation of the proposed EWOA-OPF was assessed
over two cases based on three IEEE bus systems. The obtained results are compared with
four state-of-the-art algorithms consisting of particle swarm optimization (PSO) [11], krill
herd (KH) [13], the grey wolf optimizer (GWO) [14], the whale optimization algorithm
(WOA) [15], and two recently proposed algorithms, the salp swarm algorithm (SSA) [16]
and the Aquila optimizer (AO) [18] algorithm.

6.1. Experimental Environment

The performance of the proposed EWOA-OPF was evaluated using the IEEE 6-bus,
IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems and the gained results were
compared with six state-of-the-art and recently proposed swarm intelligence algorithms.
The proposed algorithm and all the comparative algorithms implemented in MATLA
R2018a and all the experiments were run on a CPU, Intel Core(TM) i7-6500U 2.50 GHz and
16.00 GB RAM. The parameters of the comparative algorithms in all experiments were the
same as the recommended settings in their original works, as shown in Table 1.
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Table 1. Parameter settings.

Algorithms Parameters Value

PSO c1 = c2 = 2
KH Vf = 0.02, Dmax = 0.005, Nmax = 0.01

GWO a was linearly decreased from 2 to 0
WOA a = [20], b = 1
SSA c1, c2, c3 = rand [0, 1]
AO α = 0.1

The algorithms were run 20 times in all experiments, and the population size (N) and
the maximum number of iterations (MaxIter) were set to 50 and 200, respectively. The
experimental results are reported based on the optimal values of decision variables (DVs)
and objective variables for each bus system in Tables 2–9. Moreover, the last three rows of
each table indicate the total cost ($/h), power losses (MW), and voltage deviation (p.u.) of
each algorithm for Case 1 and Case 2.

6.2. IEEE 6-Bus Test System

This test system contains seven control variables: two generator voltages, two trans-
formers tap changing, two VAR shunt injection capacitances, and one active generator
power of the PV bus, as shown in Figure 1.
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The obtained optimal value of design variables and the optimized value of the total
fuel cost of the system under Case 1 and Case 2 are shown in Tables 2 and 3. Additionally,
the convergence curves of the obtained fitness for all algorithms are illustrated in Figure 2.
It is seen that the total fuel cost decreased to 403.536 ($/h) by WOA and EWOA-OPF. It can
be seen that the OPF results in Case 2 obtained by both WOA and EWOA-OPF are better
than other algorithms in terms of the total cost.

Table 2. Results of OPF for IEEE 6-bus test system on Case 1.

DVs PSO KH GWO WOA SSA AO EWOA-OPF

PG2 (MW) 100.000 100.000 100.000 100.000 100.000 100.000 100.000

VG1 (p.u.) 1.100 1.100 1.100 1.100 1.100 1.100 1.100

VG2 (p.u.) 1.150 1.150 1.150 1.150 1.150 1.150 1.150

T(6-5) (p.u.) 0.936 0.936 0.932 0.935 0.923 0.930 0.935

T(4-3) (p.u.) 1.023 1.023 1.025 1.024 0.975 1.026 1.024

QC4 (MVAR) 5.000 5.000 5.000 5.000 5.000 5.000 5.000

QC6 (MVAR) 5.500 5.500 5.500 5.500 5.499 5.500 5.500

Cost ($/h) 403.537 403.536 403.548 403.536 404.011 403.555 403.536

Ploss (MW) 19.581 19.581 19.583 19.581 19.579 19.584 19.581

VD (p.u.) 0.160 0.160 0.160 0.160 0.139 0.161 0.160



Electronics 2021, 10, 2975 11 of 23

Table 3. Results of OPF for IEEE 6-bus test system on Case 2.

DVs PSO KH GWO WOA SSA AO EWOA-OPF

PG2 (MW) 100.000 100.000 100.000 100.000 99.973 100.000 100.000

VG1 (p.u.) 1.100 1.100 1.100 1.100 1.100 1.100 1.100

VG2 (p.u.) 1.150 1.150 1.150 1.150 1.150 1.150 1.150

T(6-5) (p.u.) 0.900 0.910 0.909 0.905 0.931 0.901 0.905

T(4-3) (p.u.) 0.927 0.928 0.928 0.927 0.931 0.928 0.927

QC4 (MVAR) 5.000 5.000 5.000 5.000 4.768 5.000 5.000

QC6 (MVAR) 5.500 5.500 5.500 5.500 5.468 5.500 5.500

Cost ($/h) 405.372 405.221 405.241 405.294 405.230 405.291 405.291

Ploss (MW) 19.749 19.737 19.739 19.743 19.744 19.739 19.742

VD (p.u.) 0.119 0.120 0.120 0.120 0.123 0.120 0.120
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losses, and convergence times of the system are given in Tables 4 and 5 on Case 1 and 
Case 2 to make an effective comparison. Furthermore, the convergence of the obtained 
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6.3. IEEE 14-Bus Test System

The IEEE 14-bus test system is shown in Figure 3, and contains five generation (PV)
buses, while nine of those are defined as load (PQ) buses. The detailed results of the
objective functions, active and reactive power outputs of generator units, transmission
losses, and convergence times of the system are given in Tables 4 and 5 on Case 1 and
Case 2 to make an effective comparison. Furthermore, the convergence of the obtained
fitness of OPF for EWOA-OPF and comparative algorithms on the IEEE 14 bus standard test
system over the curse of iterations is shown in Figure 4. The objective function values for
EWOA-OPF are reported as 8079.957 and 8083.308 ($/h). It is evident that the EWOA-OPF
provides smaller values in terms of the total generation cost of generator units than those
found by other comparative algorithms.
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Table 4. Results of OPF for IEEE 14-bus test system on Case 1.

