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Abstract: The model-identification and parameter extraction are a well-defined method for modeling
and development purposes of a proton exchange membrane fuel cell (PEMFC) to improve the
performance. This paper introduces a novel opposition-based arithmetic optimization algorithm
(OBAOA) for identifying the unspecified parameters of PEMFCs. The cost function is defined as
the sum of the square deviations between the experimentally measured values and the optimal
achieved values from the algorithm. Ballard Mark V PEM fuel cell is employed and analyzed to
demonstrate the capability of the proposed algorithm. To demonstrate system efficiency, simulation
results are compared to those of other optimizers under the same conditions. Furthermore, the
proposed algorithm is validated through benchmark functions. The final results revealed that the
proposed opposition-based arithmetic optimization algorithm can accurately retrieve the parameters
of a PEMFC model.

Keywords: proton exchange membrane fuel cell; parameter identification; optimization; energy
storage; arithmetic optimization

1. Introduction

The demand for clean energy has kept increasing in recent years due to global warming
and depleting oil reserves [1,2]. Fuel cells have drawn significant attention in recent years
due to high efficiency and no emission of greenhouse gases. In recent years, fuel cell
research has grown significantly due to possible applications such as stationary power
generation and automotive applications [3]. PEMFCs have particularly drawn attention for
transport applications. It has many advantages such as low operating temperature, short
start-up and shut-down time, high efficiency, no waste is generated as the by-product is
water [4,5]. Due to compact size, low operating temperature, and quick start-up time makes
PEMFCs a reliable candidate for medium power applications like smart grid, micro gird,
and power electronic devices [6]. The fuel cell has three main components: anode, cathode,
and electrolyte. Both anode and cathode contain a layer of catalyst, which is separated by
an electrolyte membrane to perform the redox reaction. However, the voltage (1.0 V) and
current density (500–1000 mA/cm2) delivered by a single cell is too low for any practical
application, so a number of stacks are connected in series to deliver sufficient power for
practical application. The performance of a fuel cell depends on multiple parameters
such as operating temperature, inlet pressure of fuel and reactant, and conductivity of
the membrane. In order to utilize fuel cell for wide range of application evaluation of
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performance under various operating conditions is necessary. Moreover, development of a
mathematical model to simulate the dynamic variation in operating conditions and fuel
cell performance is necessary for its integration in smart grid/microgrid [7].

Both theoretical and experimental studies have been performed to optimize the fac-
tors affecting performance such as pressure, temperature, flow rate of fuel and oxidant,
reaction kinetics, and membrane thickness to get the maximum power density from fuel
cell [8]. As the fuel cell performance depends on multiple interdependent factors, which
makes it really difficult to develop a mathematical model to evaluate the multivariable,
complex, and interrelated parameters affecting the fuel cell performance [9]. In recent years,
remarkable research and development has been performed to get a better understand-
ing of the function of PEMFC characteristics via mathematical modeling. The modeling
achieves great significance in the outlook of simulation, design, exploration, and progress
of high-efficiency fuel cell systems [10–12]. A reliable model facilitates monitoring of fuel
cell behavior for process monitoring and designing a suitable power conditioning unit for
various power applications. The development of a precise parameter estimation method
using the experimental data is a pre-requisite to develop a mathematical model of fuel
cell and design an appropriate power control algorithm [13]. Two different approaches
have been utilized to develop a mathematical model of the fuel cell systems. In the first
approach, a mechanistic model is built to simulate the heat, mass transfer, reaction kinetics,
membrane conductivity, and crossover of reactants through the electrolyte membrane
encountered in fuel cells [14,15]. In this approach, a three-dimensional multiphase model
of fuel cell system is developed, in which the gas and liquid two-phase flow in channel and
porous electrodes are investigated in detail. This approach of precise estimation of model
parameters is hindered by the nonlinear and complex relations of the electrochemical
equations. In the second approach, a mathematical model is developed on the basis of
empirical or semi-empirical equations, which are utilized to predict the effect of different
input parameters on the voltage–current characteristics of the fuel cell, without examining
the physical and electrochemical phenomena taking place in fuel cell system [16]. The
electrical equivalent models of fuel cell are mainly divided into static and dynamic models.
The static models depends on steady-state operation of fuel cell based on polarization
curve [17,18] and the dynamic models rely on characteristics of electrical terminal rep-
resented by a set of passive elements [19,20]. Although mechanistic models have been
developed to evaluate the optimum parameters to get the maximum output from the fuel
cell system, the actual performance of fuel cell observed in experimental studies is not
precisely the same as observed in theoretical studies, irrespective of models, because of
assumptions and approximations are made in modelling [21]. In order to develop the
precision of the models and make it reflect the actual fuel-cell performance, it is essential to
improve the parameters of the models. However, a little effort has been put forward in the
area of parameters optimization.

