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Abstract: With growing evidence of deep learning-assisted smart process planning, there is an essen-
tial demand for comprehending whether cyber-physical production systems (CPPSs) are adequate in
managing complexity and flexibility, configuring the smart factory. In this research, prior findings
were cumulated indicating that the interoperability between Internet of Things-based real-time pro-
duction logistics and cyber-physical process monitoring systems can decide upon the progression of
operations advancing a system to the intended state in CPPSs. We carried out a quantitative literature
review of ProQuest, Scopus, and the Web of Science throughout March and August 2021, with search
terms including “cyber-physical production systems”, “cyber-physical manufacturing systems”,
“smart process manufacturing”, “smart industrial manufacturing processes”, “networked manufac-
turing systems”, “industrial cyber-physical systems,” “smart industrial production processes”, and
“sustainable Internet of Things-based manufacturing systems”. As we analyzed research published
between 2017 and 2021, only 489 papers met the eligibility criteria. By removing controversial or
unclear findings (scanty/unimportant data), results unsupported by replication, undetailed content,
or papers having quite similar titles, we decided on 164, chiefly empirical, sources. Subsequent
analyses should develop on real-time sensor networks, so as to configure the importance of artificial
intelligence-driven big data analytics by use of cyber-physical production networks.

Keywords: cyber-physical; production; system; artificial intelligence; Internet of Things; algorithm

1. Introduction

There is an emergent body of literature in relation to how Cyber-Physical Systems
(CPS) address the integration of Internet of Things sensing networks, computational
applications, and artificial intelligence-based decision-making algorithms with physical
devices, being engineered as an interconnection between cyber and physical components.
This is crucial in the advancement of smart manufacturing by use of cloud computing, social
networking, and big data [1–3]. Cyber-Physical Production Systems (CPPSs) develop out
of the deployment of CPS principles to manufacturing environments. CPPSs represent an
elaborate and fluid network [4–7] of services and shop floor components (e.g., sensors and
actuators), can adjust swiftly to new manufactured items or product variants, can optimize
networking among smart connected devices in the production environment, and can
provide self-governance, self-organization, and interoperability across smart networked
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factories, thus optimizing the resilience of manufacturing systems. CPPSs are crucial in
advancing sustainable manufacturing Internet of Things and smart factories [8–11], by
harnessing wireless sensor networks for controlling objectives, facilitating integration of
industrial data, and supervising and coordinating real objects and operations.

The purpose of this research is to inspect the recently published material on CPPSs and
integrate the understandings associated with Internet of Things-based decision support
systems, interconnected sensor networks, deep learning-assisted smart process planning,
and automatic big data-driven real-time production logistics. By analyzing the latest
(2017–2021) and most important (ProQuest, Scopus, and the Web of Science) sources, our
systematic review has attempted to determine that cyber-physical production systems
(CPPS) are adequate in managing complexity and flexibility, configuring the smart factory.
CPPSs inspect, supervise, and automate business operations, optimizing manufacturing
and logistic processes across smart shop floor environments. Smart autonomous devices
are pivotal in planning and control systems as Internet of Things elements of CPPSs. The
substantiality and uniqueness of the research are highlighted by clarifying how cyber-
physical system-based smart factories optimize the networking among equipment, sensors
and big data-driven systems, constituting a research issue of high interest. Cyber-physical
system-based manufacturing configures knowledge-intensive industrial autonomous set-
tings in which smart customized items are produced through deep learning-assisted smart
process planning [12–17], real-time advanced analytics, and cognitive automation. Cloud
computing, robotic wireless sensor networks, and artificial intelligence data-driven Internet
of Things systems are essential in enabling cyber-physical process monitoring systems.

The research topic advanced throughout our research is whether sustainable cyber-
physical production systems developed on functional and behavioral patterns [18–23] can
address the inconveniences of disruptive Industry 4.0-related production environments.
Accurate and reliable assessments of product quality through cyber-physical system-based
real-time monitoring assist in optimizing manufacturing processes and big data-driven
decision-making instantaneously. In this article, previous findings were gathered, indi-
cating that Internet of Things-based real-time production logistics, automated production
systems, industrial big data analytics, and deep learning-assisted smart process plan-
ning [24–29] facilitate continuous monitoring of smart shop floors. Sustainable Industry
4.0 wireless networks can shape effective and robust manufacturing by automatically
monitoring production equipment in a flexible fashion. Our chief purpose is to clarify that
artificial intelligence data-driven Internet of Things systems necessitate high-performance
operations and adjustable production systems [30–35] by use of flexible and real-time
scheduling. CPPSs and sustainable manufacturing Internet of Things reconfigure how
shop floor operations are designed and carried out. This research contributes to the lit-
erature on cyber-physical system-based smart factories by clarifying that manufacturing
process monitoring systems have advanced as decentralized reconfigurable networked
entities by use of cutting-edge intelligent machines. Industrial enterprises advance as
wireless sensor networks to constantly control the operations of their plants. We specifi-
cally show that cyber-physical production systems develop by the integrative processes of
sustainable industrial big data, artificial intelligence-based decision-making algorithms,
and Internet of Things sensing networks in cyber-physical system-based smart factories.
This systematic review endeavors to elucidate whether the interoperability between In-
ternet of Things-based real-time production logistics, big data-driven decision support
systems, and cyber-physical process monitoring systems can decide upon the progression
of operations [36–38] advancing a system to the intended state in CPPSs. As a result of the
advancement of CPPSs, self-governing monitoring of manufacturing processes is indis-
pensable in smart production processes. Our contribution is analyzing and interpreting
connected research findings which prove that industrial cyber-physical systems are pivotal
in sustainable smart manufacturing, and integrating control engineering with artificial
intelligence-based decision-making algorithms to set up cognitive and self-configuring
plants. Smart connected devices have heterogeneous processing and manufacturing ca-
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pabilities and optimization operation mechanisms. We clarify that leveraging artificial
intelligence data-driven Internet of Things systems is pivotal in achieving smart industrial
value creation through real-time process monitoring, sustainable Industry 4.0 wireless
networks, and Industry 4.0-based manufacturing systems. Condition-based monitoring
and predictive maintenance require real-time sensor data through Internet of Things-based
decision support systems.

2. Methodology

We carried out a systematic review covering recently published material on artificial
intelligence-based decision-making algorithms, Internet of Things sensing networks, cogni-
tive automation, and deep learning-assisted smart process management in cyber-physical
production systems by harnessing Preferred Reporting Items for Systematic Reviews and
Meta-analysis (PRISMA) guidelines. We considered only recent original empirical research
or review articles (2017–2021) written in English, indexed in ProQuest, Scopus, and the
Web of Science, and covering particular search terms. We used the Systematic Review Data
Repository, a software program for the acquisition, processing, and analysis of data. The
quality of the indicated scientific sources was appraised by deploying the Mixed Method
Appraisal Tool. Extracting and inspecting publicly available documents (scholarly articles)
as evidence, we required no procedural ethics permission before initiating our research
(Figure 1).

Figure 1. PRISMA flow diagram describing the search results and screening.
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We carried out a quantitative literature review of ProQuest, Scopus, and the Web of
Science throughout March and August 2021, with search terms including “cyber-physical
production systems”, “cyber-physical manufacturing systems”, “smart process manufac-
turing”, “smart industrial manufacturing processes”, “networked manufacturing systems”,
“industrial cyber-physical systems”, “smart industrial production processes” and “sustain-
able Internet of Things-based manufacturing systems”. The search terms were determined
as being the most employed words or phrases across the investigated literature. As we
analyzed research published between 2017 and 2021, only 489 papers met the eligibility
criteria. By removing controversial or unclear findings (scanty/unimportant data), results
unsupported by replication, undetailed content, or papers having quite similar titles, we
decided on 164, chiefly empirical, sources (Tables 1 and 2).

Table 1. Topics and types of scientific products identified and selected.

Topic Identified Selected

Cyber-physical production systems 98 42
Cyber-physical manufacturing systems 82 30

Smart process manufacturing 63 19
Smart industrial manufacturing processes 58 16

Networked manufacturing systems 53 16
Industrial cyber-physical systems 50 15

Smart industrial production processes 46 14
Sustainable Internet of Things-based manufacturing systems 39 12

Type of Paper

Original research 423 159
Review 29 5

Conference proceedings 22 0
Book 8 0

Editorial 7 0

Source: Processed by the authors. Some topics overlap.

Table 2. General synopsis of evidence regarding focus topics and descriptive outcomes (research findings).

Intelligent plant modules and smart factory automation have advanced CPPSs that are
pivotal in collision identification, impedance monitoring, and assimilating machine
learning-based tasks. Wireless sensor technology monitor manufacturing assets and
networked production or logistics business operations in real time. Cyber-physical

system-based manufacturing configures knowledge-intensive industrial autonomous
settings in which smart customized items are produced through deep

learning-assisted smart process planning, real-time advanced analytics, and cognitive
automation. Groundbreaking technologies furthering cyber-physical enterprise
systems regarding real-time decision-making determined from streamlined data

necessitate networked sensor and operational systems. The scheduling algorithms can
become cognizant of the heterogeneous data coming from the industrial unit in

relation to relevance and convenience of the resources when carrying out assignments.

Bell, 2020; Brown et al., 2020; Cohen, 2021;
Edwards, 2021; Graessley et al., 2019;

Grant, 2021; Hamilton, 2021; Islam et al.,
2019; Keane et al., 2020; Lewis, 2020;

Ma et al., 2021; Mircică, 2019; Mitchell,
2021; Nelson, 2020; Panetto et al., 2019;
Popescu Ljungholm, 2019; Preuveneers
and Ilie-Zudor, 2017; Townsend, 2021;
Walker, 2020; Wu et al., 2021; Yao et al.,

2019

Adaptive production systems are crucial in sustainable manufacturing Internet of
Things, deriving from the demand for robust characteristics of the system to react to

disruption as product changes or alterations to operational parameters. CPPSs
autonomously identify and react to inconstant and unplanned situations on the shop

floor. Because of the growing volume of modular components and systems,
interwoven and heterogeneous factory systems are required for big data-driven

decision-making processes and collaborative control in sustainable manufacturing
routines. Internet of Things-based real-time production logistics, robotic wireless

sensor networks, and deep learning-assisted smart process planning facilitate
continuous monitoring of smart shop floors.