DVs PSO KH GWO WOA SSA AO EWOA-OPF

PG1 (MW) 200.444 190.585 189.364 192.574 165.346 176.495 194.278

PG2 (MW) 38.368 34.751 36.963 35.516 40.454 28.778 36.792

PG3 (MW) 30.257 27.412 39.238 24.781 28.221 0.000 27.728

PG6 (MW) 0.000 0.000 1.578 9.155 13.213 30.517 0.000

PG8 (MW) 0.000 15.510 0.707 6.267 19.744 33.309 9.458

VG1 (p.u.) 1.060 1.043 1.060 1.060 1.010 1.004 1.060

VG2 (p.u.) 1.040 1.022 1.040 1.039 0.989 0.982 1.039

VG3 (p.u.) 1.025 1.008 1.017 1.004 0.962 0.940 1.015

VG6 (p.u.) 1.060 1.013 1.023 0.989 1.031 1.002 1.032

VG8 (p.u.) 1.051 1.006 1.010 1.026 1.018 0.964 1.058

T11(4-7) (p.u.) 1.100 1.035 1.054 1.059 0.964 0.906 1.002

T12(4-9) (p.u.) 0.900 1.006 0.944 0.959 0.912 0.900 0.992

T15(5-6) (p.u.) 0.900 0.984 0.981 1.059 0.945 0.900 0.999

QC14 (MVAR) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cost ($/h) 8092.50 8098.36 8087.42 8088.39 8162.26 8226.31 8079.95

Ploss (MW) 10.069 9.258 8.850 9.294 7.978 10.098 9.257

VD (p.u.) 0.230 0.098 0.074 0.180 0.147 0.217 0.176

Table 5. Results of OPF for IEEE 14-bus test system on Case 2.

DVs PSO KH GWO WOA SSA AO EWOA-OPF

PG1 (MW) 195.560 196.470 193.469 189.118 151.588 164.584 193.418

PG2 (MW) 37.863 32.263 33.460 34.115 45.758 23.093 36.460

PG3 (MW) 34.532 20.336 22.762 12.144 50.542 10.586 27.568

PG6 (MW) 0.000 1.635 12.138 3.029 0.200 21.020 0.000

PG8 (MW) 0.721 18.172 6.535 29.705 17.394 47.251 10.805

VG1 (p.u.) 1.060 1.041 1.060 1.060 1.050 1.040 1.060

VG2 (p.u.) 1.043 1.019 1.038 1.040 1.032 1.016 1.040

VG3 (p.u.) 1.023 1.000 1.010 1.013 1.008 1.000 1.011

VG6 (p.u.) 1.046 0.973 1.020 1.016 1.013 0.973 1.016

VG8 (p.u.) 1.017 0.986 1.020 0.991 1.014 1.035 0.995

T11(4-7) (p.u.) 1.061 1.006 1.037 1.024 0.957 0.993 1.012

T12(4-9) (p.u.) 0.900 0.996 0.968 0.937 1.040 1.041 0.942

T15(5-6) (p.u.) 0.900 1.003 0.968 1.000 0.950 1.002 1.003

QC14 (MVAR) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cost ($/h) 8094.47 8109.03 8093.55 8100.08 8213.16 8234.582 8083.30

Ploss (MW) 9.675 9.876 9.364 9.111 6.482 7.534 9.250

VD (p.u.) 0.136 0.276 0.063 0.069 0.055 0.216 0.059
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6–10, 4–12, and 27–28, and nine shunt VAR compensation buses. The lower and upper 
bounds of the transformer tap are set to 0.9 and 1.1 p.u. The minimum and maximum 
values of the shunt VAR compensations are 0.0 and 0.05 p.u. The lower and upper limit 
values of the voltages for all generator buses are set to be 0.95 and 1.1 p.u. The optimal 
settings of control variables, total fuel cost, power loss, and voltage deviations for Cases 1 
and 2 are shown in Tables 6 and 7. The variation of the gained fitness are illustrated in 
Figure 6 for all algorithms under both cases. In Case 1, it is observed that the system total 
fuel cost is greatly reduced as an initial state to 799.210 ($/h) using EWOA-OPF. In Case 
2, a comparison demonstrates the superiority of EWOA-OPF to achieve a better solution 
with a total fuel cost of 805.545 ($/h). 
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6.4. IEEE 30-Bus Test System

The single line diagram of the IEEE 30-bus test system is shown in Figure 5. The system
consists of six generators at buses 1, 2, 5, 8, 11, and 13, four transformers in lines 6–9, 6–10,
4–12, and 27–28, and nine shunt VAR compensation buses. The lower and upper bounds
of the transformer tap are set to 0.9 and 1.1 p.u. The minimum and maximum values of
the shunt VAR compensations are 0.0 and 0.05 p.u. The lower and upper limit values of
the voltages for all generator buses are set to be 0.95 and 1.1 p.u. The optimal settings
of control variables, total fuel cost, power loss, and voltage deviations for Cases 1 and 2
are shown in Tables 6 and 7. The variation of the gained fitness are illustrated in Figure 6
for all algorithms under both cases. In Case 1, it is observed that the system total fuel
cost is greatly reduced as an initial state to 799.210 ($/h) using EWOA-OPF. In Case 2, a
comparison demonstrates the superiority of EWOA-OPF to achieve a better solution with
a total fuel cost of 805.545 ($/h).
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Table 6. Results of OPF for IEEE 30-bus test system on Case 1.

