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Abstract: Satellite instruments monitor the Earth’s surface day and night, and, as a result, the size
of Earth observation (EO) data is dramatically increasing. Machine Learning (ML) techniques are
employed routinely to analyze and process these big EO data, and one well-known ML technique is
a Support Vector Machine (SVM). An SVM poses a quadratic programming problem, and quantum
computers including quantum annealers (QA) as well as gate-based quantum computers promise
to solve an SVM more efficiently than a conventional computer; training the SVM by employing
a quantum computer/conventional computer represents a quantum SVM (qSVM)/classical SVM
(cSVM) application. However, quantum computers cannot tackle many practical EO problems by
using a qSVM due to their very low number of input qubits. Hence, we assembled a coreset (“core of
a dataset”) of given EO data for training a weighted SVM on a small quantum computer, a D-Wave
quantum annealer with around 5000 input quantum bits. The coreset is a small, representative
weighted subset of an original dataset, and its performance can be analyzed by using the proposed
weighted SVM on a small quantum computer in contrast to the original dataset. As practical data, we
use synthetic data, Iris data, a Hyperspectral Image (HSI) of Indian Pine, and a Polarimetric Synthetic
Aperture Radar (PolSAR) image of San Francisco. We measured the closeness between an original
dataset and its coreset by employing a Kullback–Leibler (KL) divergence test, and, in addition, we
trained a weighted SVM on our coreset data by using both a D-Wave quantum annealer (D-Wave
QA) and a conventional computer. Our findings show that the coreset approximates the original
dataset with very small KL divergence (smaller is better), and the weighted qSVM even outperforms
the weighted cSVM on the coresets for a few instances of our experiments. As a side result (or a
by-product result), we also present our KL divergence findings for demonstrating the closeness
between our original data (i.e., our synthetic data, Iris data, hyperspectral image, and PolSAR image)
and the assembled coreset.

Keywords: coreset assembly; quantum support vector machines; hyperspectral images; PolSAR
images; quantum machine learning

1. Introduction

Remotely sensed images are used for EO and acquired by means of aircraft or satel-
lite platforms. The acquired images from satellites are available in digital format and
consist of information on the number of spectral bands, radiometric resolution, spatial
resolution, etc. A typical EO dataset is big, massive, and hard to classify by using ML
techniques when compared with conventional non-satellite images [1,2]. In principle,
ML techniques are a set of methods for recognizing and classifying common patterns
in a labeled/unlabeled dataset [3,4]. However, they are computationally expensive and
intractable to train big massive data. Recently, several studies proposed to use only a
coreset (“core of a dataset”) of an original dataset for training ML methods and tackling
intractable posterior distributions via Bayesian inference [5–7], even for a Support Vec-
tor Machine (in short, SVM) [8]. The coreset is a small, representative weighted subset
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of an original dataset, and ML methods trained on the coreset yield results being com-
petitive with the ones trained on the original dataset. The concept of a coreset opens a
new paradigm for training ML models by using small quantum computers [9,10] since
currently available quantum computers offered by D-Wave Systems (D-Wave QA) and by
IBM quantum experience (a gate-based quantum computer) comprise very few quantum bits
(qubits) (https://cloud.dwavesys.com/leap, https://quantum-computing.ibm.com/, ac-
cessed on 30 August 2021). In particular, quantum computers promise to solve some
intractable problems in ML [11–13], and to train an SVM even better/faster than a con-
ventional computer when its input data volume is very small (“core of a dataset”) [14,15].
Training ML methods by using a quantum computer or by exploiting quantum informa-
tion is called Quantum Machine Learning (QML) [16–18], and finding the solutions of
the SVM on a quantum computer is termed a quantum SVM (qSVM), otherwise classical
SVM (cSVM).