Generally, the statistics contained in any PEMFC datasheet are insufficient to deter-
mine the effective set of parameters. However, if the precise parameters are not specified,
there are significant variations between the data obtained from the model and that listed in
the manufacturer’s datasheet. PEMFC parameter identification can be approached as an
optimization challenge, and a variety of meta-heuristic techniques can be implemented
to find the best solution. Over the last ten years, various meta-heuristic optimization
techniques have been applied to address the issue of PEMFC parameter estimation, which
utilizes two important search strategies: (a) exploration/diversification and (b) exploita-
tion/intensification [22,23]. The first method explores the search space globally, which
avoids local optima and resolving local optima entrapment, whereas the second method
explores the nearby promising solutions to improve their quality locally [24]. A proper
balance between these two strategies is required to get the optimum performance. The
classification of meta-heuristics method is based in the evolutionary algorithms, swarm
intelligence algorithms, physics-based methods, and human-based methods. However,
there is no single optimized algorithm, which can solve all optimization problems. Most
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of the researchers either modify an existing algorithm or propose a new algorithm to get
better result [25]. Different meta-heuristic algorithms have been utilized for parameter
optimization of PEMFCs such as particle swarm optimization (PSO) [26], genetic algorithm
(GA) [27], artificial neural network (ANN) [28], differential evolution (DE) [29], artifi-
cial immune system (AIS) [30], artificial bee colony (ABC) [31], bird mating optimization
(BMO) [32], biography-based optimization (BMO) [33], seeker optimization algorithm
(SOA) [34], backtracking search algorithm (BSA) [35], improved teaching learning-based
optimization (ITLBO) [36]. Slime mold algorithm (SMA) [37], moth-flame optimization
(MFO) [38], Archimedes optimization algorithm [39], Jellyfish search algorithm (JSA) [40],
bonobo optimizer [41], and hybrid GWO algorithm [42] have been implemented to identify
the unknown parameters of PEMFC. In this article, the authors have proposed an improved
opposition-based arithmetic optimization algorithm for parameter extraction of PEMFC.
To the best of the authors’ knowledge, arithmetic optimization algorithm (AOA) has not
been explored in this field, therefore, in this article authors have examined the performance
of improved AOA for parameter extraction of fuel cells.

The main contribution of this research paper is as follows:

• An improved arithmetic optimization algorithm (AOA) algorithm is formulated that
employs the opposition-based learning method for population initialization, prevent-
ing the accumulation of too many solutions in one location and resulting in a more
efficient global search.

• The performance of the proposed algorithm is evaluated on ten benchmark functions
and experimental results clearly depicts that the OBAOA is very efficient and accurate.

• The performance of proposed OBAOA algorithm is further accessed for parameter
extraction of Ballard Mark V PEFMC.

The manuscript is organized as follows: Section 2 describes the theoretical and math-
ematical model of the PEMFC, Section 3 includes the formulation of OAOA technique.
Section 4 discusses the results and findings. Finally, Section 5 provides the overall conclu-
sive remarks of the proposed study.

2. Theory and Modeling of Proton Exchange Membrane Fuel Cell

There are three main components of a fuel cell: anode, cathode, and electrolyte. The fuel
oxidation and oxygen reduction take place at anode and cathode, respectively. An electrolyte
membrane separates the anode and cathode and allows conduction of protons to complete
the electric circuit. The oxidation and reduction reaction are shown by Equations (1) and (2),
respectively. The overall reaction is represented by Equation (3) [43,44].

Oxidation: 2H2 → 4H+ + 4e− (1)

Reduction: O2 + 4H+ + 4e− → 2H2O (2)

Complete reaction: 2H2 + O2 → 2H2O (3)

At open circuit potential the cell voltage can be expressed by Equation (4):

VOCV
Cell = Er

O2/H2O − Er
H2/H+ (4)

At standard conditions (1.0 atm pressure and 25 ◦C), the fuel cell open circuit voltage
(OCV) should be 1.229 V. However, the measured OCV at room temperature is around
1.0 V, due to the losses associated with the fuel cell. The cell voltage (Vcell) is expressed by
Equation (5) when the current (Icell) is drawn from the cell.