Ansari et al., 2018; Balica, 2019;
Bennett et al., 2020; Berger et al., 2021;

Bergs et al., 2020; Engel et al., 2018;
Gibson, 2021; Konecny et al., 2021; Lewis,
2021; Otto et al., 2018; Panetto et al., 2019;

Peters et al., 2020; Riley et al., 2021;
Sanderson et al., 2019; Stehel et al., 2021;

Suler et al., 2021; Suvarna et al., 2021;
Valaskova et al., 2021; Wells et al., 2021;

Yao et al., 2018
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Table 2. Cont.

In CPPSs, smart connected devices team up automatically to constantly optimize
manufacturing processes, manage disturbances, and adjust to variable conditions. The
demand for increasingly customized, smart, and sustainable manufactured items and
the swift growth of cyber-physical system-based real-time monitoring have resulted in
the development of Internet of Things-based decision support systems. The capacity
of sustainable cyber-physical production systems to reconfigure in conformity with

variable demands enables a rise in deployment and a decrease in expenses and
alterations in time. Advancing data-driven monitoring systems and leveraging them

across a CPPS platform may result in large-scale supervision and an increase in
efficiency during the sustainable product lifecycle management in plants.

Biró et al., 2021; Clarke, 2020; Costea,
2020; Davidson, 2020; Dawson, 2021;

Deng et al., 2018; Ionescu, 2019 a; Jiang,
2018; Johnson, 2020; Kovacova et al., 2019;
Lăzăroiu et al., 2021; Leiden et al., 2021;
Lowe, 2021; Miller, 2020; Mircică, 2020;
Moghaddam et al., 2018; Novak et al.,
2021; Rojas and Rauch, 2019; Russell,
2020; Taylor, 2021; Walker et al., 2020

CPPSs constitute cutting-edge technologies for the adoption of smart manufacturing
that is effective only when processing standards and application procedures for the

heterogeneous data, which can modify instantaneously due to the character of a
factory, are carried out. CPPSs are redesigning hierarchical control arrangements into

distributed structures in which the components operate autonomously. Data
processing to collect significant information and physical value creation in the

production operations can be attained through the assimilation of the enterprise
resource coordination and manufacturing execution systems. Embedded and

coordinated value networks provide customers with sustainable mass-personalized
products and services, and further real-time adaptation to fluid alterations in user

demand, shop floor environments, and supply/value networks.

Brown, 2021; Chessell and Negurit,ă, 2020;
Cooper et al., 2021; Cruz Salazar et al.,

2019; Dias-Ferreira et al., 2018;
Elhabashy et al., 2019; Gordon, 2021;

Gödri et al., 2019; Green and Zhuravleva,
2021; Harris, 2021; Jiang et al., 2018;

Kang et al., 2019; Morgan and O’Donnell,
2018; Pera, 2019; Popescu et al., 2021;

Throne and Lăzăroiu, 2020; Tomiyama
and Moyen, 2018; Vrabič et al., 2018;

Wang et al., 2018

Companies expand their product portfolio and try to decrease their manufacturing
time to maximize earnings and market presence, indirectly exacerbating the intricacy

of the operational processes. The production system has to inspect the tasks to
integrate with the smart connected devices and perform them unsupervised and

automatically. CPPSs and sustainable manufacturing Internet of Things reconfigure
how shop floor operations are designed and carried out. Deployment of artificial

intelligence-based decision-making algorithms, deep learning-assisted smart process
planning, real-time sensor networks, and cloud technologies are instrumental in

remote maintenance support.

Bekken, 2019; Coatney and Poliak, 2020;
Davies, 2020; Jantunen et al., 2018; Lyons
and Lăzăroiu, 2020; Miller, 2020; Morgan

and O’Donnell, 2017; Neubauer et al.,
2017; Nica et al., 2020; O’Donovan et al.,
2019; Peters, 2020; Popescu et al., 2020;

Rossit and Tohmé, 2018; Scott et al., 2020;
Suvarna et al., 2021; Vogel-Heuser et al.,

2021

Cloud computing and service-oriented designs can network and develop physical
factory performance to the cyber world in terms of engineering. By harnessing
data-driven modeling, cyber-physical process monitoring systems will reshape

manufacturing as intuitive and automated. Smart manufacturing harnesses predictive
production systems systematically. In smart industrial units, CPPSs control physical

operations, configure a digital duplicate of the physical world, and decisions are
decentralized.

Davis et al., 2020; Duffie et al., 2017;
Francalanza et al., 2017; Hawkins, 2021;

Ionescu, 2020 a, b; Jiang et al., 2018;
Kral et al., 2019; Lee et al., 2017;

Mladineo et al., 2017; Moore, 2020;
Nica et al., 2019; Schneider et al., 2019;

Shaw et al., 2021; Tang et al., 2018;
Williams, 2020

Variable manufacturing systems and product demands derive from inconstant
customer behavior. Tools for assessing and managing enhancements in the

performance, the soundness, and the responsiveness of manufacturing systems are
required. CPPSs improve the flexibility and output of smart manufacturing, adjusting

the design and quality of products to fluid market demands and customized
requirements. The convergence of standard automation systems within CPPSs,

together with service-oriented designs and fog, edge, and cloud computing
technologies, are developing sustainable manufacturing Internet of Things and

cyber-physical process monitoring systems.

Bourke et al., 2019; Davidson, 2020; Duft
and Durana, 2020; Engelsberger and

Greiner, 2018; Gray-Hawkins and
Lăzăroiu, 2020; Harrower, 2019; He et al.,
2021; Kovacova et al., 2019; Lăzăroiu et al.,
2020; Liu et al., 2019; Noack, 2019; Sinha
and Roy, 2019; Tan et al., 2019; Wingard,

2019; Yu et al., 2017 a, b

Cyber-physical machine tools can develop Industry 4.0-based equipment regarding
intelligence and self-governance, by integrating physical devices and machining
operations with computation and networking performance. CPPSs provide the
technological basis for the digitalization and decentralization of manufacturing

processes, and their integration across plant networks. Heterogeneous instantaneous
transmission scheduling algorithms handle the distribution of the channel resources,
but cyber and physical units have distinct demands to enhance the quality of network

performance. The fluid assessment, integration, and positioning of services across
CPPSs constitute elements of the process control throughout the consolidated

modeling and appraisal of operational phases.

Adamson et al., 2017; Andreev et al., 2021;
Durana et al., 2021; Freier and Schumann,

2021; Grundstein et al., 2017; Ionescu,
2019 b; Ionescu, 2020 c;

Kannengiesser et al., 2021; Kliestik et al.,
2020; Liu et al., 2017; Meyers et al., 2019;
Penas et al., 2017; Taylor, 2020; Tucker,

2021; Vogel-Heuser et al., 2017;
Wade et al., 2021; Welch, 2021,

Zahid et al., 2021
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Table 2. Cont.

CPPSs can be thoroughly and steadily engineered and during their lifecycle in smart
manufacturing through Internet of Things sensing networks, real-time process

monitoring, and artificial intelligence-based decision-making algorithms. Artificial
intelligence data-driven Internet of Things systems necessitate high-performance

operations and adjustable production systems by use of flexible and real-time
scheduling. Sustainable Industry 4.0 wireless networks can shape effective and robust

manufacturing by automatically monitoring production equipment in a flexible
fashion. CPPSs ensure a thorough networking of the smart connected devices and

resources integrated in manufacturing processes and, consequently, enhanced
availability of collected data. Computational devices can be deployed as monitoring
and interaction technologies and as heterogeneous collaborative devices and modes of

networking to configure crucial tools in operating, maintaining, and upgrading
data-driven CPPSs.

Allen, 2020; Bennett, 2021; Bordel et al.,
2017; Cunningham, 2021; Davies et al.,

2020; Grayson, 2020; Harrison et al., 2021;
Hyers, 2020; Mourtzis and Vlachou, 2018;

Pivoto et al., 2021; Popescu et al., 2020;
Robinson, 2020; Sinha and Roy, 2021;

Tomiyama and Moyen, 2018; Smith, 2020;
Watkins, 2021; Weichhart et al., 2021;

Williams et al., 2020; Wright and Birtus,
2020 Dhiman and Röcker, 2021

Source: Processed by the authors.

3. Artificial Intelligence-Based Decision-Making Algorithms, Smart Factory
Performance, and Industry 4.0-Based Manufacturing Systems in CPPSs

Intelligent plant modules and smart factory automation [39,40] have advanced CPPSs
that are pivotal in collision identification, impedance monitoring, and assimilating ma-
chine learning-based tasks. For collective decision-making, CPPSs necessitate processing
of collective data, taking into account the feasible knowledge, operational analysis, and
fluid systems resilient to the instantaneous dynamic alterations across the shop floor and
within the networked infrastructure. Because of the growing volume of modular compo-
nents and systems [41–43], interwoven and heterogeneous factory systems are required
for big data-driven decision-making processes and collaborative control in sustainable
manufacturing routines (e.g., closed-loop supply chains). The inconstant environment
necessitates adjustable patterns through learning, while additional mechanisms comprise
self-regulation by smart agents. Operational infrastructure should enable loose coupling,
cyber-physical system-based real-time monitoring, and supply networks.

In CPPSs, smart connected devices team up automatically to constantly optimize
manufacturing processes, manage disturbances, and adjust to variable conditions [44–47],
articulating the relevance of networking and control systems. Increased collected data
would lead to configuring resilient manufacturing systems adjustable to market demand
and holding patterns in the logistic chains to obtain exemplary values of the intended key
performance indicators. Industry 4.0-based manufacturing systems require the networking
of all devices integrated across the shop floor. Data processing to collect significant infor-
mation and physical value creation in the production operations [48–50] can be attained
through the assimilation of the enterprise resource coordination and manufacturing exe-
cution systems. The deployment of networked monitoring systems across smart factories
configures big data-driven manufacturing control architecture. The interoperability be-
tween Internet of Things-based real-time production logistics and cyber-physical process
monitoring systems can decide upon the progression of operations advancing a system
to the intended state in CPPSs. Internet of Things-based decision support systems will
enhance the quality of big data-driven decision-making processes, due to the extensive con-
venience of information regarding smart networked factories. Smart autonomous devices
are pivotal in planning and control systems as Internet of Things elements of CPPSs.