This work uses a D-Wave QA for training a weighted SVM since the D-Wave QA
promises to solve a quadratic programming problem, and our method can be easily adapted
and extended for a gate-based quantum computer. The D-Wave QA has a very small
number of input qubits (around 5000) and a specific Pegasus topology for the connectivity
of its qubits [19], and it is solely designed for solving a Quadratic Unconstrained Binary
Optimization (QUBO) problem [12,20]. For practical EO data, there is a benchmark and a
demonstration example for training an SVM with binary quantum classifiers when using
a D-Wave QA [21,22]. Here, the SVM is a quadratic programming problem considered
as a QUBO problem. Furthermore, there is a challenge to embed the variables of a given
SVM problem into the Pegasus topology (i.e., the connectivity constraint of qubits), and to
overcome this constraint of a D-Wave QA, the authors of [21] employed a k-fold approach to
their EO data such that the size of variables in the SVM satisfies the connectivity constraint
of qubits of a D-Wave QA.

In this article, we construct the coreset of an original dataset via sparse variational
inference [6] and then employ this coreset for training the weighted SVM by using a D-Wave
QA. Furthermore, we train the weighted SVM, posed as a QUBO problem, by using a
D-Wave QA on the coreset instead of the original massive data, and we benchmark our
classification results with respect to the weighted cSVM. As for practical and real-world
EO data, we use synthetic data, Iris data, a Hyperspectral Image (HSI) of Indian Pine, and a
Polarimetric Synthetic Aperture Radar (PolSAR) image of San Francisco characterized by its
Stokes parameters [23].

Our paper is structured as follows: In Section 2, we present our datasets, and we
construct the coresets of our datasets in Section 3. We introduce a weighted cSVM, and
construct a weighted qSVM for our experiments in Section 4. Then, we train the weighted
qSVM on our coresets by using a D-Wave QA and demonstrate our results with respect to
the weighted cSVM in Section 5. Finally, we draw some conclusions in Section 6.

2. Our Datasets

We use four different datasets, namely synthetic data, Iris data, an Indian Pine HSI,
and a PolSAR image of San Francisco characterized by its Stokes parameters [23,24]. The
first two sets are used to understand the concept of a coreset, and the implementation of a
weighted SVM on their coresets by using a D-Wave QA. Namely, we use the coresets of the
first two to set the internal parameters of a D-Wave QA since the solutions generated by the
D-Wave QA are affected by those internal parameters (called annealing parameters). The last
two sets are employed as real-world EO data for constructing their coresets and for training
the weighted qSVM on their coresets after the annealing parameters are set in a prior (see
Figures 1 and 2). In the next sections, we use a notation “weighted qSVM” meaning that
“training a weighted SVM posed as a QUBO problem by using a D-Wave QA”.

https://cloud.dwavesys.com/leap
https://quantum-computing.ibm.com/
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Figure 1. Synthetic data with two classes, and Iris data with two classes (Iris Setosa, and Iris Versi-
colour) characterized by two features (Sepal lenght, Sepal width).

Figure 2. Indian Pine HSI with 16 classes {1: Alfalfa, 2: Corn-notill, 3: Corn-mintill, 4: Corn, 5:
Grass-Pasture, 6: Grass-Trees, 7: Grass-Pasture-mowed, 8: Hay-windrowed, 9: Oats, 10: Soybean-
notill, 11: Soybean-mintill, 12: Soybean-clean, 13: Wheat, 14: Woods, 15: Building-Grass-Drives, 16:
Stones-Steel-Towers}, and PolSAR image of San Francisco with three classes.

2.1. Synthetic Data

We generated synthetic data with two classes (xn, yn) according to

xn = rn

(
cos φn
sin φn

)
+

(
εx

n
ε

y
n

)
, yn ∈ {−1,+1}, (1)

where rn = 1 if yn = −1, and rn = 0.15 if yn = +1. φn is linearly spaced in (0, 2π] for each
class, and εx

n, ε
y
n are samples drawn from a normal distribution with µ = 0, σ = 1. We are

replicating the data already demonstrated for training an SVM by using a D-Wave QA
described in [25]. Moreover, we have (xn, yn), n = 1, . . . , 100 data points shown in Figure 1
(Left) and in Table 1.