Vcell = ENernst −Vactivation −Vconcentration −Vohmic (5)

ENernst = 1.229 – 0.85× 10−4(T – 298.15) + 4.3085× 10−5T
[
ln
(

PH2

)
+ 0.5 ln

(
PO2

)]
(6)
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The activation overpotential of anode and cathode can be expressed as:

Vactivation = −
[
ξ1 + ξ2 + ξ3 × T × ln

(
CO2

)
+ ξ4 ln(i)

]
(7)

where Vactivation is the voltage drop due to the activation of redox processing the anode and
cathode. The ξn represents the parametric coefficients for each cell model, whose values are
defined based on theoretical equations with kinetic, thermodynamic, and electrochemical
foundations (Mann et al., 2000). The oxygen concentration at the catalyst layer of the
cathode (CO2 , mol/cm3) is given by:

CO2 =
PO2

5.08× 106 × e
498
T

(8)

The mass transport affects the concentrations of hydrogen and oxygen at the anode
and cathode, which affects the partial pressures of gases. The change in partial pressure of
fuel and reductant rely on the electrical current and on the physical features of the system.
The voltage drop due to concentration polarization is represented as:

Vconcentration = −b ln
(

1− i
imax

)
(9)

where b is a parametric coefficient (V) that depends on the cell and its operation state, and
i represents the actual current density of the cell (A/cm2).

The ohmic drop (VOhmic) in Equation (5) is represented as:

VOhmic = i (RM + Rc) (10)

RM = ρM
l
A

(11)

where RM is the resistance to the transfer of protons through the membrane (Ω), Rc is the
charge transfer resistance, ρM is the specific resistivity of the membrane for the electron
flow (Ω-m), A is the active area of the cell (cm2) and l is the thickness of the membrane,
which separate electrodes. The following numerical expression for the resistivity of the
Nafion membrane is used:

ρM =

181.6×
[

1 + 0.03
(

iFC
A

)
+ 0.062

(
T

303

)2( iFC
A

)2.5
]

[
λ− 0.634− 3

(
iFA
A

)
exp
(

4.18
(

T−303
T

))] (12)

where 181.6/(λ − 0.634) is the specific resistivity (Ω-cm) at OCV at 30 ◦C, the exponential
term in the denominator is the temperature factor correction if the cell is operating at
different temperature. The parameter λ is an adjustable parameter with a maximum value
of 24. This parameter is influenced by the preparation procedure of the membrane and is a
function of relative humidity and stoichiometry relation of the anode gas.

If ‘n’ number of stacks are combined then the cell voltage is defined as:

Vcell = n× (ENernst −Vactivation −Vconcentration −Vohmic) (13)

At a given temperature (T), the partial pressure of fuel (PH2 ) and oxidant (PO2 ) is given
by following equations:

PH2 =
0.79
0.21

PO2 (14)

PO2 = Pc − RHcP∗H2O − PN2 exp

(
0.291 i

A
T0.832

)
(15)



Electronics 2021, 10, 2834 5 of 15

If H2 and O2 are used as reactant then the partial pressure of oxygen and hydrogen is
given as:

PO2 = RHcP∗H2O


exp

(
4.192( i

A )
T1.334

)(
RHcP∗H2O

)
Pc


−1

− 1

 (16)

PH2 = RHaP∗H2O


exp

(
1.635( i

A )
T1.334

)(
RHaP∗H2O

)
Pa


−1

− 1

 (17)

where RHc and RHa are relative humidity at the cathode and anode, respectively. Pc and
Pa are the inlet pressure at cathode and anode, respectively. The PN2 is partial pressure of
nitrogen at the cathode. The P∗H2O is saturated vapor pressure (atm), which is calculated as:

log10

(
P∗H2O

)
= 2.95× 10−2(T – 273.15) – 9.18× 10−5(T – 273.15)2 + 1.44× 10−7(T – 273.15)3 – 2.18 (18)

Formulation of Objective Function

In this research work, sum of squared error (SSE) is adopted as an optimization
function (OF) for the identification of unknown parameters (ζ1, ζ2, ζ3, ζ4, λ, Rc, and b)
of PEMFC, which is generally used by the authors in the existing literature [45–47]. The
objective function is defined as follows:

OF = Minimize(SSE) = Minimize

(
N

∑
i=1

[Vmeasured(i)−Vestimated(i)]
2

)
(19)

where N represents the number of measured values, i denotes the number of iterations,
Vmeasured denotes the measured voltage while Vestimated denotes the estimated value of
voltage for PEMFC.