CPPSs and sustainable manufacturing Internet of Things reconfigure how shop floor
operations are designed and carried out [51–54], decentralizing production by deploying
networked cyber-physical production resources. Heterogeneous smart connected devices
and processes across industrial monitoring interact in product decision-making information
systems. Industrial cyber-physical systems are pivotal in sustainable smart manufactur-
ing, by integrating control engineering with artificial intelligence-based decision-making
algorithms to set up cognitive and self-configuring plants. Cloud computing and service-
oriented designs can network and develop physical factory performance to the cyber world
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in terms of engineering, monitoring and Internet of Things sensing networks [55–57] for
increased reliability and resilience. The latency and soundness of cyber-physical system-
based real-time monitoring implemented by using cloud and fog computing can result in
instantaneous integrated deep learning-engineering applications. High accuracy produc-
tion necessitates the leverage of cutting-edge signal processing and analytics to supervise,
handle, and control manufacturing processes. CPPSs are instrumental in instantaneous
heterogeneous data collection, inspection, and distribution by use of interoperability sup-
port integrated in process monitoring systems. Multi-scalable signal processing and big
data-driven decision-making operations can be deployed for both user-driven and partially
autonomous manufacturing support systems. CPPSs redesign decision-making processes
(e.g., dynamic, distributed, and inverse scheduling) across manufacturing environments,
assimilating heterogeneous functionalities in Internet of Things sensing networks.

Cyber-physical system-based manufacturing configures knowledge-intensive indus-
trial autonomous settings [58–61] in which smart customized items are produced through
deep learning-assisted smart process planning, real-time advanced analytics, and cognitive
automation. CPPSs inspect, supervise, and automate business operations, optimizing
manufacturing and logistic processes across smart shop floor environments: big data per-
formance, cloud services, and cyber-physical predictive decision support connected devices
can boost productivity and efficiency. Industrial enterprises advance as wireless sensor
networks to constantly control the operations of their plants. Wireless sensor technology
monitors manufacturing assets and networked production or logistics business opera-
tions in real time [62–64], increasing output, improving resource efficiency, diminishing
interruptions, or reducing discontinuation. Wireless sensor networks are multipurpose
and inexpensive to install for impermanent and gradual gathering of further data points,
facilitating rapid continuous integration into industrial production networks comprising
Internet of Things smart devices, mobile applications, and cloud services. Context-aware
behavior is decisive in industrial manufacturing settings to set up smart production sys-
tems and applications across robotic wireless sensor networks, in terms of operational
tracking, zero-defect manufacturing, and data-driven maintenance optimization. Effective
and robust data gathering is essential in configuring context-adaptive decision support con-
nected systems that incessantly supervise production processes in flux. Context-awareness
and robotic wireless sensor networks assist in integrating smart connected devices and can
decrease manufacturing errors. Internet of Things-based real-time production logistics and
deep learning-assisted smart process planning [65–67] facilitate continuous monitoring of
smart shop floors. Effective upgrading of business operations and computational resource
use typically depends on data intensive processes. Cloud computing, real-time sensor
networks, and artificial intelligence data-driven Internet of Things systems are essential
in enabling cyber-physical process monitoring systems: a massive volume of industrial
device data are assimilated and product decision-making information systems are analyzed,
providing the adjustability to customize scale to heterogeneous workloads to automate and
enhance business operations and facilitating big data analytics, articulating predictable
performance across industrial wireless networks of production facilities and manufacturing
processes that are interconnected, thus leading to a cost-efficient supply chain. Data-driven
software and intelligence are integrated into industrial manufacturing systems to cut down
expenses and optimize the quality, performance, and adjustability of production.

The demand for increasingly customized, smart, and sustainable manufactured items,
and the swift growth of cyber-physical system-based real-time monitoring [68–71], have
resulted in the development of Internet of Things-based decision support systems. The
manufacturing sector is driven by big data-driven decision-making processes that enable
accelerated production, decreased expenses, and diminished downtime by harnessing
artificial intelligence data-driven Internet of Things systems across industrial enterprises
and integrated sensing and computing technologies. Embedded and coordinated value
networks that harmonize and distribute manufacturing resources online, digitalization
and assimilation of manufacturing resources on the Internet of Things-based real-time
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production logistics as dynamic, reliable, and on-demand micro-services, and data-driven
and networked CPPS entities capable of instantaneous and self-governing decision-making
facilitated by cognitive automation [72–74] provide customers with sustainable mass-
personalized products and services, and further real-time adaptation to fluid alterations
in user demand, shop floor environments, and supply/value networks. As the physical
resources of data-driven production systems are formalized as smart factory components
with heterogeneous features, the supplied operations or functions should be set up as
conventional services to facilitate robust and on-demand production for value network
assimilation and assistance. The demand for customized, networked, smart, and sus-
tainable products and services supported by artificial intelligence-based decision-making
algorithms are progressively restructuring the manufacturing sector. Digitalization and
assimilation of manufacturing resources on the Internet of Things-based real-time produc-
tion logistics as on-demand services further value network consolidation and cooperation
throughout the industrial unit.

Deployment of artificial intelligence-based decision-making algorithms, deep learning-
assisted smart process planning, real-time sensor networks, and cloud technologies [75–77]
are instrumental in remote maintenance support. Leveraging massive volumes of data
gathered on equipment and their processing through product decision-making information
systems enable the adoption of groundbreaking techniques for condition-based mainte-
nance. Artificial intelligence-based decision-making algorithms, robotic wireless sensor
networks, and Internet of Things-based real-time production logistics are decisive in the
development of smart CPPSs and Industry 4.0-based manufacturing systems. Industry
4.0-based manufacturing systems aim for breakthroughs, cognitive automation, increased
feedback to customer demands, and artificial intelligence-based decision-making algo-
rithms. By harnessing data-driven modeling, cyber-physical process monitoring systems
will reshape manufacturing as intuitive and automated [78–80], leading to the decentraliza-
tion of production processes. Real-time big data analytics, cognitive automation, Internet
of Things-based decision support systems, and production process optimization are pivotal
in configuring CPPS-enabled data-driven manufacturing. Smart networked factories will
be driven by the integration of robotic wireless sensor networks and industrial big data
analytics for cyber-physical process monitoring systems. Throughout the organized layers
of CPPS-enabled smart networked factories, big data-driven manufacturing facilitates
decentralized production through automation and interconnected industrial units. The sub-
systems throughout decentralized production collect and share data with heterogeneous
industrial units to make coherent decisions. Leveraging descriptive, causal, predictive, and
prescriptive analytics is reconfiguring manufacturing into value-based and big data-driven
production facilities by use of designed and informed decision-making (Table 3).

Table 3. Synopsis of evidence regarding focus topics and descriptive outcomes (research findings).

Intelligent plant modules and smart factory automation have advanced CPPSs that are
pivotal in collision identification, impedance monitoring, and assimilating machine
learning-based tasks. Wireless sensor technology monitor manufacturing assets and
networked production or logistics business operations in real time. Cyber-physical

system-based manufacturing configures knowledge-intensive industrial autonomous
settings where smart customized items are produced through deep learning-assisted

smart process planning, real-time advanced analytics, and cognitive automation.

Brown et al., 2020; Edwards, 2021;
Hamilton, 2021; Islam et al., 2019;
Mitchell, 2021; Panetto et al., 2019;

Popescu Ljungholm, 2019; Preuveneers
and Ilie-Zudor, 2017; Townsend, 2021

Because of the growing volume of modular components and systems, interwoven and
heterogeneous factory systems are required for big data-driven decision-making

processes and collaborative control in sustainable manufacturing routines. Internet of
Things-based real-time production logistics and deep learning-assisted smart process

planning facilitate continuous monitoring of smart shop floors.

Gibson, 2021; Konecny et al., 2021; Lewis,
2021; Suler et al., 2021; Valaskova et al.,

2021; Wells et al., 2021
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Table 3. Cont.

In CPPSs, smart connected devices team up automatically to constantly optimize
manufacturing processes, manage disturbances, and adjust to variable conditions,

articulating the relevance of networking and control systems. The demand for
increasingly customized, smart, and sustainable manufactured items and the swift
growth of cyber-physical system-based real-time monitoring have resulted in the

development of Internet of Things-based decision support systems.

Dawson, 2021; Johnson, 2020;
Kovacova et al., 2019; Miller, 2020;

Mircică, 2020; Moghaddam et al., 2018;
Novak et al., 2021; Rojas and Rauch, 2019

Data processing to collect significant information and physical value creation in
production operations can be attained through the assimilation of the enterprise

resource coordination and manufacturing execution systems.

Brown, 2021; Cooper et al., 2021; Gordon,
2021; Green and Zhuravleva, 2021; Harris,

2021; Popescu et al., 2021

CPPSs and sustainable manufacturing Internet of Things reconfigure how shop floor
operations are designed and carried out. Deployment of artificial intelligence-based

decision-making algorithms, deep learning-assisted smart process planning, real-time
sensor networks, and cloud technologies are instrumental in remote maintenance

support.

Jantunen et al., 2018; Morgan and
O’Donnell, 2017; Neubauer et al., 2017;

O’Donovan et al., 2019; Rossit and Tohmé,
2018; Suvarna et al., 2021;
Vogel-Heuser et al., 2021

Cloud computing and service-oriented designs can network and develop physical
factory performance to the cyber world in terms of engineering, monitoring, and

Internet of Things sensing networks for increased reliability and resilience. By
harnessing data-driven modeling, cyber-physical process monitoring systems will

reshape manufacturing as intuitive and automated.

Hawkins, 2021; Ionescu, 2020 a, b; Moore,
2020; Shaw et al., 2021; Williams, 2020

4. Internet of Things Sensing Networks, Sustainable Product Lifecycle Management,
and Real-Time Big Data Analytics in CPPSs

CPPSs improve the flexibility and output of smart manufacturing [81–84], adjusting
the design and quality of products to fluid market demands and customized requirements.
Cyber-physical system-based smart factories optimize the networking among equipment,
sensors and big data-driven systems, and enhance the self-governance, soundness, agility,
and responsiveness of sustainable smart manufacturing. Real-time wireless networks can
collect heterogeneous information in the underlying applications and perform mining,
inspection, and assessment of supply chain logistics data. The variable dynamics of indus-
trial wireless sensor–actuator networks across CPPSs necessitates incessant amendments
of the system states and continuing operations by sharing high-priority and event-driven
data to preserve the stability of the system so that the shop floor does not shut down.
Heterogeneous instantaneous transmission scheduling algorithms handle the distribution
of the channel resources [85–87], but cyber and physical units have distinct demands to
enhance the network performance. Industrial robot applications are developing swiftly
as a result of cyber-physical system-based real-time monitoring. As demands with agile
product iterations are progressively variable and purpose-built, the assembly operations of
industrial robots confront fluctuating restructuring and redesign, ubiquitous sensing, and
networking in real time. Industrial robot assembly process designing, coordination, and
scheduling developed on instantaneous data collection and fusion is pivotal in ground-
breaking plant communication and computing technologies (e.g., edge computing, wireless
connected sensors, and actuator networks). The integration, networking, and interaction of
connected devices with instantaneous data collection and fusion articulate the multi-agent
pattern of industrial robot assembly process by use of smart planning and scheduling
algorithms.