DVs PSO KH GWO WOA SSA AO EWOA-OPF

PG1 (MW) 186.001 178.261 177.251 178.805 165.059 166.312 176.804

PG2 (MW) 48.821 47.974 46.115 43.572 44.385 52.911 48.745

PG5 (MW) 15.000 21.483 19.094 23.058 24.002 21.586 21.437

PG8 (MW) 20.839 20.924 17.184 20.004 24.540 26.316 20.911

PG11 (MW) 10.000 12.219 16.178 14.994 15.025 13.957 12.128

PG13 (MW) 13.459 12.000 16.839 12.000 18.323 12.000 12.019

VG1 (p.u.) 1.072 1.076 1.079 1.079 1.092 1.100 1.100

VG2 (p.u.) 1.043 1.056 1.058 1.059 1.075 1.057 1.088

VG5 (p.u.) 1.007 1.025 1.027 1.035 1.046 0.992 1.061

VG8 (p.u.) 1.032 1.021 1.033 1.035 1.049 0.999 1.070

VG11 (p.u.) 0.957 1.065 1.074 1.063 1.083 1.078 1.100

VG13 (p.u.) 1.100 1.029 1.059 1.038 1.059 1.039 1.100

T11(6-9) (p.u.) 1.100 1.010 0.968 1.019 1.029 1.036 0.994

T12(6-10)
(p.u.) 0.900 1.020 0.990 0.994 0.977 0.996 0.989

T15(4-12)
(p.u.) 1.037 0.966 1.007 1.021 1.066 1.100 1.015

T36(28-27)
(p.u.) 0.944 1.013 0.970 1.015 1.012 0.971 0.973

QC10 (MVAR) 5.000 2.098 0.114 2.201 1.809 5.000 0.355

QC12 (MVAR) 5.000 2.686 1.602 3.965 1.774 0.306 1.092

QC15 (MVAR) 0.000 1.990 0.753 3.562 2.577 5.000 0.178

QC17 (MVAR) 0.000 2.639 1.501 4.597 2.819 0.000 5.000

QC20 (MVAR) 0.286 2.062 1.204 5.000 2.551 0.000 4.978

QC21 (MVAR) 4.994 1.934 0.049 1.875 1.371 0.000 5.000

QC23 (MVAR) 1.436 2.966 3.517 5.000 2.673 0.000 5.000

QC24 (MVAR) 0.000 2.348 1.191 5.000 3.279 5.000 4.999

QC29 (MVAR) 5.000 2.732 0.583 4.735 4.040 0.242 0.788

Cost ($/h) 806.703 801.885 803.112 801.817 803.305 806.287 799.210

Ploss (MW) 10.720 9.460 9.261 9.033 7.935 9.682 8.643

VD (p.u.) 0.463 0.353 0.517 0.468 0.600 0.456 1.526

Table 7. Results of OPF for IEEE 30-bus test system on Case 2.

DVs PSO KH GWO WOA SSA AO EWOA-OPF

PG1 (MW) 193.906 159.718 145.215 176.996 159.796 183.686 176.804

PG2 (MW) 42.785 53.259 58.991 39.732 40.416 36.729 48.745

PG5 (MW) 15.889 20.452 26.123 23.435 29.202 20.718 21.437

PG8 (MW) 10.000 24.105 30.949 17.597 26.431 13.352 20.911

PG11 (MW) 10.830 21.550 14.851 18.724 16.173 11.677 12.128

PG13 (MW) 21.888 13.099 15.191 16.712 19.497 27.878 12.019

VG1 (p.u.) 1.022 1.036 1.049 1.027 1.048 1.064 1.100

VG2 (p.u.) 1.000 1.022 1.033 1.014 1.033 1.039 1.088

VG5 (p.u.) 0.988 1.011 1.020 1.004 0.998 1.012 1.061

VG8 (p.u.) 0.996 1.006 1.000 1.012 1.009 0.977 1.070
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Table 7. Cont.