3. Optimization Method
3.1. Conventional Arithmetic Optimization Algorithm

Arithmetic optimization algorithm (AOA) is a stochastic population-based metaheuris-
tic optimization algorithm proposed by Abualigah et al. [48] in the year 2021. The algorithm
is motivated by the distribution behavior of four key arithmetic operators in the field of
mathematics, which includes addition, subtraction, multiplication, and division. In the area
of science and engineering, there are complex, non-convex, and high dimension problems,
which are difficult to solve using conventional gradient-based optimization algorithms.
Metaheuristic is a high-level search algorithm that easily finds the optimal solution for
diverse problems without getting stuck in local optimal solution. These algorithms first
create a random solution in the search space and iteratively discovers the solution through
different search strategies. The phenomenon of how these algorithms update its solution is
defined by mathematical behavior of algorithms. Based on these mathematical-concepts,
these algorithms are classified as evolutionary, swarm, physics-based, and human-based
algorithms. Genetic algorithm (GA), particle swarm optimization (PSO), gravitational
search algorithm (GSA), whale optimization algorithm (WOA), and grey wolf optimization
(GWO) are some of the metaheuristic algorithms that have efficiently solved non-linear
and high-computational engineering design problems. Exploration and exploitation are
other unique characteristics that define the functionality of these algorithms. Exploration is
defined as the global search capability of the algorithm, while exploitation is defined as
the capability of algorithm to explore the nearby promising regions. The efficiency of a
metaheuristic algorithm depends on how efficiently the algorithm maintains the balance
between exploration and exploitation. AOA uses high and low dispersion nature of arith-
metic operators to creates this balance. Multiplication and division operators have high
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distributed values, therefore these operators are used in the exploration phase to discover
the optimal solution in a diverse region of search space with the following equations:

xi,j(CIter + 1) =
{

best
(
xj
)
÷ (MOP + ε)×

((
UBj − LBj

)
× µ + LBj

)
, r2 < 0.5

best
(
xj
)
×MOP×

((
UBj − LBj

)
× µ + LBj

)
, otherwise

(20)

where xi,j represents the jth position of the ith solution, best
(
xj
)

is the jth position of the
best obtained solution, UBj and LBj are the upper and the lower bound of the jth position,
ε is a constant parameter, µ is the control parameter that regulates the search process, and
r2 is the random number in the range [0, 1]. The MOP is math optimizer probability and
defined as:

MOP(CIter) = 1− (CIter)
1/α

(MIter)
1/α

(21)

where CIter represents the current iteration, MIter represents the maximum number of
iterations, and α is the constant parameter.

Subtraction and multiplication operators have low distributed values, therefore, these
operators easily find the optimal solution in the areas that were discovered in the ex-
ploration phase. These exploitation operators iteratively reach the solution with the
following equations :

xi,j(CIter + 1) =
{

best
(
xj
)
− (MOP + ε)×

((
UBj − LBj

)
× µ + LBj

)
, r3 < 0.5

best
(
xj
)
+ MOP×

((
UBj − LBj

)
× µ + LBj

)
, otherwise

(22)

where r3 is the random number defined in range [0, 1].
The exploration and exploitation phases are balanced by Math Optimizer accelerated

(MOA) function, which is defined as:

MOA(CIter) = Min + CIter ×
(

Max−Min
MIter

)
(23)

where min and max represent the minimum and the maximum value of the accelerated
function. Exploration phase is executed when the value of r1, which is a random number
in range [0, 1] is greater than MOA, otherwise the exploitation phase is executed.

3.2. Opposition-Based Learning

In 2005, Tizhoosh et al. introduced the phenomenon of opposition-based learning
(OBL) [49]. The basic principle of OBL is that it imitates the opposite relationship among
agents. Over the last few years, artificial intelligence field has experienced tremendous
growth and researchers are exploring and building innovative algorithms so as to enhance
the performance of existing algorithms. OBL is one of the novel concepts that finds
application in metaheuristic [50] and other artificial intelligence algorithms. OBL considers
agents and their opposite counterpart in order to better explore the search space and find
global optimal solution. Figure 1 shows the mechanism of OBL. The fundamental concept
of OBL is outlined as follows:

Let N be a real number in the search space [kL, kU], then its opposite counterpart is
defined as follows: →

N = kL + kU − N (24)

In the higher dimensional space, the N is expressed as:
Nk = [Nk1 , Nk2 , . . . , Nkt ] and defined in the search space [kLt, kUt],

where t = 1, 2, 3, . . . , n. Then, the opposite points are defined as:

→
Nk = kLt + kUt −

[→
Nk1,

→
Nk2, . . . . . . . . . . . . . . . . . .