2.2. Iris Data

Iris data consist of three classes (Iris Setosa, Iris Versicolour, and Iris Virginica), each
of which has four features, namely sepal length, sepal width, petal length, and petal width.
We consider a two-class dataset {Iris Setosa, Iris Versicolour} with a size of 100 data points,
and each class is characterized by two features (sepal length, sepal width) shown in Figure 1
(Right) and Table 1.

Table 1. The two classes of Synthetic and Iris data.

Synthetic Data Iris Data

Classes {−1,+1} {setosa, versicolour}

Data size 100 100
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2.3. Indian Pine HSI

An Indian Pine HSI obtained by the AVIRIS sensor comprises 16 classes; each class is
characterized by 200 spectral bands (see Figure 2 (Left)). For simplicity, we use only two
classes (see Table 2), and each class is characterized by two features instead of 200 spectral
bands by exploiting Principal Component Analysis (PCA) [22].

Table 2. The two classes of the Indian Pine HSI; {1, 2} represents {Alfalfa, Corn-notill}, {2, 3}
represents {Corn-notill, Corn-mintill}, etc.

Indian Pine HSI

Classes {1, 2} {2, 3} {3, 4} {4, 5} {5, 6} {6, 7}

Data size 295 452 214 144 243 758

2.4. PolSAR Image of San Francisco

Each pixel of our PolSAR image is characterized by a 2× 2 scattering matrix as follows:

S =

(
sHH sHV
sVH sVV

)
, (2)

where the first index of sij, i, j ∈ {H, V} represents the polarization state of the incident
polarized beam, and its second index represents the polarization state of the reflected
polarized beam on targets. The off-diagonal elements of S are equal sVH = sHV since our
PolSAR image of San Francisco is a fully-polarized PolSAR image obtained by a monostatic
radar [26,27].

The incident/reflected polarized beam can be represented by its complex amplitude
in a polarization basis {Ĥ, V̂} by

~E0 = EH0Ĥ + EV0V̂. (3)

The complex amplitude vector can be expressed by a so-called Jones vector

~J =
(

EH0
EV0

)
=

(
|EH0|eiφH

|EV0|eiφV

)
. (4)

where φi are the phases of the polarized states. Furthermore, the scattering matrix S
expressed in (2) is a mapping such that

S : ~Ji → ~Jr, ~Jr = S~Ji, (5)

where~Ji,~Jr is an incident and a reflected Jones vector, respectively. In matrix form, (5) can
be re-expressed as (

Er
H0

Er
V0

)
=

(
sHH sHV
sVH sVV

)(
Ei

H0
Ei

V0

)
. (6)

The intensity of the reflected Jones vector is defined by

J =
(
〈Er

H0Er∗
H0〉 〈Er

H0Er∗
V0〉

〈Er
V0Er∗

H0〉 〈Er
V0Er∗

V0〉

)
=

(
JHH JHV
JVH JVV

)
(7)

where 〈·〉 stands for spatial averaging with a window size 7× 7 pixels, and ∗ for conjugation.
Furthermore, we can re-express this intensity by

q0
q1
q2
q3

 =


JHH + JVV
JHH − JVV
JVH + JHV

i(JHV − JVH)

, (8)
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where q1, q2, and q3 are called Stokes vectors. We normalize these Stokes vectors according to

q′1 =
q1

q0
, q′2 =

q2

q0
, q′3 =

q3

q0
, (9)

and the normalized q′1, q′2, and q′3 are called Stokes parameters [23].
Moreover, in this study, we use two classes for our PolSAR image of San Francisco,

and the two classes are {urban area, sea water}, and {vegetation, sea water} shown in
Figure 2 (Right) and in Table 3. In addition, each class is characterized by its Stokes
parameters (q′1, q′2, q′3) defined in (9).