CPPSs can be thoroughly and steadily engineered during their lifecycle in smart man-
ufacturing through Internet of Things sensing networks, cognitive automation, real-time
process monitoring, and artificial intelligence-based decision-making algorithms [88–93],
even though inconstant integration routines may lead to variable data patterns at het-
erogeneous levels of production processes. The shift from planning to the operational
phase impacts the harnessing of physical tools on the industrial unit and brings about a
relevant realignment of logistical requirements throughout the plants. Pervasive sensing
technologies and wireless sensor networks are pivotal in CPPSs. In CPPSs, heterogeneous
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equipment, actuators, sensors and monitoring systems are networked to manufacture items
efficiently. Monitored industrial wireless sensor–actuator networks are pivotal in CPPSs.
Groundbreaking technologies furthering cyber-physical enterprise systems regarding real-
time decision-making determined from streamlined data [94–96] necessitate networked
sensor and operational systems. Networking, physical/virtual joint performance, interop-
erability, self-organization, and smart big data-driven decision making are key in furthering
Industrial Internet of Things. The digital transformation aims to advance Internet of Things
sensing networks, smart industrial value creation, deep learning-assisted smart process
planning, and CPPSs architectures that can connect smart devices from heterogeneous
data-driven technologies, virtualizing manufacturing enterprises’ assets and integrating
them across production sectors and plants. Processing devices and systems are crucial in
ensuring vertical and horizontal integration.

Adaptive production systems are crucial in sustainable manufacturing Internet of
Things [97–99], deriving from the demand for robust characteristics of the system to react
to disruption as product changes or alterations to operational parameters. Functional and
behavioral modeling assists in the reshaping of Industry 4.0-based manufacturing systems.
Sustainable cyber-physical production systems developed on functional and behavioral
patterns can address the inconveniences of disruptive Industry 4.0-related production
environments. Self-adaptive reconfigurable manufacturing systems are crucial in the
operational modeling design, where the processes have to be assimilated into the system
monitoring behavior. The capacity of sustainable cyber-physical production systems to
reconfigure in conformity with variable demands [100–102] enables a rise in deployment
and a decrease in expenses and alterations in time, leading to increased output across
disruptive production environments. To thoroughly capitalize on Industry 4.0-based
manufacturing systems, production, data-driven, and biological systems have to network.
Sustainable Industry 4.0 aims to optimize the adjustability of manufacturing systems so
that customized items can be made within a large-scale production regime. Manufacturing
systems thus resemble natural organisms, both regarding their structural planning and the
achievable computational and sensing capabilities. Unfolding digitalization expedites the
reconfiguration and assimilation of physical manufacturing and computing systems into
smart entities and their networking, constituting artificial intelligence data-driven Internet
of Things systems. In sustainable manufacturing Internet of Things, the cross-linking of
integrated systems sets up flexible and self-organizing CPPSs. As a result of growing
cross-linking, swift technological breakthroughs, and multifunctionality, the intricacy and
structural impenetrability of CPPSs are intensifying at a fast pace.

The convergence of standard automation systems within CPPSs, together with service-
oriented designs and fog, edge, and cloud computing technologies [103–105], are develop-
ing sustainable manufacturing Internet of Things and cyber-physical process monitoring
systems. For the purpose of ensuring robust manufacturing processes, any disruptions
throughout the system have to be monitored by operational technology and big data
services. The fluid assessment, integration, and positioning of services across CPPSs consti-
tute elements of the process control [106–108] throughout the consolidated modeling and
appraisal of operational phases. The reliability of manufacturing and service integration
and positioning in dynamically variable system environments is impacted by engineering
production processes. CPPSs develop on heterogeneous connected computers, devices,
and applications having diverse conditions, performance, and latency, while necessitating
data management in relation to deficiency detection and diagnosis through cyber-physical
process monitoring systems at a complexity level unrelated to Internet of Things-based real-
time production logistics in smart networked factories. Cyber-physical machine tools are
smart, networked, broadly available, highly robust, and thoroughly autonomous devices.

Artificial intelligence data-driven Internet of Things systems necessitate high-performance
operations and adjustable production systems [109–112] by use of flexible and real-time
scheduling. Sustainable manufacturing Internet of Things enables robust and dynamic plan-
ning and monitoring of production systems by leveraging efficient and sound real-time data
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gathering, handling, and analysis from the industrial unit. Accumulated data can be deployed
in a sound decision making system that encompasses a multi-criteria supervising algorithm
and a condition-based assistance approach, endeavoring to optimize shop floor operations.
The scheduling algorithms can become cognizant of the heterogeneous data coming from
the industrial unit in relation to relevance and convenience of the resources when carrying
out assignments [113–115], concerning machine tools status by the coherent integration be-
tween controlling and planning systems and adaptive and real-time scheduling algorithm.
Instantaneous data collection and monitoring can be configured from heterogeneous sources,
data analysis, assimilation of planning and supervision, in addition to streamlined, precise,
and dynamic scheduling suited to managing real-time information from the industrial unit,
furthering the digitalization of manufacturing enterprises efficiently. Robust, affordable, and
reconfigurable controlling systems that gather and deliver meaningful data are pivotal in
CPPSs for flexible time management and condition-based maintenance.

CPPSs autonomously identify and react to inconstant and unplanned situations on
the shop floor (e.g., machine failure, a sudden deficiency in unprocessed materials, or
last-minute request orders), enabling interoperable connections among distributed busi-
ness applications [40,70,116,117], while rendering supervision of manufacturing processes
with first-rate quality and adjustability, and reducing operational risk or unpredictability.
Generic and cross-deployable data-driven patterns powered by deep learning-assisted
smart process planning, real-time advanced analytics, and artificial intelligence-based
decision-making algorithms can exemplarily trace the data derived from sustainable cyber-
physical production systems and harness it for Internet of Things-based real-time pro-
duction logistics, real-time optimization, or cyber-physical process monitoring systems.
Accurate and reliable assessments of product quality through cyber-physical system-based
real-time monitoring assist in optimizing manufacturing processes and big data-driven
decision-making instantaneously. Advancing data-driven monitoring systems and lever-
aging them across a CPPS platform may result in large-scale supervision and an increase
in efficiency [118–120] during the sustainable product lifecycle management in plants,
consequently mitigating operational constraints. Industry 4.0 manufacturing and logistics
systems require significantly custom-designed supply network monitoring, the setting
up of resilient factories to manage risks, advancements in the administration of decision-
support systems for the configuration, scheduling and supervision of resilient production
networks, adaptable workstations, and shared operational control (Table 4).

Table 4. Synopsis of evidence regarding focus topics and descriptive outcomes (research findings).

CPPSs improve the flexibility and output of smart manufacturing, adjusting the
design and quality of products to fluid market demands and customized requirements.

The convergence of standard automation systems within CPPSs, together with
service-oriented designs and fog, edge, and cloud computing technologies, are

developing sustainable manufacturing Internet of Things and cyber-physical process
monitoring systems.

Engelsberger and Greiner, 2018; He et al.,
2021; Liu et al., 2019; Sinha and Roy, 2019,

Tan et al., 2019, Yu et al., 2017 a, b

Heterogeneous instantaneous transmission scheduling algorithms handle the
distribution of the channel resources, but cyber and physical units have distinct

demands to enhance the network performance. The fluid assessment, integration, and
positioning of services across CPPSs constitute elements of the process control

throughout the consolidated modeling and appraisal of operational phases.

Durana et al., 2021; Ionescu, 2019 a;
Taylor, 2020; Tucker, 2021; Wade et al.,

2021; Welch, 2021

CPPSs can be thoroughly and steadily engineered during their lifecycle in smart
manufacturing through Internet of Things sensing networks, automated production

systems, real-time process monitoring, and artificial intelligence-based
decision-making algorithms. Artificial intelligence data-driven Internet of Things

systems necessitate high-performance operations and adjustable production systems
by use of flexible and real-time scheduling.

Bordel et al., 2017; Cunningham, 2021;
Harrison et al., 2021; Mourtzis and

Vlachou, 2018; Pivoto et al., 2021; Sinha
and Roy, 2021; Tomiyama and Moyen,

2018, Watkins, 2021; Weichhart et al., 2021;
Wright and Birtus, 2020
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Table 4. Cont.

Groundbreaking technologies furthering cyber-physical enterprise systems regarding
real-time decision-making determined from streamlined data necessitate networked
sensor and operational systems. The scheduling algorithms can become cognizant of
the heterogeneous data coming from the industrial unit in relation to relevance and

convenience of the resources when carrying out assignments.

Cohen, 2021; Grant, 2021; Graessley et al.,
2019; Lewis, 2020; Mircică, 2019; Nelson,

2020

Adaptive production systems are crucial in sustainable manufacturing Internet of
Things, deriving from the demand for robust characteristics of the system to react to

disruption as product changes or alterations to operational parameters. CPPSs
autonomously identify and react to inconstant and unplanned situations on the shop

floor, enabling interoperable connections among distributed business applications,
while rendering supervision of manufacturing processes with first-rate quality and

adjustability, and reducing operational risk or unpredictability.

Berger et al., 2021; Bergs et al., 2020;
Panetto et al., 2019; Riley et al., 2021;

Sanderson et al., 2019; Stehel et al., 2021;
Suvarna et al., 2021

The capacity of sustainable cyber-physical production systems to reconfigure in
conformity with variable demands enables a rise in deployment and a decrease in
expenses and alterations in time. Advancing data-driven monitoring systems and

leveraging them across a CPPS platform may result in large-scale supervision and an
increase in efficiency during sustainable product lifecycle management in plants.