→
Nkt

]
(25)
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Figure 1. Illustration of opposition-based learning mechanism [2].

3.3. Proposed Algorithm

This section outlines the proposed opposition-based arithmetic optimization algorithm
(OBAOA). In the field of optimization, local optima avoidance capability and convergence
rate are two critical parameters, which define the performance of the algorithm. Most of the
metaheuristic algorithms quickly converges and avoids local optimal solution. However,
some algorithms fail to explore entire search space and get trapped in local optimal solution.
In this area, researchers are exploring new ways such as modification of existing algorithm,
hybridization of two or more algorithms to overcome these limitations.

AOA also has poor exploration capability and did not discover a global optimal solu-
tion and have slow rate of convergence. Thus, in this article, authors have enhanced the
performance of AOA by incorporating the opposition mechanism and have proposed oppo-
sition OBAOA. OBL mechanism allows the algorithm to discover global optimal solution
and improve convergence rate and thereby boost exploration capability of the algorithm.
In OBAOA, the opposition-based principle is first incorporated in the initialization phase
and later in the operational phase. The flow chart of OBAOA is shown in Figure 2 and the
mathematical model is outlined as follows:

Step 1 Initialization: Generate the random candidate solution in the defined space as:

X =

 p1,1 p1,2 . . . . . . p1,d
p2,1 p2,2 . . . . . . p2,d
pn,1 pn,2 . . . . . . pn,d

 (26)

where n is the number of solution and d is the dimension.

Step 2 Opposition Based Learning: Generate the opposite solution in the search space
using Equation (25);

Step 3 (Initialize the constant parameters): Initialize the parameters α, µ and ε;
Step 4 (Fitness evaluation): Evaluate the fitness of opposite candidate solution;
Step 5 (Ranking): Sort the fitness and determine the best solution;
Step 6 (Evaluate constant and time varying parameters): Use Equations (21) and (23) to

estimate the MOA function and MOP and generate random numbers r1, r2, r3 in
the range [0, 1];

Step 7 (AOA candidate solution position updating mechanism):
if r1 > MOA;
update position of each candidate solution using the following mechanism.

Implement exploration phase:

if r1 > 0.5;
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update the position using multiplication model of Equation (20).
Else;
update the position using division model of Equation (20).
Else;

Implement exploitation phase:

if r3 > 0.5;
update the position using addition model of Equation (22).
Else;
update the position using subtraction model of Equation (22).

Step 8 (Monitor the positions of each candidate solution): Determine the opposite candi-
date solution that moves beyond the search space and reinitialize their position
within the boundaries;

Step 9 (Termination criteria): If minimum error or maximum number of iterations is
accomplished the algorithm ends. Otherwise repeat Steps (5) to (8);

Step 10 (Final result): The position of best candidate solution represents the global optimal solution.
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4. Results and Discussion

In this section, a benchmark test research approach was used to evaluate the proposed
algorithm in the case of parameter identification for PEMFC. Table 1 displays the ten
benchmark test functions, one to seven of which are unimodal and the remaining functions
are multimodal. Some well-known meta-heuristic algorithms, such as ant lion optimizer
(ALO) [51], dragonfly algorithm (DA) [52], grasshopper optimization algorithm (GOA) [53],
and multiverse optimization (MVO) [54] are especially compared to assess the precision
and efficiency of the suggested algorithm. The statistical outcomes of benchmark test
functions are shown in Table 2. In this research paper, the benchmark functions are denoted
by the letter “F” accompanied by a number (e.g., F1).
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According to Table 2, the proposed algorithm has the least mean and standard devi-
ation (SD) values except for the F6. In the case of F6, ALO generates the best optimized
value. Based on the benchmark test function, it is asserted that the proposed algorithm
outperforms and outperforms the other compared algorithms in terms of effectiveness
and precision.

Table 1. Benchmark functions.