Table 3. The two classes of our PolSAR image.

PolSAR Image of San Francisco

Classes {urban area, sea water} {vegetation, sea water}

Data size 61,465 61,465

3. Coresets of Our Datasets

In Bayesian inference, a posterior density p(θ|x) is written for θ parameters and for
{(xi, ti)}N

i=1 data points with its labels ti by

p(θ|x) = 1
Z

exp

{
N

∑
i=1

fi(θ)

}
p0(θ), (10)

where Z is a partition function, fi(θ) is a potential function, and p0(θ) is a prior. For
big massive data, the estimation of the posterior distribution is intractable, and hence, in
practice, a Markov Chain Monte Carlo (MCMC) method is widely used to obtain samples
from the posterior expressed by (10) [28].

To reduce the computational time of an MCMC method, the authors of [5–7] proposed
to run the MCMC method on a small, weighted subset (i.e., coreset) of big massive data.
They derived a sparse vector of nonnegative weights w such that only M � N are non-
zero, where M is the size of a coreset. Furthermore, the authors proposed to approximate
the weighted posterior distribution and run the MCMC method on the approximate
distribution as follows:

pw = pw(θ|x) =
1

Z(w)
exp

{
N

∑
i=1

wi fi(θ)

}
p0(θ). (11)

We denote the full distribution of an original big massive dataset as p1 = p1(θ|x).
More importantly, this posterior becomes tractable.

For assembling the coresets of our datasets presented in Table 1–3, we use an algorithm
via sparse variational inference for finding the sparse vector of nonnegative weights w and
for approximating the posterior distribution (11) proposed by [6]. Here, the sparse vector
of nonnegative weights w is found by optimizing a sparse variational inference problem:

ŵ = min
w

DKL(pw||p1) s.t. w ≥ 0, ‖w‖0 ≤ M, (12)

where ŵ is an optimal sparse vector weight, and DKL(pw||p1) is the Kullback–Leibler (KL)
divergence which measures the similarity between two distributions (smaller is better):

DKL(pw||p1) = ∑
x

pw log
pw

p1
. (13)

Moreover, the smaller value of the KL divergence implies that we can estimate the
parameters θ in (11) by using a coreset yielding similar results with respect to the ones in
(10) by using its original massive dataset.
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We derived the optimal sparse vector weights ŵ and the coreset of our dataset
such that

{(xi, ti)}N
i=1 → {(ci, ti, ŵi)}M

i=1, ŵi ∈ R≥0, (14)

where (xi, ti) represents an original dataset, while (ci, ti, ŵi) is our newly assembled coreset.
In addition, we computed the similarity between our datasets and the corresponding
coresets by using their KL divergences (see Table 4). Our results show that our coresets are
very small in size compared with our original datasets, and the KL divergences between
the original dataset and our coresets are comparatively small in most instances.

Table 4. Coresets of our datasets presented in Table 1–3, and the closeness between the original
dataset and its coreset is measured by KL divergence.

Classes Data Size Coreset Size KL Divergence

{−1,+1} 100 20 0.008194

{setosa, versicolour} 100 22 0.053002

{1, 2} 295 79 0.573451

{2, 3} 452 56 0.003121

{3, 4} 214 33 0.000600

{4, 5} 144 41 0.017201

{5, 6} 243 41 0.001823

{6, 7} 758 125 0.492636

{urban area, sea water} 61,465 501 0.125072

{vegetation, sea water} 61,465 343 0.272749

4. Weighted Classical and Quantum SVMs on Our Coresets
4.1. Weighted Classical SVMs

In the previous section, we assembled the coreset of our original datasets shown in
Table 4 as

{(ci, ti, ŵi)}M
i=1, ci ∈ R2, ŵi ∈ R≥0. (15)

To train a weighted SVM for our coresets represented via (15) by using a conventional
computer, we express a weighted SVM as

minimize H(α) =
1
2 ∑

ij
αiαjtitjk(ci, cj)−∑

i
αi

subject to 0 ≤ αi ≤ Ci,

and ∑
i

αiti = 0, αi ∈ R,

(16)

where Ci = ŵiC is a regularization parameter, and k(·, ·) is the kernel function of the
SVM [28]. This formulation of the SVM is called a weighted cSVM [29]; sometimes, it is
called a kernel-based weighted cSVM. The point ci with αi 6= 0 is called a support vector.