DVs PSO KH GWO WOA SSA AO EWOA-OPF

VG11 (p.u.) 1.090 1.019 1.010 1.053 1.039 1.100 1.100

VG13 (p.u.) 1.074 1.024 1.003 1.010 0.995 0.996 1.100

T11(6-9) (p.u.) 1.033 0.972 0.997 0.981 1.015 0.944 0.994

T12(6-10)
(p.u.) 0.900 0.964 0.913 0.944 0.928 0.983 0.989

T15(4-12)
(p.u.) 1.089 0.987 0.948 0.986 0.933 0.968 1.015

T36(28-27)
(p.u.) 0.923 0.949 0.958 0.957 0.959 0.974 0.973

QC10 (MVAR) 5.000 2.217 1.967 0.357 3.498 0.742 0.355

QC12 (MVAR) 0.000 2.640 1.557 0.584 2.436 1.777 1.092

QC15 (MVAR) 5.000 2.362 4.142 3.343 2.599 0.495 0.178

QC17 (MVAR) 5.000 3.897 2.464 4.523 1.632 0.000 5.000

QC20 (MVAR) 0.071 2.093 2.620 3.869 2.186 0.038 4.978

QC21 (MVAR) 0.000 2.875 4.097 0.603 1.961 1.792 5.000

QC23 (MVAR) 0.000 3.119 1.089 2.762 2.245 4.221 5.000

QC24 (MVAR) 0.000 5.000 4.178 2.537 2.451 0.080 4.999

QC29 (MVAR) 0.000 2.500 4.387 2.130 2.307 5.000 0.788

Cost ($/h) 813.781 807.572 812.395 808.216 811.942 815.714 805.545

Ploss (MW) 11.897 8.784 7.920 9.796 8.116 10.641 9.963

VD (p.u.) 0.211 0.157 0.146 0.159 0.163 0.289 0.126
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6.5. IEEE 118-Bus Test System

The IEEE 118-bus test system is used to evaluate the efficiency of the proposed EWOA-
OPF in solving a larger power system. As shown in Figure 7, this bus test system has
54 generators, 186 branches, 9 transformers, 2 reactors, and 12 capacitors. It has 129 control
variables considered for 54 generator active powers and bus voltages, 9 transformer tap
settings, and 12 shunt capacitor reactive power injections. All buses have voltage limitations
between 0.94 and 1.06 p.u. Within the range of 0.90–1.10 p.u., the transformer tap settings
are evaluated. Shunt capacitors have available reactive powers ranging from 0 to 30 MVAR.
Because of having too many design variables for Cases 1 and 2 in this experiment, the
detailed results are shown in Tables A1 and A2 in the Appendix A and the final results
are compared in Tables 8 and 9. The convergence curves of the obtained fitness for all
algorithms is also illustrated in Figure 8.
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Table 8. Final results of OPF for IEEE 118-bus test system on Case 1.

Final Results PSO KH GWO WOA SSA AO EWOA-OPF

Cost ($/h) 151,751.61 155,696.34 145,902.97 144,856.49 150,655.22 159,974.6 142,756.67

Ploss (MW) 114.431 188.555 135.040 76.802 77.663 71.23298 78.865

VD (p.u.) 2.953 1.579 2.217 0.405 0.804 4.251571 2.816

Table 9. Final results of OPF for IEEE 118-bus test system on Case 2.

Final Results PSO KH GWO WOA SSA AO EWOA-OPF

Cost ($/h) 163,613.92 155,696.40 153,293.89 145,078.86 152,484.28 164,684.39 140,175.80

Ploss (MW) 242.265 188.555 88.693 77.031 77.139 60.940 79.990

VD (p.u.) 3.059 1.579 1.082 0.668 0.902 3.997 1.625
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In Case 1 of this experiment, the comparison of results tabulated in Table 8 reveals
that the proposed EWOA-OPF has the ability to converge to a better-quality solution. The
total fuel cost obtained by EWOA-OPF is reduced to 142,756.67 $/h, which is less than the
canonical WOA and other comparative algorithms. Table 9 compares solutions found by
EWOA-OPF and other algorithms for Case 2. In this case, numerical results confirm the
superiority of EWOA-OPF where it reaches the minimum fuel cost 140,175.80 $/h. The
final results demonstrate that the proposed EWOA-OPF algorithm can be effectively used
to solve both single- and multi-objective large-scale OPF problems.

7. Conclusions and Future Work

This paper proposes an effective whale optimization algorithm for solving optimal
power flow problems (EWOA-OPF). The OPF is a non-linear and non-convex problem
that is considered a vital tool for the effective design and operation of power systems.
Despite the applicability of the whale optimization algorithm (WOA) in solving complex
problems, its performance is degraded when the dimension size of the OPF’s test system
is increased. In this regard, the movement strategy of whales is modified by introducing
two new movement strategies: (1) encircling the prey using Levy motion and (2) searching
for prey using Brownian motion that cooperate with canonical bubble-net attacking. The
main purpose of EWOA-OPF is to improve explorative capability and maintain a proper
balance between the exploration and exploitation of the canonical WOA. The effectiveness
and scalability of the proposed EWOA-OPF algorithm were experimentally evaluated
using standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems to
optimize single- and multi-objective functions of the OPF under the system constraints. To
validate the gained results, a comparison among six well-known optimization algorithms
is established. The comparison of results proves that the EWOA-OPF can solve single- and
multi-objective OPF problems with better solutions than other comparative algorithms as
well as large-dimensional OPF problems. In future work, the EWOA-OPF can be used to
solve many-objective (more than three objective functions) OPF problems.
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Appendix A

The detailed results for Cases 1 and 2 on the IEEE-118 bus test system including the
decision variables (DVs) value and the final results of the total fuel cost (cost), power losses
(ploss), and voltage deviation (VD) are shown in Tables A1 and A2.
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Table A1. Results of OPF for IEEE 118-bus test system on Case 1.