ID Mathematical Expression Dim Lower Upper Type

F1 f1(x) = ∑n
i=1 x2 30 −100 100 Unimodal

F2 f2(x) = ∑n
i=1|xi|+ ∏n

i=1|x| 30 −10 10 Unimodal

F3 f3(x) = ∑n
i=1

(
∑i

j−1 xj

)
30 −100 100 Unimodal

F4 f4(x) = maxi[|x|, 1 ≤ i ≤ n] 30 −100 100 Unimodal

F5 ∑n−1
i=1

[
100(xi+1 − x2

i )
2
+ (xi − 1)2

]
30 −30 30 Unimodal

F6 ∑n
i=1(|xi + 0.5|)2 30 −100 100 Unimodal

F7 ∑n
i=1 ix4

i + random[0, 1] 30 −1.28 1.28 Unimodal

F8 ∑n
i=1−xi sin

(√
|xi|
)

30 −500 500 Multimodal

F9 ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]
.n 30 −5.12 5.12 Multimodal

F10
−20 exp

(
−0.2

√
1
n ∑n

i=1 x2
i

)
−

exp
(

1
n ∑n

i=1 cos(2πxi)
)

+ 20 + e
30 −32 32 Multimodal

Table 2. Statistical results of benchmark test functions.

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

OBAOA
MEAN 1.54 × 10−122 0 4.05 × 10−112 3.81 × 10−125 2.88 × 10−17 6.8817 × 10−2 7.17 × 10−16 −1.4632 × 104 6 × 10−51 5.33 × 10−43

SD 3.0876 × 10−32 0 1.099 × 10−18 0 2.71 × 10−3 5.4317 × 10−3 1.15 × 10−4 3.0044 × 10−2 1.63 × 10−4 1.82 × 10−11

ALO
MEAN 9.06 × 10−10 1.56 × 10−5 8.02 × 10−5 3.36 × 10−5 5.8065 × 10−3 4.3 × 10−9 4.7488 × 10−2 −2.1542 × 102 1.9899 × 10−3 1.63 × 10−5

SD 7.9531 × 10−5 2.33 × 10−2 4.4256 × 10−4 2.647 × 10−3 4.1108 × 10−2 2.0335 × 10−3 7.6 × 10−1 2.1278 × 103 2.5977 × 10−1 2.001 × 10−2

DA
MEAN 1.2477 × 10−2 5.789 × 10−1 5.137 × 10−2 2.6485 × 10−3 1.5026 × 10−3 1.115 × 10−2 8.381 × 10−3 −2.3522 × 103 1.8527 × 10−1 2.0353 × 10−3

SD 1.485 × 10−1 4.5855 × 10−2 3.1780 × 10−1 9.9573 × 10−2 2.2829 × 10−2 8.8613 × 10−1 2.6488 × 10−1 2.211 × 101 4.2195 × 10−2 6.7603 × 10−2

GOA
MEAN 7.64 × 10−1 2.2149 × 10−2 3.71 × 10−8 1.38 × 10−5 4.5656 × 10−3 1.43 × 10−9 8.905 × 10−3 −3.0710 × 104 3.7095 × 10−3 1.6462 × 10−2

SD 5.2897 × 10−6 2.8652 × 10−1 4.5226 × 10−3 3.6148 × 10−3 4.132 × 10−2 3.9632 × 10−1 1.12 × 10−2 1.3627 × 102 5.2491 × 10−2 2.0027 × 10−1

MVO
MEAN 4.279 × 10−3 1.1512 × 10−2 1.7761 × 10−2 2.7901 × 10−2 2.8803 × 10−3 9.359 × 10−3 1.664 × 10−3 −3.0448 × 101 6.9657 × 10−2 2.245 × 10−2

SD 9.591 × 10−2 3.173 × 10−1 1.622 × 10−1 6.75 × 10−1 4.325 × 10−1 9.839 × 101 2.0981 × 10−1 2.301 × 101 1.0753 × 101 2.62 × 100

To further validate the effectiveness of the proposed OBAOA algorithm, the practical
case of Ballard Mark V PEMFC is considered. The experimental values of voltage and
current are taken from [55,56]. The operating condition and technical specification of
Ballard Mark V PEMFC is illustrated in Table 3. Table 4 depicts the lower and upper search
bounds for the parameters similar to the other authors [57,58]. The simulation results are
compared with the other optimization methods existing in the literature review. Moreover,
to show the competence of OBAOA algorithm, four pre-existing algorithms: AOA [48],
PSO [59], gravitational search algorithm (GSA) [60], and acquilla optimizer (AO) [61]
are employed. For a reasonable comparative evaluation, the number of population and
iterations are set at 30 and 1000, respectively. All simulations were run on a PC with an
Intel (R) Core i5- CPU M370@2.4 GHz 8 GB and the MATLAB R2018b software.
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Table 3. Technical specification and operating condition of PEMFC.