Davidson, 2020; Ionescu, 2019 b;
Lăzăroiu et al., 2021; Lowe, 2021; Russell,

2020; Walker et al., 2020

5. Deep Learning-Assisted Smart Process Planning, Internet of Things-Based
Real-Time Production Logistics, and Sustainable Industrial Big Data in CPPSs

CPPSs constitute cutting-edge technologies for the adoption of smart manufactur-
ing [121–124] that are effective only when processing standards and application procedures
for heterogeneous data—which can modify instantaneously due to the character of a
factory—are carried out. Intelligent production systems gather unprocessed data from
a shop floor in real time. The automation of manufacturing requires complete mapping,
scaling, and standardization of the collected data of the industrial unit into operational
processes across a CPPS environment. The increasing complexity of cyber-physical process
monitoring systems necessitates convenient control designs that enable fluid adaptation
throughout their runtime. CPPSs are adequate in managing complexity and flexibility,
configuring the smart factory. Companies expand their product portfolio and try to de-
crease their manufacturing time to maximize earnings and market presence [12,125,126],
indirectly exacerbating the intricacy of the operational processes. The manufacturing sector
frequently builds upon cutting-edge monitoring systems to mitigate quality losses. Re-
designing the production systems and optimizing their performance depend significantly
on the harnessing of cutting-edge decision support tools so as to satisfy the inconstant
demand of high-mix, low-volume manufacturing settings. Assessing the predictable values
of the key performance measures is difficult because the intricate structure, performance,
and input demand leads to a vastly massive variable area limiting the analysis. A ground-
breaking undertaking for supplying simulation-based decision support for enhancing
key performance indicators of high-mix, low-volume manufacturing systems would de-
crease the proportion of the input domain by leveraging unsupervised machine learning
algorithms.

Smart manufacturing harnesses predictive production systems systematically [127–132]:
cognitive networked assets can predict, identify cause, and redesign malfunctioning events
automatically. CPPS-related data are inspected and networked between a physical industrial
unit and the cyber computational space, integrating smart analytics to grasp undetectable
issues for swift and precise decision-making. CPPSs can be harnessed to predictive produc-
tion systems to stimulate resilience and coordination, increasing manufacturing productivity.
The fusion between data technologies shapes the performance of cyber-physical automation
systems. Variable manufacturing systems and product demands derive from inconstant
customer behavior [133–135], which is an incessantly moving target impacting product
development, and thus CPPSs leveraging condition monitoring, cognitive automation, and
reconfigurability have to be designed and adopted. CPPSs are instrumental in the advance-
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ment of adjustable and reactive systems. A decentralized monitoring mode can significantly
meet the system demands of a CPPS due to its upsides (e.g., flexibility, reconfigurability,
swift approachability, and soundness), emerging as the essential control routine of CPPSs.
Non-hierarchical manufacturing networks comprising self-governing companies acquire
accurate big data-driven technologies or groundbreaking industrial platforms, leading to
cyber-physical production structures with heterogeneous automated operations.

Cyber-physical machine tools can develop Industry 4.0-based equipment regarding
intelligence and self-governance [136–140] by integrating physical devices and machining
operations with computation and networking performance through functional modules
such as real-time control, process monitoring and optimization, and manufacturing simula-
tion. Developments in Industry 4.0-based manufacturing systems further the advancement
of CPPSs. Industrial production systems and items are perpetually advancing as a result of
swift technological breakthroughs and inconstant customer requirements, while a consoli-
dated co-development of both is needed, as otherwise the lifecycles of manufactured items
and production systems may be at variance. Sustainable Industry 4.0 wireless networks
can shape effective and robust manufacturing [141–143] by automatically monitoring pro-
duction equipment in a flexible fashion. For joint sharing and deployment of distributed
and interconnected production resources, coherent planning and control at heterogeneous
levels and locations are needed, advancing feature-based manufacturing for dynamic tool
monitoring and resource-task matching throughout Industry 4.0-based manufacturing
systems. As a result of the advancement of CPPSs, self-governing monitoring of manu-
facturing processes are indispensable in smart production processes. Control operations
such as order release, systematization, and capacity monitoring can be integrated across
subtasks of digital manufacturing supervision to conform to due dates.

CPPSs are redesigning hierarchical control arrangements [90,144–148] into distributed
structures in which the components operate autonomously. Agent network operations can
be optimized through knowledge assimilation and interaction in distributed monitoring for
manufacturing environments. Resilient CPPSs can disregard or repair faults, or function
by self-governing reconfiguration facilitated by surplus at state, behavioral, or operational
levels. CPPSs can carry out multi-product and small-batch operations intelligently and
autonomously by use of processing route generation algorithms, backpropagation neural
networks, and scheduling rules. Smart connected devices have heterogeneous processing
and manufacturing capabilities and optimization operation mechanisms. The production
system has to inspect the tasks to integrate with the smart connected devices and perform
them unsupervised and automatically [149–151], configuring a machining route across
production system operations through intelligent decision-making. Manufacturing process
monitoring systems have advanced as decentralized reconfigurable networked entities by
use of cutting-edge intelligent machines. CPPSs integrate high power computation, shared
interoperability, and advanced analytics. Biological collective systems have shaped the
configuration of manufacturing systems because of their intrinsic features. Industry 4.0
can handle customized demands by setting up CPPSs for smart networked factories.

In smart industrial units, CPPSs control physical operations, configure a digital du-
plicate of the physical world, and decisions are decentralized [152,153]: the virtual world
stores and processes networked data in real time. Physical, logical, and interconnection
layers can integrate intelligent operations within manufacturing processes across the smart
shop floor. Physical entities on the plant are self-governing intelligent logical units carrying
out undertakings directed by distributed control functions in smart networked factories.
Computing capacity and optimization operations are integrated in logical units to make
decisions so as to smoothly react to constant incidents of unplanned disturbances on the
plant. Physical entities can be coordinated and self-governing logical units can automatize
manufacturing system processes. Tools for assessing and managing enhancements in the
performance, the soundness, and the responsiveness of manufacturing systems are re-
quired [154–156], as a decrease in due-date soundness is typically associated with external
causes and not with planning behavior. Negative dynamic behavior can happen if immi-
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nent declines in due-date reliability are not properly considered. Holding patterns and
lead-time-related amendments impact the ensuing system behavior and operations. Au-
tonomous data gathering and integrated patterns can diminish postponement in decision
making and implementation of sustainable Industry 4.0 wireless networks.

CPPSs provide the technological basis for the digitalization and decentralization of
manufacturing processes [157–160] and their integration across plant networks. Industry
4.0 offers increased adjustability, facilitating inexpensive product and service customization,
and enabling lot-size one manufacturing, deep learning-assisted smart process planning,
cognitive automation, and data-driven predictive maintenance. Planning an exemplary
chain of manufacturing operations constitutes a determining competitive component for
the engineering of CPPSs, considering a rise in customization with concomitantly increasing
sales volumes, while plants have to handle the issue of the manufacturing of personalized
items efficiently. Developed on the swift organization of industrial enterprises, constant
digital coordination, and target cost analysis, intelligent engineering focuses on designing
CPPSs that ensure the manufacturing of items in conformity with the distinct demands at
the target cost, thus improving economic efficiency. The intelligent engineering of manufac-
turing comprises assessment of requirements for CPPSs, estimation and examination of the
target cost, planning of CPPSs in keeping with the customer demands and target cost, set-
ting up of a production digital twin, harnessing of an incessant digital organization strategy,
and supervision and appraisal of received data. CPPSs ensure a thorough networking of
the smart connected devices and resources integrated in manufacturing processes [161–164]
and, consequently, enhanced availability of collected data. Decision support systems facil-
itate adequate processing and display of the gathered data, with production scheduling
being the reason for the swift planning and monitoring of released orders in sustainable
manufacturing Internet of Things. Decision support systems and CPPSs can be harnessed
in production scheduling on a large scale, capturing real-time data from manufacturing
processes. The demands in groundbreaking engineering of CPPSs are difficult to carry out
because of massive system proportions, component diversity, integration of heterogeneous
machines, and constant advancement. Formal and semi-formal languages, approaches,
devices, and arrangements can configure replicable and sound structures for bringing
about, clarifying, inspecting, checking, and maintaining CPPS-related requirements. In-
dustrial control systems can carry out distributed, instantaneous system monitoring, and
durable stability. Physical operations, together with control-related sensors, actuators, and
processors, are networked and distributed across CPPSs. Computational devices can be
deployed as monitoring and interaction technologies and as heterogeneous collaborative
devices and modes of networking to configure crucial tools in operating, maintaining, and
upgrading data-driven CPPSs (Table 5).

Table 5. Synopsis of evidence regarding focus topics and descriptive outcomes (research findings).

CPPSs constitute cutting-edge technologies for the adoption of smart manufacturing
that is effective only when processing standards and application procedures for the

heterogeneous data that can modify instantaneously due to the character of a factory
are carried out. CPPSs are redesigning hierarchical control arrangements into

distributed structures in which the components operate autonomously.

Cruz Salazar et al., 2019;
Dias-Ferreira et al., 2018; Elhabashy et al.,
2019; Gödri et al., 2019; Jiang et al., 2018;
Kang et al., 2019; Morgan and O’Donnell,

2018; Tomiyama and Moyen, 2018;
Vrabič et al., 2018; Wang et al., 2018

Companies expand their product portfolio and try to decrease their manufacturing
time to maximize earnings and market presence, indirectly exacerbating the intricacy

of the operational processes. The production system has to inspect the tasks to
integrate with the smart connected devices and perform them unsupervised

and automatically.

Coatney and Poliak, 2020; Miller, 2020;
Nica et al., 2020; Peters, 2020;

Popescu et al., 2020; Scott et al., 2020

Smart manufacturing harnesses predictive production systems systematically:
cognitive networked assets can predict, identify cause, and redesign malfunctioning

events automatically. In smart industrial units, CPPSs control physical operations,
configure a digital duplicate of the physical world, and decisions are decentralized:

the virtual world stores and processes networked data in real time.

Duffie et al., 2017; Francalanza et al., 2017;
Jiang et al., 2018; Lee et al., 2017;

Mladineo et al., 2017; Schneider et al.,
2019; Tang et al., 2018
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Table 5. Cont.

