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Abstract: A simple and compact antenna with a switchable beam for millimeter-wave communication
is proposed in this paper. The antenna has a planar structure, and the design evolution is discussed.
The beam switching functionality was achieved by incorporating two PIN diodes in the ground
plane of the antenna. By switching ON either of the PIN diodes, the inverted L-shaped stub becomes
connected to the ground plane and behaves as a cavity, which causes the dispersion of the radiation
pattern. Therefore, a wide-angle (+18°) beam-switching property can be achieved using a simple
and low-cost technique, without the necessity to implement additional conventional circuits. The
proposed antenna is characterized by a good performance in terms of return loss, bandwidth,
measured gain up to 7.95 dB, and radiation efficiency up to 84%, making it a proper candidate for
IoT technology and millimeter-wave 5G devices.

Keywords: 5G antenna; 28 GHz; compact antenna; Internet of Things; IoT; millimeter-wave;
monopole antenna; pattern reconfigurable; switched beam

1. Introduction

Multifunctional antennas are gaining greater consideration for modern wireless com-
munications and the Internet of Things (IoT), radar, and sensing systems. Among various
types of multifunctional antennas, reconfigurable antennas are more preferable due to
the fact that they allow the user of multiple radio access networks to integrate them as a
single platform [1,2]. The electrical, material, and mechanical processes are the various
physical mechanisms that are responsible for tuning the antenna’s performance, usually
by a switching operation [3,4]. Reconfigurable antennas commonly offer polarization, fre-
quency, and pattern reconfiguration modes [4-7]. Some of the reconfigurable antennas also
undergo hybrid reconfiguration including frequency and polarization or frequency and
pattern reconfiguration at the same time. Based on the working methodology, the reconfig-
urable antennas can be characterized into three major types: (1) phased-array antennas,
(2) metasurface-loaded antennas, and (3) planar antennas. In the case of phased-array
antennas, multiple unit elements are fed using a single power divider, where the phase-
tunable antenna elements are utilized to achieve beam switching, tilting, and scanning [8].
Besides, these array antennas offer a higher gain and broader bandwidth at the cost of
bulky and complex structures. Moreover, they also suffer due to the high-cost requirements,
hence limiting their applications in compact and low-cost devices [9]. Another alternative
way to achieve reconfigurability is by using metamaterials (engineered materials having
special properties that are not available in naturally existing materials) [10]. Metamaterial
arrays, often called metasurfaces, are widely used in the microwave-, millimeter-, and
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terahertz-frequency range to achieve a high gain and wide bandwidth, as well as recon-
figurability [11-13]. Although metasurface loading offers less complexity and bulkiness
compared to phased-array antennas, they still have the problem of a large surface area,
as well as a higher volume [14,15]. Moreover, the air space between the metasurface and
antenna is very small in the millimeter-wave range (i.e., at 28 GHz), and a minor difference
in the fabrication or placement may deteriorate the results, thus causing complexity in
the system integration with other circuitry [16]. Furthermore, frequency-selective surface
(FSS)-loaded mechanically reconfigurable antennas are also not suitable for most of the
modern-day communication systems owing to the disadvantages of larger dimensions and
volume and the mechanical reconfigurability [17-19]. Planar antenna configurations are
the most preferable type of reconfigurable antennas to reduce the antenna profile and com-
plexity of the communication system. These antennas usually achieve reconfigurability by
utilizing PIN diodes, RF microelectromechanical systems (MEMSs), and varactors [20,21].
The varactors exhibit nonlinear characteristics and also require complex biasing circuitry,
whereas MEMSs have mechanical movement, poor reliability, and a limited lifecycle and
add complexity. PIN diodes are chosen due to their simplicity, reliability, very low driving
voltage, high tuning speed (1-100 ns), not having moving parts, and linear characteristics
at higher frequencies (i.e., mm-wave), which can potentially avoid passive intermodulation
(PIM) [4,5,22]. However, most of the works related to reconfigurable planar antennas
has been performed on microwave-frequency bands, where the reconfigurability of the
frequency, pattern, and polarization has been demonstrated successfully [7,23-25]. On the
other hand, very few works have reported planar reconfigurable antennas in the millimeter-
wave (mm-wave)-frequency band. Moreover, to avoid the complexity of the measurements,
ideal conditions are adopted, which limits their use in practical applications [23,26-32].
Considering the aforementioned problems, planar reconfigurable antennas in the 5G mm-
wave-frequency range are of great importance. Therefore, in this work, a compact, planar,
and high-gain beam-switchable antenna is presented. The beam switching was achieved
by simply utilizing two PIN diodes joining two radiating cavities and a truncated ground
plane. The major contributions of this work can be recapitulated as follows:

e  The presented work is a low-cost planar antenna with the functionality of reconfigura-
bility using PIN diodes in the 5G mm-wave band;

¢  The proposed antenna realizes pattern reconfiguration without adding additional
circuits; therefore, it is characterized by a compact size, making it a proper candidate
for future 5G miniaturized smart devices and the IoT;

®  The proposed antenna presents good radiation characteristics along with a high gain
(up to 8 dB) and broad bandwidth to cover the complete 28 GHz band spectrum (i.e.,
26-29.5 GHz), along with a beam tilting of (£18°).