Parameters Ballard Mark V

Number of cells 35
A [cm2] 50.6
l [µm] 178

Jmax [A/cm2] 1.5
PH2 [bar] 1
Po2 [bar] 1

Power [W] 1000
T [K] 343.15

Table 4. Lower and upper bounds of parameters for PEMFC.

Parameters Upper Bound Lower Bound

ζ1 −0.08532 −1.1997
ζ2 × 10−3 6.00 0.8
ζ3 × 10−5 9.80 3.60
ζ4 × 10−4 −0.954 −2.60

λ 24.00 10.00
RC × 10−4 8.00 1

b 0.5 0.0136

4.1. Parameter Optimization of BALLARD MARK V PEMFC

Table 5 demonstrates the optimized value of all parameters by implementing the
OBAOA algorithm. The number of cells connected in series in the Ballard Mark V model
is 35, and the membrane thickness is 178 µm. It is clearly depicted in Table 3 that the
proposed OBAOA method is able to produce the least SSE of 9.03 × 10−4 in comparison to
other optimization methods. Here, SSE is taken for performance evaluation, which is same
as considered by the other authors [58,62].

Table 5. Optimized value of parameters for Ballard Mark V PEM fuel cell.

Parameter/
Algorithm ζ1 ζ2 ζ3 ζ4 λ RC b SSE Time (s)

OBAOA −1.245 1.539 × 10−3 9.45 × 10−5 −1.84 × 10−4 11.315 6.03 × 10−4 0.0490 9.03 × 10−4 3.20
AOA −1.784 3.415 × 10−3 5.13 × 10−5 −1.058 × 10−5 14.711 6.316 × 10−4 0.0856 2.16 × 10−3 11.40
PSO −1.917 4.338 × 10−3 7.19 × 10−5 −1.602 × 10−5 16.285 2.285 × 10−4 0.4635 1.489 × 10−3 15.70
GSA −1.044 8.545 × 10−3 3.60 × 10−5 −9.54 × 10−5 18.345 1 × 10−4 0.0136 1.665 × 102 12.34
AO −1.419 2.116 × 10−3 3.62 × 10−5 −2.391 × 10−5 22.558 7.793 × 10−4 0.4301 1.985 × 102 14.67

IFSO [63] −1.120 3.57 × 10−3 8.01 × 10−5 −15.94 × 10−5 22 1 × 10−4 0.015 0.784 3.80
CGOA [64] −2.120 3.8 × 10−3 7.19 × 10−5 −17.03 × 10−5 23 1 × 10−4 0.042 2.613 5.61
MRFO [65] −1.090 3.82 × 10−3 7.73 × 10−5 −16.28 × 10−5 23 1 × 10−4 1.36 0.85 6.19

FSO [66] −0.950 3.36 × 10−3 7.42 × 10−5 −15.83 × 10−5 22 1 × 10−4 0.029 0.952 6.13
HGWO [57] −0.974 3.451 × 10−3 8.38 × 10−5 −1.129 × 10−4 21.70 8 × 10−4 0.0136 2.369 × 10−3 -

Furthermore, as depicted in Table 6, the minimum and maximum value of internal
absolute error (IAE) between experimental and simulated values is 0.0003 and 0.0139,
respectively. The characteristics curve of current-voltage and power-voltage for Ballard
Mark V PEMFC is redrawn and presented in Figure 3, based on best-optimized parameters
obtained by executing the OBAOA algorithm. This implies that the presented OBAOA
technique outperforms other methods.

4.2. Convergence Analysis

Figure 4 describes the convergence curve for the Ballard Mark V PEMFC to evaluate
the computational capability of the OBAOA technique. Figure 4 shows that the developed
OBAOA algorithm significantly outperformed the AOA, PSO, GSA, and AO algorithms
in terms of convergence speed and produces a realistic solution for the same number of
function evaluations (i.e., 1000).
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Table 6. Estimated values of voltage and power for Ballard Mark V PEMFC.