Tools for assessing and managing enhancements in the performance, the soundness,
and the responsiveness of manufacturing systems are required, as a decrease in

due-date soundness is typically associated with external causes and not with
planning behavior.

Bourke et al., 2019; Duft and Durana,
2020; Gray-Hawkins and Lăzăroiu, 2020;

Harrower, 2019; Lăzăroiu et al., 2020;
Wingard, 2019

Cyber-physical machine tools can develop Industry 4.0-based equipment regarding
intelligence and self-governance by integrating physical devices and machining
operations with computation and networking performance through functional

modules. CPPSs provide the technological basis for the digitalization and
decentralization of manufacturing processes, and their integration across

plant networks.

Adamson et al., 2017; Andreev et al., 2021;
Freier and Schumann, 2021;

Grundstein et al., 2017;
Kannengiesser et al., 2021; Liu et al., 2017;

Penas et al., 2017; Vogel-Heuser et al.,
2017; Zahid et al., 2021

Sustainable Industry 4.0 wireless networks can shape effective and robust
manufacturing by automatically monitoring production equipment in a flexible
fashion. CPPSs ensure thorough networking of the smart connected devices and
resources integrated in manufacturing processes and, consequently, an enhanced

availability of collected data. Computational devices can be deployed as monitoring
and interaction technologies and as heterogeneous collaborative devices and modes of

networking to configure crucial tools in operating, maintaining, and upgrading
data-driven CPPSs.

Allen, 2020; Davies et al., 2020; Dhiman
and Röcker, 2021; Grayson, 2020; Hyers,

2020; Robinson, 2020; Williams et al., 2020

6. Discussion

The importance of artificial intelligence-based decision-making algorithms, Internet
of Things sensing networks, product decision-making information systems, and deep
learning-assisted smart process management in cyber-physical production systems is exten-
sively consistent with, and provides additional confirmation of, previous review articles,
e.g., [40,44,68,91,93], clarifying that CPPSs are adequate in managing complexity and flex-
ibility, configuring the smart factory. CPPSs inspect, supervise, and automate business
operations, optimizing manufacturing and logistic processes across smart shop floor en-
vironments. Cloud computing, real-time process monitoring, and artificial intelligence
data-driven Internet of Things systems are essential in enabling cyber-physical process
monitoring systems. Artificial intelligence data-driven Internet of Things systems neces-
sitate high-performance operations and adjustable production systems by use of flexible
and real-time scheduling. Intelligent production systems gather unprocessed data from a
shop floor in real time. Industry 4.0-based manufacturing systems require the networking
of all devices integrated across the shop floor. The interoperability between Internet of
Things-based real-time production logistics and cyber-physical process monitoring systems
can decide upon the progression of operations advancing a system to the intended state in
CPPSs. Smart autonomous devices are pivotal in planning and control systems as Internet
of Things elements of CPPSs.

The outcomes of our systematic review develop on empirical research [1–11,39,40,44,
121–124,136–140,144–148,157–160] contending that sustainable cyber-physical production
systems developed on functional and behavioral patterns can address the inconveniences
of disruptive Industry 4.0-related production environments. Wireless sensor technology
monitor manufacturing assets and networked production or logistics business operations
in real time. Accurate and reliable assessments of product quality through cyber-physical
system-based real-time monitoring assist in optimizing manufacturing processes and
big data-driven decision-making instantaneously. CPPSs and sustainable manufacturing
Internet of Things reconfigure how shop floor operations are designed and carried out.
Cyber-physical system-based smart factories optimize the networking among equipment,
sensors and big data-driven systems. Sustainable Industry 4.0 wireless networks can shape
effective and robust manufacturing by automatically monitoring production equipment
in a flexible fashion. Cyber-physical system-based manufacturing configures knowledge-
intensive industrial autonomous settings where smart customized items are produced
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through deep learning-assisted smart process planning, real-time advanced analytics, and
cognitive automation.

There has been a small but growing volume of studies [51–54,58,68,75–77,128–132,152,153]
claiming that industrial enterprises advance as wireless sensor networks to constantly control
the operations of their plants. Internet of Things-based real-time production logistics, product
decision-making information systems, and deep learning-assisted smart process planning
facilitate continuous monitoring of smart shop floors. As a result of the advancement of CPPSs,
self-governing monitoring of manufacturing processes is indispensable in smart production
processes. CPPSs are instrumental in instantaneous heterogeneous data collection, inspection,
and distribution by use of interoperability support integrated in process monitoring systems.
Autonomous data gathering and integrated patterns can diminish postponement in decision
making and implementation of sustainable Industry 4.0 wireless networks.

As underlying mechanisms between cyber-physical production networks, deep learning-
assisted smart process planning, product decision-making information systems, artificial
intelligence-based decision-making algorithms, and cognitive automation in sustainable
manufacturing Internet of Things are comprehended to a limited extent in the current litera-
ture, certain empirical studies [81–84,88–93,97–99,103–105,108,164] systematically indicate
that smart connected devices have heterogeneous processing and manufacturing capabilities
and optimization operation mechanisms. Manufacturing process monitoring systems have
advanced as decentralized reconfigurable networked entities by use of cutting-edge intelli-
gent machines. Sustainable manufacturing Internet of Things enables robust and dynamic
planning and monitoring of production systems [165–168], by leveraging efficient and sound
real-time data gathering, handling, and analysis from the industrial unit. Physical entities on
the plant are self-governing intelligent logical units carrying out undertakings directed by
distributed control functions. Industrial cyber-physical systems are pivotal in sustainable
smart manufacturing, by integrating control engineering with artificial intelligence-based
decision-making algorithms [169–171] to set up cognitive and self-configuring plants.

7. Synopsis of the Main Research Outcomes

CPPSs can be thoroughly and steadily engineered during their lifecycle in smart
manufacturing through Internet of Things sensing networks, industrial big data analytics,
real-time process monitoring, and artificial intelligence-based decision-making algorithms.
CPPSs ensure thorough networking of the smart connected devices and resources inte-
grated in manufacturing processes and, consequently, enhanced availability of collected
data. Digital transformation aims to advance Internet of Things sensing networks, cognitive
automation, deep learning-assisted smart process planning, and CPPS architectures that
can connect smart devices from heterogeneous data-driven technologies in smart factory
performance. Industry 4.0-based manufacturing systems aim for breakthroughs, cognitive
automation, increased feedback to customer demands, and artificial intelligence-based
decision-making algorithms. The demand for increasingly customized, smart, and sustain-
able manufactured items, and the swift growth of cyber-physical system-based real-time
monitoring, have resulted in the development of Internet of Things-based decision support
systems. Deployment of artificial intelligence-based decision-making algorithms, real-time
sensor networks, and cloud technologies are instrumental in remote maintenance sup-
port. Real-time big data analytics, Internet of Things-based decision support systems, and
production process optimization are pivotal in configuring CPPS-enabled data-driven man-
ufacturing. Throughout the organized layers of CPPS-enabled smart networked factories,
big data-driven manufacturing facilitates decentralized production through automation
and interconnected industrial units. Generic and cross-deployable data-driven patterns
powered by deep learning-assisted smart process planning, industrial big data analytics,
and artificial intelligence-based decision-making algorithms can exemplarily trace the data
derived from sustainable cyber-physical production systems and harness it for Internet
of Things-based real-time production logistics, real-time optimization, or cyber-physical
process monitoring systems.
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8. Conclusions

Significant research has attempted to clarify in the recent past whether CPPSs are
instrumental in instantaneous heterogeneous data collection, inspection, and distribution
by use of interoperability support integrated in process monitoring systems. Intelligent
production systems gather unprocessed data from a shop floor in real time. The interoper-
ability between Internet of Things-based real-time production logistics and cyber-physical
process monitoring systems can decide upon the progression of operations advancing
a system to the intended state in CPPSs. Our systematic literature review puts forward
first-rate peer-reviewed evidence concerning how sustainable manufacturing Internet of
Things enables robust and dynamic planning and monitoring of production systems by
leveraging efficient and sound real-time data gathering, handling, and analysis from the
industrial unit. Physical entities on the plant are self-governing intelligent logical units
carrying out undertakings directed by distributed control functions. Accurate and reliable
assessments of product quality through cyber-physical system-based real-time monitoring
assist in optimizing manufacturing processes and big data-driven decision-making instan-
taneously. The findings derived from the above analyses indicate that Industry 4.0-based
manufacturing systems require the networking of all devices integrated across the shop
floor. Autonomous data gathering and integrated patterns can diminish postponement
in decision-making and implementation of sustainable Industry 4.0 wireless networks.
Wireless sensor technology monitor manufacturing assets and networked production or
logistics business operations in real time. Internet of Things-based real-time production lo-
gistics and deep learning-assisted smart process planning facilitate continuous monitoring
of smart shop floors.

9. Limitations, Implications, and Further Directions of Research

By analyzing only articles published in journals indexed in ProQuest, Scopus, and the
Web of Science between 2017 and 2021, significant research on artificial intelligence-based
decision-making algorithms, Internet of Things sensing networks, cognitive automation,
and deep learning-assisted smart process management in smart factory performance and
cyber-physical production systems may have been excluded. Limitations of this research
comprise particular types of published research (original empirical research and review
articles) without considering others (editorial materials, conference proceedings articles,
and books). The scope of this systematic review does not approach complex connections
between product decision-making information systems, real-time advanced analytics,
cyber-physical smart manufacturing, and robotic wireless sensor networks in sustainable
Industry 4.0. Subsequent analyses should develop on real-time sensor networks so as
to configure the importance of artificial intelligence-driven big data analytics by use of
cyber-physical production networks. Future research should consequently investigate how
real-time big data analytics enable the advancement of Industry 4.0-based manufacturing
systems by use of Internet of Things smart devices and deep learning-assisted smart process
planning. Attention should be directed to how sustainable Industry 4.0 wireless networks
articulate smart factory performance and Internet of Things-based decision support systems
through cognitive automation and cyber-physical system-based real-time monitoring.