DVs PSO KH GWO WOA SSA AO EWOA-
OPF DVs PSO KH GWO WOA SSA AO EWOA-

OPF DVs PSO KH GWO WOA SSA AO EWOA-
OPF

PG01 100.00 63.99 44.15 31.56 47.96 67.99 92.15 PG100 352.00 277.31 78.86 227.12 137.06 199.90 40.18 VG74 1.06 0.99 0.96 1.00 0.99 0.94 0.95
PG04 100.00 43.12 67.03 10.67 34.94 71.84 4.28 PG103 0.00 92.19 79.06 28.51 60.60 115.30 28.36 VG76 1.06 1.03 0.98 1.00 0.99 0.94 0.94
PG06 0.00 83.32 51.47 79.00 37.76 63.04 0.00 PG104 0.00 85.66 32.21 4.08 61.88 79.44 94.42 VG77 1.06 0.97 0.97 1.01 0.99 0.94 0.97
PG08 0.00 21.41 66.11 19.28 46.89 38.21 53.00 PG105 0.00 28.18 19.40 74.60 43.01 91.47 19.71 VG80 1.06 0.95 0.96 1.01 1.00 0.94 0.98
PG10 369.27 50.82 316.49 67.17 294.08 67.83 195.95 PG107 0.00 80.56 2.94 24.64 49.67 70.59 52.53 VG85 0.97 0.97 0.99 1.01 1.02 0.94 0.96
PG12 185.00 54.87 155.30 49.67 105.77 33.71 1.05 PG110 0.00 61.60 6.14 46.70 41.37 69.52 71.53 VG87 0.94 0.98 0.99 1.00 0.99 0.94 0.95
PG15 0.00 16.18 37.85 46.06 59.55 39.87 0.00 PG111 0.00 108.41 73.20 114.10 62.76 35.99 19.63 VG89 0.94 1.04 1.04 1.00 1.00 0.94 0.96
PG18 100.00 73.77 36.07 86.08 68.21 80.48 0.32 PG112 0.00 17.40 58.43 36.74 34.78 88.93 37.97 VG90 0.94 1.05 1.05 1.01 0.99 0.94 0.96
PG19 100.00 24.16 36.81 64.94 55.74 62.41 0.01 PG113 0.00 53.22 45.77 25.44 63.92 41.98 44.80 VG91 0.94 1.03 0.96 1.01 1.00 0.94 0.96
PG24 0.00 83.05 53.87 23.63 28.87 37.36 38.59 PG116 0.00 80.78 40.63 45.99 39.41 66.60 39.63 VG92 0.94 0.99 0.95 1.01 0.99 0.94 0.95
PG25 0.00 256.00 134.84 41.57 142.71 92.14 209.99 VG01 0.94 1.04 1.03 1.01 1.02 0.95 0.95 VG99 0.94 0.99 1.03 1.00 0.99 0.94 0.97
PG26 0.00 296.56 49.17 251.51 209.89 111.55 208.87 VG04 0.94 1.02 1.00 1.01 1.00 0.94 0.99 VG100 0.96 1.01 0.99 1.01 0.99 0.94 0.97
PG27 100.00 54.21 2.38 85.13 46.55 79.86 74.12 VG06 0.94 1.02 1.01 1.01 1.01 0.94 0.98 VG103 0.94 1.01 0.98 1.00 1.01 0.95 0.97
PG31 0.00 39.43 15.93 39.33 55.69 68.10 17.58 VG08 1.06 1.03 1.03 1.01 1.01 0.94 0.95 VG104 0.94 1.00 0.96 1.01 0.99 0.94 0.95
PG32 0.00 70.26 10.12 73.25 44.37 43.14 0.00 VG10 1.06 1.04 1.03 1.00 1.02 0.94 0.94 VG105 0.94 1.00 0.97 1.01 0.99 0.94 0.95
PG34 0.00 87.62 51.18 35.57 51.05 36.56 95.43 VG12 0.94 1.06 1.03 1.01 1.00 0.94 0.97 VG107 0.94 0.98 1.00 1.01 1.00 0.94 0.95
PG36 0.00 36.18 73.59 37.84 43.65 65.81 90.78 VG15 0.94 1.04 1.02 1.01 1.00 0.96 0.95 VG110 1.01 0.97 0.97 1.00 1.01 0.94 0.96
PG40 100.00 40.81 69.97 51.00 60.45 70.72 9.21 VG18 0.94 1.03 1.01 1.01 1.00 0.96 0.96 VG111 1.06 1.02 0.95 1.00 1.01 0.94 0.97
PG42 0.00 26.53 24.82 17.67 48.92 78.99 70.85 VG19 0.94 1.03 1.01 1.01 1.00 0.95 0.95 VG112 1.06 0.99 1.03 1.00 1.01 0.95 0.96
PG46 0.00 37.26 49.94 45.09 46.40 45.19 53.65 VG24 1.06 0.96 0.96 1.01 1.00 0.96 1.01 VG113 0.94 1.01 1.04 1.01 0.98 0.94 0.95
PG49 304.00 88.16 2.40 160.59 108.15 103.44 147.28 VG25 1.06 1.03 0.97 1.00 0.99 0.95 0.95 VG116 1.06 0.97 0.94 1.00 0.99 0.94 0.94