Imeasured (A) Vmeasured (V) Vestimated (V) Absolute Error Pmeasured (W) Pestimated (W) Absolute Error

5.4 0.92 0.9067 0.0132 4.968 4.8965 0.0714
10.8 0.88 0.8782 0.0017 9.504 9.4846 0.0193
16.2 0.85 0.8496 0.0003 13.77 13.7641 0.0058
21.6 0.82 0.8210 0.0010 17.712 17.7352 0.0232
27 0.79 0.7925 0.0025 21.33 21.3977 0.0677

32.4 0.77 0.7639 0.0060 24.948 24.7517 0.1962
37.8 0.74 0.7353 0.0046 27.972 27.7973 0.1746
43.2 0.72 0.7068 0.0131 31.104 30.5343 0.5696
48.6 0.69 0.6782 0.0117 33.534 32.9628 0.5711
54 0.66 0.6496 0.0103 35.64 35.0829 0.5570

59.4 0.62 0.6211 0.0011 36.828 36.8944 0.0664
64.8 0.6 0.5925 0.0074 38.88 38.3974 0.4825
70.2 0.55 0.5639 0.0139 38.61 39.5919 0.9819

Sum of AE 8.68 × 10−2
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The minimum value of SSE is produced by OBAOA. The values of SSE are 9.03 × 10−4,
2.16 × 10−3, 1.489 × 10−3, 1.665 × 102, and 1.985 × 102, respectively for OBAOA, AOA,
PSO, GSA, and AO.

4.3. Statistical and Robustness Analysis

This section provides the statistical evaluations based on mean, minimum, maximum,
and standard deviation in terms of SSE for all earlier suggested methodologies, as well as a
comparison with the accuracy and robustness of the various algorithms in a total of thirty
runs, as shown in Table 7. The mean of the SSE is calculated to evaluate the algorithms’
accuracy, and the standard deviation is calculated to evaluate the dependability of the
implemented parameter estimation technique.

Table 7. Statistical results of Ballard Mark V Fuel cell.

Algorithms Minimum Maximum Average SD

OBAOA 9.030 × 10−4 2.274 × 102 1.694 × 10−3 2.054 × 10−5

AOA 2.166 × 10−3 2.403 × 102 1.957 × 10−2 3.185 × 10−3

PSO 1.489 × 10−3 3.357 × 101 1.818 × 10−2 1.101 × 10−3

GSA 1.665 × 102 5.767 × 102 1.675 × 10−1 1.506 × 10−2

AO 1.985 × 102 1.985 × 101 1.983 × 10−2 2.116 × 10−3

The statistical analysis outcomes reveal that the developed OBAOA is the most
accurate and efficient technique for parameter estimation because it has a very low
standard deviation.

The Friedman rank test [67] is applied to determine the relevance of the data in
addition to the conventional statistical analysis, i.e., best, mean, worst, and standard
deviation. Furthermore, for each analyzed PV module, this non-parametric test is used to
rank the algorithms. The null hypothesis H0 (p-value > 5%) in the Friedman test suggests
no notable change between the compared algorithms. The opposite hypothesis H1 signifies
a notable difference between the compared algorithms for all 30 runs. In this test, each
algorithm is given a rank based on its performance. Small ranks determine the best
algorithms. Table 8 displays the Friedman rank test results at a 95% confidence level.
According to Table 8, the OBAOA has the first rank based on the Friedman ranking test
results, followed by PSO, AOA, GSA, and AO.

Table 8. Friedman ranking test for Ballard Mark V PEMFC.

Algorithms Friedman Ranking

OBAOA 1
AOA 3
PSOF 2
GSA 4
AO 5

5. Conclusions

The OBAOA algorithm is proposed in this paper to recognize the complicated param-
eters of the PEMFC model. In the present work, the practical reading of Ballard Mark V
PEMFC is considered for the identification of seven unknown parameters (ζ1, ζ2, ζ3, ζ4, λ,
Rc, and b). Based on the results obtained, the findings are as follows.

• An enhanced version of OBAOA is introduced by incorporating the opposition-based
learning mechanism.

• SSE is taken as an objective function for the optimization of parameters.
• The proposed algorithm is tested using ten benchmark test functions (seven unimodal

and three multimodal). Furthermore, the convergence graph as well as the I-V and
P-V characteristics curves support the precision of the anticipated algorithm.
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• The proposed OBAOA technique is easy to implement with low computational complexity.
• The SSE value is minimum (9.03 × 10−4) compared to standard AOA and other

predefined algorithms with least computational time i.e., 3.20 s.
• Friedman ranking test is carried out, which clearly depicts that the OBAOA algorithm

outperforms the other compared algorithms.

It is also worth noting that the proposed formulation will pique the attention of
the fuel cell community, both researchers and practitioners, due to its capacity to solve
problems effectively.
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