Author Contributions: Conceptualization, G.L. and M.A.; methodology, R.S, . and M.C.; validation,
M.I. and M.C.; investigation, C.U. and G.L.; resources, C.U. and M.A.; data curation, C.U. and G.L.;
writing—original draft preparation, M.A. and M.I.; writing—review and editing, M.A. and R.S, .;
visualization, G.L. and R.S, .; supervision, C.U. and M.C.; project administration, R.S, . and M.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2021, 10, 2497 18 of 24

References
1. Ma, J.; Wang, Q.; Jiang, Z.; Zhao, Z. A hybrid modeling methodology for cyber physical production systems: Framework and key

techniques. Prod. Eng. Res. Dev. 2021, 15, 773–790. [CrossRef]
2. Wu, X.; Goepp, V.; Siadat, A.; Vernadat, F. A method for supporting the transformation of an existing production system with its

integrated Enterprise Information Systems (EISs) into a Cyber Physical Production System (CPPS). Comput. Ind. 2021, 131, 103483.
[CrossRef]

3. Yao, X.; Zhou, J.; Lin, Y.; Li, Y.; Yu, H.; Liu, Y. Smart manufacturing based on cyber-physical systems and beyond. J. Intell. Manuf.
2019, 30, 2805–2817. [CrossRef]

4. Ansari, F.; Khobreh, M.; Seidenberg, U.; Sihn, W. A problem-solving ontology for human-centered cyber physical production
systems. CIRP J. Manuf. Sci. Technol. 2018, 22, 91–106. [CrossRef]

5. Engel, G.; Greiner, T.; Seifert, S. Ontology-assisted engineering of cyber–physical production systems in the field of process
technology. IEEE Trans. Ind. Inform. 2018, 14, 2792–2802. [CrossRef]

6. Otto, J.; Vogel-Heuser, B.; Niggemann, O. Automatic parameter estimation for reusable software components of modular and
reconfigurable cyber-physical production systems in the domain of discrete manufacturing. IEEE Trans. Ind. Inform. 2018, 14,
275–282. [CrossRef]

7. Yao, B.; Zhou, Z.; Wang, L.; Xu, W.; Yan, J.; Liu, Q. A function block based cyber-physical production system for physical
human–robot interaction. J. Manuf. Syst. 2018, 48, 12–23. [CrossRef]

8. Biró, M.; Mashkoor, A.; Sametinger, J. Safe and secure cyber-physical systems. J. Softw. Evol. Proc. 2021, 33, e2340. [CrossRef]
9. Deng, C.; Guo, R.; Liu, C.; Zhong, R.Y.; Xu, X. Data cleansing for energy-saving: A case of cyber-physical machine tools health

monitoring system. Int. J. Prod. Res. 2018, 56, 1000–1015. [CrossRef]
10. Jiang, J.-R. An improved cyber-physical systems architecture for Industry 4.0 smart factories. Adv. Mech. Eng. 2018, 10, 1–15.

[CrossRef]
11. Leiden, A.; Herrmann, C.; Thiede, S. Cyber-physical production system approach for energy and resource efficient planning and

operation of plating process chains. J. Clean. Prod. 2021, 280, 125160. [CrossRef]
12. Keane, E.; Zvarikova, K.; Rowland, Z. Cognitive automation, big data-driven manufacturing, and sustainable industrial value

creation in Internet of Things-based real-time production logistics. Econ. Manag. Financ. Mark. 2020, 15, 39–48. [CrossRef]
13. Bell, E. Cognitive automation, business process optimization, and sustainable industrial value creation in artificial intelligence

data-driven Internet of Things systems. J. Self Gov. Manag. Econ. 2020, 8, 9–15. [CrossRef]
14. Walker, A. Internet of Things-enabled smart sustainable cities: Big data-based urban governance, wireless sensor networks, and

automated algorithmic decision-making processes. Geopolit. Hist. Int. Relat. 2020, 12, 58–64. [CrossRef]
15. Peters, E.; Kliestik, T.; Musa, H.; Durana, P. Product decision-making information systems, real-time big data analytics, and deep

learning-enabled smart process planning in sustainable Industry 4.0. J. Self Gov. Manag. Econ. 2020, 8, 16–22. [CrossRef]
16. Bennett, S.; Durana, P.; Konecny, V. Urban Internet of Things systems and interconnected sensor networks in sustainable smart

city governance. Geopolit. Hist. Int. Relat. 2020, 12, 51–57. [CrossRef]
17. Balica, R. Automated data analysis in organizations: Sensory algorithmic devices, intrusive workplace monitoring, and employee

surveillance. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 61–66. [CrossRef]
18. Clarke, G. Sensing, smart, and sustainable technologies in big data-driven manufacturing. J. Self Gov. Manag. Econ. 2020, 8, 23–29.

[CrossRef]
19. Taylor, E. Autonomous vehicle decision-making algorithms and data-driven mobilities in networked transport systems. Contemp.

Read. Law Soc. Justice 2021, 13, 9–19. [CrossRef]
20. Costea, E.-A. Machine learning-based natural language processing algorithms and electronic health records data. Linguist. Philos.

Investig. 2020, 19, 93–99. [CrossRef]
21. Chessell, D.; Negurit,ă, O. Smart industrial value creation, cyber-physical production networks, and real-time big data analytics

in sustainable Internet of Things-based manufacturing systems. J. Self Gov. Manag. Econ. 2020, 8, 49–58. [CrossRef]
22. Pera, A. Towards effective workforce management: Hiring algorithms, big data-driven accountability systems, and organizational

performance. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 19–24. [CrossRef]
23. Throne, O.; Lăzăroiu, G. Internet of Things-enabled sustainability, industrial big data analytics, and deep learning-assisted smart

process planning in cyber-physical manufacturing systems. Econ. Manag. Financ. Mark. 2020, 15, 49–58. [CrossRef]
24. Lyons, N.; Lăzăroiu, G. Addressing the COVID-19 crisis by harnessing Internet of Things sensors and machine learning algorithms

in data-driven smart sustainable cities. Geopolit. Hist. Int. Relat. 2020, 12, 65–71. [CrossRef]
25. Davies, S. Interconnected sensor networks and decision-making self-driving car control algorithms in smart sustainable urbanism.

Contemp. Read. Law Soc. Justice 2020, 12, 88–96. [CrossRef]
26. Bekken, G. The algorithmic governance of data driven-processing employment: Evidence-based management practices, artificial

intelligence recruiting software, and automated hiring decisions. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 25–30.
[CrossRef]

27. Davis, R.; Vochozka, M.; Vrbka, J.; Negurit,ă, O. Industrial artificial intelligence, smart connected sensors, and big data-driven
decision-making processes in Internet of Things-based real-time production logistics. Econ. Manag. Financ. Mark. 2020, 15, 9–15.
[CrossRef]

http://doi.org/10.1007/s11740-021-01062-2
http://doi.org/10.1016/j.compind.2021.103483
http://doi.org/10.1007/s10845-017-1384-5
http://doi.org/10.1016/j.cirpj.2018.06.002
http://doi.org/10.1109/TII.2018.2805320
http://doi.org/10.1109/TII.2017.2718729
http://doi.org/10.1016/j.jmsy.2018.04.010
http://doi.org/10.1002/smr.2340
http://doi.org/10.1080/00207543.2017.1394596
http://doi.org/10.1177/1687814018784192
http://doi.org/10.1016/j.jclepro.2020.125160
http://doi.org/10.22381/EMFM15420204
http://doi.org/10.22381/JSME8320201
http://doi.org/10.22381/GHIR12220208
http://doi.org/10.22381/JSME8320202
http://doi.org/10.22381/GHIR12220207
http://doi.org/10.22381/PIHRM72201910
http://doi.org/10.22381/JSME8320203
http://doi.org/10.22381/CRLSJ13120211
http://doi.org/10.22381/LPI1920205
http://doi.org/10.22381/JSME8420205
http://doi.org/10.22381/PIHRM7220193
http://doi.org/10.22381/EMFM15420205
http://doi.org/10.22381/GHIR12220209
http://doi.org/10.22381/CRLSJ122202010
http://doi.org/10.22381/PIHRM7220194
http://doi.org/10.22381/EMFM15320201


Electronics 2021, 10, 2497 19 of 24

28. Kral, P.; Janoskova, K.; Podhorska, I.; Pera, A.; Negurit,ă, O. The automatability of male and female jobs: Technological
unemployment, skill shift, and precarious work. J. Res. Gend. Stud. 2019, 9, 146–152. [CrossRef]

29. Nica, E.; Miklencicova, R.; Kicova, E. Artificial intelligence-supported workplace decisions: Big data algorithmic analytics,
sensory and tracking technologies, and metabolism monitors. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 31–36. [CrossRef]

30. Davidson, R. Cyber-physical production networks, artificial intelligence-based decision-making algorithms, and big data-driven
innovation in Industry 4.0-based manufacturing systems. Econ. Manag. Financ. Mark. 2020, 15, 16–22. [CrossRef]

31. Kovacova, M.; Kliestikova, J.; Grupac, M.; Grecu, I.; Grecu, G. Automating gender roles at work: How digital disruption and
artificial intelligence alter industry structures and sex-based divisions of labor. J. Res. Gend. Stud. 2019, 9, 153–159. [CrossRef]

32. Noack, B. Big data analytics in human resource management: Automated decision-making processes, predictive hiring algorithms,
and cutting-edge workplace surveillance technologies. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 37–42. [CrossRef]

33. Kliestik, T.; Nica, E.; Musa, H.; Poliak, M.; Mihai, E.-A. Networked, smart, and responsive devices in Industry 4.0 manufacturing
systems. Econ. Manag. Financ. Mark. 2020, 15, 23–29. [CrossRef]

34. Ionescu, L. Digital data aggregation, analysis, and infrastructures in fintech operations. Rev. Contemp. Philos. 2020, 19, 92–98.
[CrossRef]

35. Meyers, T.D.; Vagner, L.; Janoskova, K.; Grecu, I.; Grecu, G. Big data-driven algorithmic decision-making in selecting and
managing employees: Advanced predictive analytics, workforce metrics, and digital innovations for enhancing organizational
human capital. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 49–54. [CrossRef]

36. Smith, A. Cognitive decision-making algorithms, real-time sensor networks, and Internet of Things smart devices in cyber-
physical manufacturing systems. Econ. Manag. Financ. Mark. 2020, 15, 30–36. [CrossRef]

37. Popescu, G.H.; Zvarikova, K.; Machova, V.; Mihai, E.-A. Industrial big data, automated production systems, and Internet of
Things sensing networks in cyber-physical system-based manufacturing. J. Self Gov. Manag. Econ. 2020, 8, 30–36. [CrossRef]