PG54 0.00 29.13 61.37 42.77 56.19 109.24 42.57 VG26 0.94 1.02 0.98 1.01 1.00 0.94 0.99 T(5–8) 1.10 1.05 0.94 0.98 1.05 0.90 0.92
PG55 100.00 51.87 31.88 8.77 51.85 84.78 26.61 VG27 0.94 1.00 0.94 1.00 0.99 0.94 0.95 T(25–26) 0.90 1.06 1.01 1.03 1.02 0.94 1.07
PG56 100.00 28.13 66.73 32.81 46.46 41.06 68.76 VG31 0.94 1.02 1.02 1.00 1.00 0.94 0.95 T(17–30) 0.90 0.97 1.07 0.98 1.00 0.90 0.92
PG59 255.00 42.79 83.42 126.51 116.74 168.38 115.70 VG32 0.94 0.97 0.98 1.01 1.00 0.94 0.95 T(37–38) 1.10 0.94 0.95 0.98 0.99 0.97 0.99
PG61 260.00 40.76 139.72 66.77 108.25 61.77 132.42 VG34 0.94 0.99 1.03 1.00 1.00 0.94 0.97 T(59–63) 1.10 0.99 0.96 0.98 0.97 0.93 1.02
PG62 0.00 17.78 52.81 6.87 38.28 91.34 28.13 VG36 0.94 0.96 1.04 1.00 0.99 0.94 0.96 T(61–64) 1.10 1.05 0.94 1.02 1.02 0.90 0.98
PG65 0.00 298.82 285.63 122.75 242.16 325.13 340.94 VG40 0.94 0.99 1.01 1.00 1.01 0.94 0.99 T(65–66) 1.10 1.05 0.97 0.98 1.02 0.96 0.90
PG66 492.00 103.20 304.33 402.91 277.39 231.09 410.93 VG42 0.94 0.99 0.95 1.00 1.02 0.94 0.97 T(68–69) 1.10 1.06 0.90 0.98 1.01 0.93 1.07
PG70 0.00 11.69 6.93 74.14 55.37 32.26 26.92 VG46 1.06 0.99 1.01 1.00 0.99 0.94 0.98 T(80–81) 0.90 1.03 0.96 0.98 1.03 0.94 0.93
PG72 100.00 4.39 30.62 53.41 53.45 33.43 19.54 VG49 1.01 1.01 0.96 1.00 0.97 0.94 0.98 QC34 0.00 27.21 22.22 22.64 14.27 30.00 20.34
PG73 0.00 70.09 21.53 3.99 56.93 90.63 69.15 VG54 1.06 0.99 0.95 1.01 1.02 0.94 0.95 QC44 30.00 11.33 22.69 19.53 10.13 30.00 9.24
PG74 100.00 20.40 15.49 84.20 44.54 65.91 29.40 VG55 1.06 0.98 0.94 1.01 1.01 0.94 0.95 QC45 30.00 4.04 14.10 10.02 20.03 30.00 0.08
PG76 0.00 77.91 55.91 46.97 52.73 53.45 41.71 VG56 1.06 0.99 0.94 1.00 1.01 0.94 0.95 QC46 30.00 18.74 21.38 24.87 11.32 30.00 23.20
PG77 0.00 77.57 49.11 31.72 57.51 83.77 59.82 VG59 0.94 1.00 0.96 1.01 0.97 0.94 0.95 QC48 0.00 19.53 6.06 5.42 12.60 30.00 2.83
PG80 577.00 250.31 180.57 461.22 230.48 184.63 248.09 VG61 0.94 1.02 0.97 1.01 0.99 0.95 0.95 QC74 0.00 6.51 4.42 16.65 15.73 30.00 26.13
PG85 100.00 30.62 84.22 6.11 36.79 82.25 20.12 VG62 0.94 0.97 0.96 1.00 0.99 0.94 0.96 QC79 0.00 18.57 12.10 20.33 18.43 30.00 25.64
PG87 0.00 46.05 37.86 8.57 51.17 32.09 37.77 VG65 1.06 1.01 0.96 1.01 1.01 0.94 0.95 QC82 0.00 23.00 25.36 2.08 18.69 30.00 15.31
PG89 125.44 526.05 604.19 128.16 321.43 40.86 248.12 VG66 0.94 1.02 0.99 1.01 1.00 0.95 1.01 QC83 0.00 6.42 5.23 20.19 17.00 30.00 14.32
PG90 100.00 18.63 16.63 37.80 50.99 40.89 90.16 VG69 1.06 0.98 0.98 1.00 1.00 0.94 0.99 QC105 30.00 21.19 15.34 1.89 13.00 30.00 15.23
PG91 0.00 52.18 7.72 31.91 49.22 67.43 94.13 VG70 1.06 1.00 0.97 1.01 0.99 0.94 0.97 QC107 30.00 6.31 7.71 25.65 12.61 30.00 3.04
PG92 0.00 56.27 13.38 67.32 47.40 78.53 14.81 VG72 1.06 1.01 1.05 1.01 1.00 0.94 0.95 QC110 0.00 6.80 11.72 13.65 13.13 30.00 4.11
PG99 0.00 37.37 34.86 74.69 42.55 91.67 45.92 VG73 1.06 1.00 0.98 1.01 1.01 0.94 0.96