2. The Geometry of the Proposed Antenna

Figure 1a—c shows the top, side, and bottom views of the proposed compact beam-
switchable antenna. For the brevity of the manuscript, only the dimensions of the final
prototype are presented, since the overall dimensions (L x W) of Antennas #1, #2, and
#3 remain the same as the proposed beam-steerable antenna, as shown in Figure 2. The
radius of the monopole antenna (R) and the dimensions of the ground plane (G, x W)
and feedline (Fy x F,) remain the same for all the cases. Moreover, the addition of an
octagonal patch having radius R also remains unaltered in Antennas #2 and #3 and the
final proposed design. The two symmetric octagonal slots having radius R1 were etched
from the radiator to improve return loss and gain. In the last phase, two symmetrically
inverted L-shaped stubs having length S, and width S, were added to the ground along
with the PIN diodes. These stubs add more radiating cavities in the ground plane, and
thus, by adjusting the phase difference between these two cavities, beam switching can
be achieved. The antenna geometry having a metallic cladding of 0.035 mm was incised
on ROGERS 4350B, having a relative permittivity €, = 3.66, loss tangent tan ¢ = 0.004, and
thickness /1 = 0.508 mm. A thin substrate with low loss was selected to achieve a stable high
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gain and broad bandwidth with an overall compact antenna size, a requisite for future 5G
communications. The optimized dimensions of the proposed beam-switchable antenna are
tabulated in Table 1.
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Figure 1. Geometry of the proposed antenna: (a) front view, (b) side view, and (c) back view.
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Figure 2. Design evolution of the wideband monopole antenna.
Table 1. Optimized dimensions of the proposed design.
Parameter Value (mm) Parameter Value (mm) Parameter Value (mm)
L 12 Ry 1 Fy 1
W 8.5 G 3 Fy 37
R 2.5 g 1 Sx 1.4
d 0.4 Gy 6 Sy 2

3. Design Methodology of the Proposed Antenna

The proposed antenna was designed using the commercially available finite-element-
method-based High-Frequency Structure Simulator by ANSYS. For a better understanding,
the entire design process is divided into the following steps.
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3.1. Design of the Wideband Monopole Antenna

The presented work was based on a conventional circular monopole antenna [33],
which was initially transferred to an octagonal patch to achieve a good impedance match
at the central frequency of 28 GHz, as shown in Figure 3. The resonating frequency of the
circular monopole antenna can be found using the following equation:

18412 % ¢
 47Reg/Er

where f is the resonating frequency of the monopole antenna, c is the speed of the light, €,
is the permittivity of the substrate, and R, is the effective radius of the monopole, which
can be calculated using the following equation:

2h R

where R is the radius of the monopole and h is the thickness of the substrate.
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Figure 3. |S11| characteristics of Antenna #1, Antenna #2, and Antenna #3.

The optimized radius of the monopole (R) was found to be 2.5 mm, when the antenna
was resonating at 28 GHz with a bandwidth of 1.6 GHz (27.2-28.8 GHz) with reference to
|S11] < —10 dB, as shown in Figure 3, whereas the gain of the octagonal antenna was found
to be 7.9 dB. Although the antenna covers the Federal Communication Commission (FCC)
proposed band for 28 GHz (27.5-28.25 GHz) [34], it still does not cover the whole 28 GHz-
band spectrum allocated by different countries around the globe. Therefore, another
octagonal patch was inserted with the main radiator to further enhance the bandwidth
of the designed antenna. The addition of this patch increases the effective length of the
antenna, resulting in an increased gain value [35] from 7.9 dB to 8.6 dB. Moreover, the
insertion of an additional patch also provides a larger path to the current, thus redistributing
it and increasing the bandwidth of the antenna [36] to 4.27 GHz (27.6-31.87 GHz), as shown
in Figure 3. In the last step, to lower the operating frequency to cover the complete band of
28 GHz for 5G communication systems (26-29.5 GHz), two octagonal slots were utilized. A
detailed parametric investigation was performed to identify the position and radius of the
slot to obtain a better impedance match without affecting the radiation pattern and gain of
the antenna, as depicted in Figure 3.
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3.2. Design of the Proposed Wideband Switched-Beam Monopole Antenna