38. Bennett, A. Autonomous vehicle driving algorithms and smart mobility technologies in big data-driven transportation planning
and engineering. Contemp. Read. Law Soc. Justice 2021, 13, 20–29. [CrossRef]

39. Islam, S.O.B.; Lughmani, W.A.; Qureshi, W.S.; Khalid, A.; Mariscal, M.A.; Garcia-Herrero, S. Exploiting visual cues for safe and
flexible cyber-physical production systems. Adv. Mech. Eng. 2019, 11, 1–13. [CrossRef]

40. Panetto, H.; Iung, B.; Ivanov, D.; Weichhart, G.; Wang, X. Challenges for the cyber-physical manufacturing enterprises of the
future. Annu. Rev. Control 2019, 47, 200–213. [CrossRef]

41. Valaskova, K.; Ward, P.; Svabova, L. Deep learning-assisted smart process planning, cognitive automation, and industrial big data
analytics in sustainable cyber-physical production systems. J. Self Gov. Manag. Econ. 2021, 9, 9–20. [CrossRef]

42. Lewis, E. Smart city software systems and Internet of Things sensors in sustainable urban governance networks. Geopolit. Hist.
Int. Relat. 2021, 13, 9–19. [CrossRef]

43. Konecny, V.; Barnett, C.; Poliak, M. Sensing and computing technologies, intelligent vehicular networks, and big data-driven
algorithmic decision-making in smart sustainable urbanism. Contemp. Read. Law Soc. Justice 2021, 13, 30–39. [CrossRef]

44. Rojas, R.A.; Rauch, E. From a literature review to a conceptual framework of enablers for smart manufacturing control. Int. J. Adv.
Manuf. Technol. 2019, 104, 517–533. [CrossRef]

45. Novak, A.; Bennett, D.; Kliestik, T. Product decision-making information systems, real-time sensor networks, and artificial
intelligence-driven big data analytics in sustainable Industry 4.0. Econ. Manag. Financ. Mark. 2021, 16, 62–72. [CrossRef]

46. Mircică, N. Cyber-physical systems for cognitive industrial Internet of Things: Sensory big data, smart mobile devices, and
automated manufacturing processes. Anal. Metaphys. 2019, 18, 37–43. [CrossRef]

47. Johnson, A. Medical wearables and biosensor technologies as tools of Internet of Things-based health monitoring systems. Am. J.
Med. Res. 2020, 7, 7–13. [CrossRef]

48. Brown, M. Artificial intelligence data-driven Internet of Things systems, real-time process monitoring, and sustainable industrial
value creation in smart networked factories. J. Self Gov. Manag. Econ. 2021, 9, 21–31. [CrossRef]

49. Cooper, H.; Poliak, M.; Konecny, V. Computationally networked urbanism and data-driven planning technologies in smart and
environmentally sustainable cities. Geopolit. Hist. Int. Relat. 2021, 13, 20–30. [CrossRef]

50. Gordon, A. Autonomous vehicle interaction control software and smart sustainable urban mobility behaviors in network
connectivity systems. Contemp. Read. Law Soc. Justice 2021, 13, 40–49. [CrossRef]

51. Neubauer, M.; Krenn, F.; Majoe, D.; Stary, C. Subject-orientation as design language for integration across organisational control
layers. Int. J. Prod. Res. 2017, 55, 3644–3656. [CrossRef]

52. O’Donovan, P.; Gallagher, C.; Leahy, K.; O’Sullivan, D.T.J. A comparison of fog and cloud computing cyber-physical interfaces for
Industry 4.0 real-time embedded machine learning engineering applications. Comput. Ind. 2019, 110, 12–35. [CrossRef]

53. Morgan, J.; O’Donnell, G. Multi-sensor process analysis and performance characterisation in CNC turning-a cyber physical
system approach. Int. J. Adv. Manuf. Technol. 2017, 92, 855–868. [CrossRef]

54. Rossit, D.; Tohmé, F. Scheduling research contributions to smart manufacturing. Manuf. Lett. 2018, 15, 111–114. [CrossRef]
55. Hawkins, M. Cyber-physical production networks, Internet of Things-enabled sustainability, and smart factory performance in

Industry 4.0-based manufacturing systems. Econ. Manag. Financ. Mark. 2021, 16, 73–83. [CrossRef]
56. Ionescu, D. Deep learning algorithms and big health care data in clinical natural language processing. Linguist. Philos. Investig.

2020, 19, 86–92. [CrossRef]

http://doi.org/10.22381/JRGS9120197
http://doi.org/10.22381/PIHRM7220195
http://doi.org/10.22381/EMFM15320202
http://doi.org/10.22381/JRGS9120198
http://doi.org/10.22381/PIHRM7220196
http://doi.org/10.22381/EMFM15320203
http://doi.org/10.22381/RCP19202010
http://doi.org/10.22381/PIHRM7220198
http://doi.org/10.22381/EMFM15320204
http://doi.org/10.22381/JSME8320204
http://doi.org/10.22381/CRLSJ13120212
http://doi.org/10.1177/1687814019897228
http://doi.org/10.1016/j.arcontrol.2019.02.002
http://doi.org/10.22381/jsme9220211
http://doi.org/10.22381/GHIR13120211
http://doi.org/10.22381/CRLSJ13120213
http://doi.org/10.1007/s00170-019-03854-4
http://doi.org/10.22381/emfm16220213
http://doi.org/10.22381/AM1820195
http://doi.org/10.22381/AJMR7120201
http://doi.org/10.22381/jsme9220212
http://doi.org/10.22381/GHIR13120212
http://doi.org/10.22381/CRLSJ13120214
http://doi.org/10.1080/00207543.2016.1198058
http://doi.org/10.1016/j.compind.2019.04.016
http://doi.org/10.1007/s00170-017-0113-8
http://doi.org/10.1016/j.mfglet.2017.12.005
http://doi.org/10.22381/emfm16220214
http://doi.org/10.22381/LPI1920204


Electronics 2021, 10, 2497 20 of 24

57. Williams, A.; Suler, P.; Vrbka, J. Business process optimization, cognitive decision-making algorithms, and artificial intelligence
data-driven Internet of Things systems in sustainable smart manufacturing. J. Self Gov. Manag. Econ. 2020, 8, 39–48. [CrossRef]

58. Preuveneers, D.; Ilie-Zudor, E. The intelligent industry of the future: A survey on emerging trends, research challenges and
opportunities in Industry 4.0. J. Ambient Intell. Smart Environ. 2017, 9, 287–298. [CrossRef]

59. Edwards, C. Real-time advanced analytics, automated production systems, and smart industrial value creation in sustainable
manufacturing Internet of Things. J. Self Gov. Manag. Econ. 2021, 9, 32–41. [CrossRef]

60. Townsend, J. Interconnected sensor networks and machine learning-based analytics in data-driven smart sustainable cities.
Geopolit. Hist. Int. Relat. 2021, 13, 31–41. [CrossRef]

61. Mitchell, A. Autonomous vehicle algorithms, big geospatial data analytics, and interconnected sensor networks in urban
transportation systems. Contemp. Read. Law Soc. Justice 2021, 13, 50–59. [CrossRef]

62. Hamilton, S. Real-time big data analytics, sustainable Industry 4.0 wireless networks, and Internet of Things-based decision
support systems in cyber-physical smart manufacturing. Econ. Manag. Financ. Mark. 2021, 16, 84–94. [CrossRef]

63. Popescu Ljungholm, D. Governing self-driving cars: Do autonomous vehicles pose a significant regulatory problem? Rev.
Contemp. Philos. 2019, 18, 119–125. [CrossRef]

64. Brown, J.; Cug, J.; Kolencik, J. Internet of Things-based smart healthcare systems: Real-time patient-generated medical data from
networked wearable devices. Am. J. Med. Res. 2020, 7, 21–26. [CrossRef]

65. Suler, P.; Palmer, L.; Bilan, S. Internet of Things sensing networks, digitized mass production, and sustainable organizational
performance in cyber-physical system-based smart factories. J. Self Gov. Manag. Econ. 2021, 9, 42–51. [CrossRef]

66. Gibson, P. Internet of Things sensing infrastructures and urban big data analytics in smart sustainable city governance and
management. Geopolit. Hist. Int. Relat. 2021, 13, 42–52. [CrossRef]

67. Wells, R.; Suler, P.; Vochozka, M. Networked driverless technologies, autonomous vehicle algorithms, and transportation analytics
in smart urban mobility systems. Contemp. Read. Law Soc. Justice 2021, 13, 60–70. [CrossRef]

68. Moghaddam, M.; Cadavid, M.N.; Kenley, C.R.; Deshmukh, A.V. Reference architectures for smart manufacturing: A critical
review. J. Manuf. Syst. 2018, 49, 215–225. [CrossRef]

69. Dawson, A. Robotic wireless sensor networks, big data-driven decision-making processes, and cyber-physical system-based
real-time monitoring in sustainable product lifecycle management. Econ. Manag. Financ. Mark. 2021, 16, 95–105. [CrossRef]

70. Kovacova, M.; Kliestik, T.; Pera, A.; Grecu, I.; Grecu, G. Big data governance of automated algorithmic decision-making processes.
Rev. Contemp. Philos. 2019, 18, 126–132. [CrossRef]

71. Miller, E. Networked and integrated sustainable urban technologies in Internet of Things-enabled smart cities. Geopolit. Hist. Int.
Relat. 2020, 12, 30–36. [CrossRef]

72. Popescu, G.H.; Valaskova, K.; Majerova, J. Real-time sensor networks, advanced robotics, and product decision-making informa-
tion systems in data-driven sustainable smart manufacturing. Econ. Manag. Financ. Mark. 2020, 15, 29–38. [CrossRef]

73. Harris, B. Data-driven Internet of Things systems and urban sensing technologies in integrated smart city planning and
management. Geopolit. Hist. Int. Relat. 2021, 13, 53–63. [CrossRef]

74. Green, L.; Zhuravleva, N.A. Autonomous driving perception algorithms and urban mobility technologies in smart transportation
systems. Contemp. Read. Law Soc. Justice 2021, 13, 71–80. [CrossRef]

75. Jantunen, E.; Gorostegui, U.; Zurutuza, U.; Albano, M.; Ferreira, L.L.; Hegedűs, C.; Campos, J. Remote maintenance support
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