Final results PSO KH GWO WOA SSA AO EWOA-OPF
Cost ($/h) 151,751.61 155,696.34 145,902.97 144,856.49 150,655.22 159,974.6 142,756.67

Ploss (MW) 114.431 188.555 135.040 76.802 77.663 71.23298 78.865
VD (p.u.) 2.953 1.579 2.217 0.804 4.251571 2.816



Electronics 2021, 10, 2975 19 of 23

Table A2. Results of OPF for IEEE 118-bus test system on Case 2.

DVs PSO KH GWO WOA SSA AO EWOA-
OPF DVs PSO KH GWO WOA SSA AO EWOA-

OPF DVs PSO KH GWO WOA SSA AO EWOA-
OPF

PG01 0.00 63.99 35.51 9.88 37.59 52.89 55.64 PG100 0.00 277.31 222.78 192.35 201.06 204.56 205.63 VG74 1.06 0.99 0.99 1.02 0.98 0.94 0.96
PG04 0.00 43.12 62.67 39.89 35.56 38.70 16.69 PG103 140.00 92.19 93.59 55.81 58.49 115.77 46.11 VG76 1.06 1.03 0.96 1.01 0.98 0.94 0.95
PG06 100.00 83.32 39.58 75.85 45.13 87.48 56.37 PG104 100.00 85.66 66.16 56.69 63.87 42.03 61.62 VG77 1.04 0.97 1.00 1.01 0.99 0.94 0.98
PG08 77.21 21.41 58.37 18.35 45.92 74.54 42.12 PG105 0.00 28.18 48.48 43.03 54.41 61.53 19.22 VG80 1.06 0.95 0.99 1.02 1.01 0.95 0.99
PG10 550.00 50.82 141.56 414.95 190.59 80.91 234.56 PG107 100.00 80.56 29.71 51.50 43.21 74.92 80.87 VG85 1.06 0.97 1.04 1.02 0.98 0.94 1.02
PG12 185.00 54.87 40.45 131.16 87.61 46.88 61.80 PG110 0.00 61.60 34.74 59.02 74.49 46.88 1.07 VG87 1.06 0.98 1.04 1.02 1.01 0.94 0.96
PG15 0.00 16.18 28.94 26.00 52.48 88.21 50.36 PG111 136.00 108.41 65.47 35.79 57.69 50.43 55.12 VG89 1.06 1.04 1.02 1.02 0.97 0.94 1.06
PG18 0.00 73.77 91.46 4.57 62.85 64.18 31.55 PG112 0.00 17.40 37.38 65.49 60.58 36.48 81.34 VG90 0.94 1.05 0.94 1.01 1.02 0.94 0.96
PG19 0.00 24.16 44.95 39.39 49.48 37.33 16.98 PG113 0.00 53.22 76.86 75.50 61.27 39.01 18.12 VG91 0.94 1.03 0.96 1.01 1.00 0.94 1.03
PG24 100.00 83.05 56.92 54.42 56.45 35.92 9.66 PG116 0.00 80.78 46.90 9.97 55.72 37.30 48.26 VG92 0.94 0.99 1.00 1.01 0.99 0.94 1.00
PG25 320.00 256.00 247.63 192.25 161.58 114.48 148.39 VG01 0.94 1.04 0.99 1.01 0.99 0.94 0.98 VG99 0.94 0.99 1.01 1.01 0.99 0.94 0.95
PG26 0.00 296.56 24.02 161.28 156.13 220.42 297.70 VG04 0.94 1.02 1.00 1.02 1.02 0.95 1.01 VG100 0.94 1.01 1.03 1.02 0.98 0.96 0.99
PG27 100.00 54.21 25.06 59.16 40.55 39.06 89.27 VG06 0.94 1.02 1.00 1.01 1.00 0.95 1.00 VG103 0.94 1.01 1.02 1.02 1.00 0.94 0.99
PG31 0.00 39.43 48.92 28.42 54.56 82.34 0.00 VG08 1.06 1.03 0.96 1.01 1.00 0.95 0.97 VG104 0.94 1.00 1.02 1.02 0.98 0.94 0.96
PG32 0.00 70.26 33.75 14.57 44.78 82.53 65.80 VG10 1.06 1.04 1.02 1.02 1.01 0.94 0.99 VG105 0.94 1.00 1.00 1.02 0.98 0.94 0.96
PG34 25.65 87.62 80.68 56.63 56.36 82.68 56.13 VG12 0.94 1.06 1.00 1.02 1.00 0.96 1.00 VG107 0.96 0.98 0.97 1.02 1.00 0.94 0.95
PG36 100.00 36.18 50.67 21.07 36.80 74.45 36.67 VG15 0.94 1.04 0.97 1.01 1.00 0.94 0.97 VG110 0.98 0.97 1.02 1.01 1.01 0.94 0.98
PG40 0.00 40.81 29.47 11.29 43.24 69.92 74.38 VG18 0.94 1.03 0.96 1.02 1.01 0.97 0.97 VG111 0.94 1.02 1.03 1.02 1.00 0.94 1.04
PG42 0.00 26.53 18.09 23.77 47.32 89.05 37.25 VG19 0.94 1.03 0.97 1.02 1.00 0.94 0.97 VG112 1.06 0.99 1.02 1.01 0.99 0.94 0.96
PG46 0.00 37.26 48.03 5.08 63.20 47.55 10.44 VG24 1.06 0.96 0.98 1.02 0.99 0.94 0.96 VG113 0.94 1.01 0.99 1.01 0.97 0.94 0.98
PG49 0.00 88.16 91.60 104.43 88.63 143.85 132.52 VG25 0.94 1.03 1.02 1.02 0.99 0.94 0.99 VG116 1.06 0.97 0.99 1.01 1.01 0.94 0.95