Beam switching is one of the key requirements for 5G mm-wave communication [9];
thus, the proposed high-gain wideband monopole antenna was converted into a switched-
beam antenna. Unlike the conventional methods to achieve beam switching, using phased-
array antennas or metasurface-loaded antennas, which have many drawbacks including
complex geometrical structures and large dimensions, a simple, yet effective method was
adopted in this work: loading inverted L-shaped stubs with diodes into the ground. The
insertion of these stubs into the previously designed (Section 3.1) wideband monopole
antenna resulted in the generation of additional cavities with the ground plane, and these
cavities take part in radiation by controlling the surface charge distribution on either side
of the ground plane. Moreover, by switching ON either of the stubs, a respective phase
difference (¢) can be created between these two cavities, which can be estimated by using

the following equation:
__ 2L

. )
where c is the speed of light, A is the free-space wavelength of the central frequency, while
L ~ Sy, + Sy is the total length of the cavity.

This phase difference helps more electromagnetic waves reflect in a specific direction;
hence, beam tilting occurs. Although the phase difference can be increased easily by
increasing the length and width of the stubs and a greater beam tilting can be achieved,
this may affect the antenna’s performance, especially the S-parameters. Hence, a careful
analysis is required to achieve beam tilting without affecting the S-parameters of the
wideband monopole antenna. The optimized parameters were selected to achieve the
required results without affecting the performance of the antenna, as shown in Figure 4.
The placement of diodes D1 and D2 is shown in Figure 1. It can be seen from Figure 5 that
when both diodes D1 and D2 are in either the ON or OFF state, the stub-loaded antenna
shows a broad-side radiation pattern. On the other hand, when diode D1 is in the OFF
state, while diode D2 is in the ON state corresponding, to a switching state of 01, the beam
of antenna is steered toward —18° for 28 GHz. Similarly, for D1 in the ON state while
D2 is in the OFF state, corresponding to a switching state of 10, the beam is tilted toward
+18° for 28 GHz. Hence, an average beam tilting between —18° and +18° is achieved.
Figure 5 presents the beam-steering radiation pattern of the proposed antenna for various
frequencies. A little variation between the beam-tilting angle at various frequencies is
due to the difference in the phase variation at the respective frequencies, which can be
calculated using (3).

0
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DRI Antenna #4
-10 /
a -
S
= 20}
)
30 F
_40 1 L 1 L 1 " 1 " 1
24 26 28 30 32
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Figure 4. |S11| characteristics of Antenna #3 and Antenna #4 (proposed antenna).
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Figure 5. Switchable radiation patterns of the proposed antenna for different switching modes at: (a) 26 GHz, (b) 28 GHz,
and (c) 30 GHz.

4. Simulated and Experimental Results

A prototype of the proposed antenna was fabricated using ROGERS-4350 to confirm
the proposed design concept, as shown in Figure 6. A subminiature SMA Version-K
connector of 50-( by JYEBAO Co., Ltd.,Model No. K8400A-0000, was connected to the
prototype [37]. Moreover, to practically connect the stubs to and disconnect them from
the ground, a AlGaAs-Flip-Chip PIN diode having a maximum operating frequency of
50 GHz [38] was connected. For the simulation, the lumped-element configuration of an
equivalent model of the diode was utilized in such a way that in the ON state, the diode
acts as a series combination of a 0.15 nH inductor and a 4.7 Q) resistor. On the other hand,
for the OFF state, the diode acts as a series combination of a 0.15 nH inductor with a parallel
combination of a 7 k() resistor and a 0.17 pF capacitor.

It

Figure 6. Fabricated prototype of the proposed antenna.

4.1. Reflection Coefficient

The reflection coefficient of the proposed model was measured using an Anritsu
MS2038C network analyzer (Anritsu Corporation, Kanagawa Prefecture, Japan). To switch
the state of the diodes, the stubs were connected to the negative terminal of a 3 V battery,
while the ground was connected to the positive terminal. A biasing circuit was connected
between the battery and the diodes to avoid unnecessary RF and DC current. The arrange-
ment of a resistor of 1 K() and an inductor of 68 nH was utilized for the said purpose. The
equivalent circuit model PIN diode used in the simulation (forward biased and reverse
biased) and the biasing circuit for the switching diode are shown in Figure 7.
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Figure 7. Equivalent circuit model PIN diode: (a) forward biased, (b) reverse biased, and (c) biasing

circuit for the switching of the diode.

Figure 8 presents the comparison between the simulated and measured results of
the S-parameters of the proposed antenna. The measured and simulated impedance
bandwidths of the proposed antenna with respect to |S11| < —10 dB for Mode-I, -1I, and
-III are tabulated in Table 2. The decrement in the bandwidth for Mode-II and Mode-III
was due to the presence of the stubs, which were chosen to avoid unwanted effects on the
operational bandwidth. Moreover, a good agreement between the simulated and measured

S-parameters is noted.
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Figure 8. Cont.
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Figure 8. Simulated and measured |S11| of the proposed antenna for different switching modes:
(a) Mode-I (00), (b) Mode-II (01), and (c) Mode-III (10).