PG54 0.00 29.13 54.37 106.65 58.97 61.84 44.71 VG26 0.94 1.02 0.96 1.01 0.99 0.94 0.95 T(5–8) 1.10 1.05 0.90 1.01 1.00 0.90 1.00
PG55 100.00 51.87 48.71 56.25 21.13 50.13 70.63 VG27 1.06 1.00 1.00 1.01 1.02 0.94 0.95 T(25–26) 1.10 1.06 0.97 0.99 0.99 0.98 0.96
PG56 0.00 28.13 35.79 71.08 56.94 82.74 43.14 VG31 1.06 1.02 0.98 1.02 1.00 0.94 0.97 T(17–30) 1.10 0.97 1.01 0.99 1.01 0.93 1.04
PG59 0.00 42.79 129.98 154.32 171.76 182.00 197.72 VG32 1.06 0.97 0.98 1.01 0.99 0.94 0.95 T(37–38) 1.10 0.94 1.08 1.00 1.00 0.95 1.00
PG61 260.00 40.76 136.61 71.06 152.50 52.63 179.66 VG34 0.94 0.99 0.97 1.02 0.99 0.94 0.98 T(59–63) 0.90 0.99 0.91 0.98 1.01 0.91 0.94
PG62 0.00 17.78 67.82 40.42 30.99 91.16 18.07 VG36 0.94 0.96 0.96 1.02 0.98 0.94 0.98 T(61–64) 0.97 1.05 0.97 0.98 1.05 0.90 0.98
PG65 491.00 298.82 37.63 29.90 210.83 75.17 358.46 VG40 0.94 0.99 1.06 1.02 0.98 0.94 0.97 T(65–66) 1.10 1.05 1.00 0.99 1.01 0.92 0.94
PG66 0.00 103.20 463.61 101.59 266.97 154.31 114.13 VG42 0.95 0.99 0.94 1.02 1.03 0.94 1.00 T(68–69) 0.90 1.06 1.01 1.00 0.99 0.96 1.00
PG70 0.00 11.69 53.88 4.07 45.88 84.50 20.99 VG46 1.06 0.99 1.02 1.02 0.99 0.94 1.04 T(80–81) 0.90 1.03 1.09 1.00 1.01 0.93 0.99
PG72 0.00 4.39 52.27 32.30 53.40 46.47 27.82 VG49 0.98 1.01 1.02 1.01 1.02 0.96 1.01 QC34 0.00 27.21 20.72 19.93 14.72 30.00 19.44
PG73 0.00 70.09 69.59 43.50 54.76 73.51 2.59 VG54 0.94 0.99 1.05 1.02 1.01 0.94 1.00 QC44 30.00 11.33 16.63 0.88 14.38 30.00 5.06
PG74 0.00 20.40 40.20 65.04 61.36 46.69 4.11 VG55 0.94 0.98 1.03 1.02 1.01 0.94 1.00 QC45 30.00 4.04 7.37 20.27 15.82 30.00 0.01
PG76 100.00 77.91 52.41 41.47 44.37 89.82 13.52 VG56 0.94 0.99 1.04 1.02 1.00 0.94 0.99 QC46 30.00 18.74 19.40 9.81 12.00 30.00 22.44
PG77 0.00 77.57 81.11 17.31 68.57 93.52 10.71 VG59 1.06 1.00 1.01 1.02 1.00 0.97 1.00 QC48 30.00 19.53 20.39 13.37 15.18 30.00 3.57
PG80 0.00 250.31 273.42 413.55 255.27 103.79 249.08 VG61 1.06 1.02 1.03 1.02 0.99 0.94 0.95 QC74 30.00 6.51 8.60 21.70 21.11 30.00 11.21
PG85 0.00 30.62 53.24 8.08 47.74 89.77 55.56 VG62 1.06 0.97 1.02 1.02 0.99 0.94 0.95 QC79 30.00 18.57 22.36 16.34 15.57 30.00 27.79
PG87 0.00 46.05 46.45 16.21 52.44 55.18 35.85 VG65 1.06 1.01 1.01 1.01 1.02 0.94 0.95 QC82 30.00 23.00 12.81 9.95 15.98 30.00 5.87
PG89 707.00 526.05 233.21 256.32 265.88 121.60 278.23 VG66 1.03 1.02 1.01 1.01 1.01 0.94 0.99 QC83 0.00 6.42 15.45 19.63 15.62 30.00 14.99
PG90 0.00 18.63 25.35 6.07 49.23 68.70 54.74 VG69 1.06 0.98 1.04 1.02 0.99 0.94 1.01 QC105 0.00 21.19 12.06 14.78 11.56 30.00 9.40
PG91 26.40 52.18 29.69 80.61 36.40 47.53 38.64 VG70 1.06 1.00 1.03 1.02 0.98 0.96 0.99 QC107 30.00 6.31 9.60 12.06 16.36 30.00 14.83
PG92 100.00 56.27 59.29 67.63 59.32 56.27 25.09 VG72 0.94 1.01 0.96 1.01 1.02 0.94 1.04 QC110 0.00 6.80 26.90 9.35 18.63 30.00 24.88
PG99 100.00 37.37 81.55 15.33 48.97 46.08 35.13 VG73 1.06 1.00 1.05 1.02 1.02 0.94 0.97

Final results PSO KH GWO WOA SSA AO EWOA-OPF
Cost ($/h) 163,613.92 155,696.40 153,293.89 145,078.86 152,484.28 164,684.39 140,175.80

Ploss (MW) 242.265 188.555 88.693 77.031 77.139 60.940 79.990
VD (p.u.) 3.059 1.579 1.082 0.668 0.902 3.997 1.625
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