Table 2. Impedance bandwidth and main beam direction corresponding to different operating modes.

Operating Diode Diode Simulated Bandwidth Measured Bandwidth ~ Main Beam Direction
Mode D1 D2 (GHz) (GHz) (deg)
I 0 0 25.1-31.2 25.4-30.8 0
II 0 1 24.9-31.5 26.4-31.4 —18
i 1 0 25.1-31.2 26.35-31.4 +18

4.2. Gain and Radiation Patterns

The measurements of the gain and radiation pattern of the proposed antenna were
performed by the commercial ORBIT/FR far-field measurement system in a shielded radio-
frequency anechoic chamber, as shown in Figure 9. The measured 2D radiation patterns at
various frequencies (i.e., 26, 28, and 30 GHz) in the operational range of the impedance
bandwidth are shown in Figure 10. The scanning angles for Mode-I, -II, and -III at 26 GHz
are —19°, 0°, and 18.7°; at 28 GHz, these angles are —18°, 0°, and 17.5°; while at 30 GHz,
they were found to be —16.9°, 0°, and 17.1°, respectively. The slight difference between the
beam-tilting angles was due to the phase differences at the various frequencies. Moreover,
the slight asymmetry between the radiation patterns of Mode-II and Mode-III was due to
fabrication tolerances and inaccuracy in the measured results.

ALY ] 1111,,5’.’.’.”/1:f;:t»r

Figure 9. Far-field measurement setup of the proposed antenna.
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Figure 10. Switchable measured radiation patterns of the proposed antenna for different switching
modes: (a) Mode-I (00), (b) Mode-II (01), and (c) Mode-III (10).
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The gain of the proposed antenna was also measured to strengthen the findings. At
28 GHz, the reported simulated and measured gain along with the simulated efficiency
for Mode-I was 8.1 dB, 7.95 dB, and 82%, for Mode-II 7.5 dB, 7.23 dB, and 84%, and
for Mode-1III 7.54 dB, 7.3 dB, and 83%, respectively. The small deviation between the
simulated and measured gain value was due to the presence of electrical wires; moreover,
the practical model diode also affected the performance since lumped ports were used in
the simulations. The presented antenna design can further be investigated for arrays and
MIMO configurations [39—42].

4.3. Comparison with State-of-the-Art Works

As stated in the aforementioned discussion that phased-array antennas have the
drawback of a bulky size, for a fair comparison, they were not compared with the proposed
work. Table 3 presents the comparison of the proposed work with state-of-the-art works
reported for similar applications. It can be concluded that the presented work offers the
advantages of a compact size, a simpler geometry, low-loss switching circuitry (only two
PIN diodes), and a high-gain characteristic with a good beam-tilting capability.

Table 3. Comparison of the proposed work with state-of-the-art works for similar applications.

Ref Dimensions Bandwidth Beam-Switching Angles Switching Peak Gain
’ (mm?) (GHz) (Theta) Technique (dB)
[17] 50 x 50 x 6 25-30 90° and 62° Mechanical 9
[18] 259 x 27.8 x 3.5 28-31 67°,90° and 119° Mechanical 9.6
[19] 17 x 18 x 0.254 24.5-31.7 —25° and 24° Mechanical 52
[27] 12 x 16 x 0.254 25.8-29.2 —27° and 30° Ideal Switches 6
[28] 12 x 16 x 0.254 25.2-29.7 —31° and 34° Ideal Switches 6.5
Proposed 8.5 x 12 x 0.508 26.4-34.4 —18°,0° and +18° PIN diodes 8.1
5. Conclusions
This paper presented a millimeter-wave monopole antenna, with a beam-switching
functionality, capable of switching the antenna beam towards different directions (with
an angle of +18°) using two PIN diodes introduced into the ground plane. The proposed
antenna is characterized by a simple shape and compact size, along with good, measured
performance in terms of return loss, operating bandwidth, stable high gain, and radiation
efficiency. Therefore, the proposed antenna is a potential candidate for future millimeter-
wave 5G communications and IoT technology.
Author Contributions: Conceptualization, H.Z.; Formal analysis, H.Z.; Investigation, H.Z.; Method-
ology, H.Z.; Project administration, S.M.A. and S.M.; Resources, M.H., S.I.N. and S.M.; Supervision,
S.IN., SM.A. and S.M,; Validation, H.Z.; Writing—original draft, H.Z.; Writing—review and edit-
ing, M.H., SIN., SM.A. and S.M. All authors have read and agreed to the published version of
the manuscript.
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