After training the weighted cSVM, for a given test point xt ∈ R2, the decision function
for its class label is defined by:

t̂ = sign[ f (xt)] = sign

[
∑

i
αitik(ci, xt) + b

]
, (17)
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where sign( f (xt)) = 1 if f (xt) > 0, sign( f (xt)) = −1 if sign( f (xt)) < 0, and sign( f (xt)) =
0 otherwise. The decision boundary is an optimum hyperplane drawn by data points such
that f (xt) = 0 [28]. The bias b is expressed following [25]:

b =
∑i αi(Ci − αi)

[
ti −∑j αjtjk(cj, ci)

]
∑i αi(Ci − αi)

. (18)

The kernel-based weighted cSVM is a powerful technique since the kernel function
maps non-separable features to higher dimensional separable features, and the decision
boundary is less sensitive to outliers due to the weighted constraints Ci [25,29]. Further-
more, the choice of the kernel function has a huge impact on the decision boundary, and
the types of the kernel function are linear, polynomial, Matern, and a radial basis function
(rfb) [28]. A widely-used kernel is an rbf defined by

rbf(ci, cj) = exp
{
−γ
∥∥ci − cj

∥∥2
}

, (19)

where γ > 0 is a parameter.

4.2. Weighted Quantum SVMs

A weighted quantum SVM (in short, weighted qSVM) is the training result of the
weighted cSVM given in (16) on a D-Wave QA. The D-Wave QA is a quantum annealer with
a specific Pegasus topology for the interaction of its qubits, and it is specially designed to
solve a QUBO problem:

H(z) = ∑
i,j

ziQijzj, zi, zj ∈ {0, 1}, (20)

where zi, zj are called logical variables, and Qij includes a bias term hi and the interaction
strength of the logical variables gij [19]. Physical states of the Pegasus topology are called
physical variables, two-state qubits residing at the edges of the Pegasus topology; a QUBO
problem is also called a problem energy. The D-Wave QA anneals (evolves) from an initial to
its final energy (problem energy) according to

H(T) = (1− ε(T))H0 + ε(T)H(z), (21)

where H0 is an initial energy, T is the annealing time in microseconds, and ε(T) is an
annealing parameter in the range of [0, 1].

Furthermore, to train the weighted qSVM on our coresets by using a D-Wave QA, we
pose the weighted cSVM with an rbf kernel expressed by (16) and (19) as a QUBO problem.
Here, we duplicate the formulation for posing the weighted cSVM as a QUBO problem in
the article [25].

The variables of the weighted cSVM are decimal integers when the ones of the QUBO
problem are binaries. Hence, we use a one-hot encoding form for the variables of the
weighted cSVM

αi =
K−1

∑
k=0

BkzKi+k, zKi+k ∈ {0,+1} (22)

where K is the number of binary variables (bits), and B is the base. We insert this one-hot
encoding form into the weighted cSVM given in (16), and formulate the second constraint
of (16) as a squared penalty term(

∑
i

αiti

)2

= 0 →
(

∑
ik

BkzKi+kti

)2

= 0. (23)
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By using a Lagrange multiplier λ, we transform our weighted cSVM into the QUBO
problem (20)

minimize H(z) =
1
2 ∑

ijkl
zKi+kzKj+l Bk+ltitjk(ci, cj)

−∑
ik

BkzKi+k + λ

(
∑
ik

BkzKi+kti

)2

= ∑
ij

∑
kl

zKi+kQKi+k,Kj+lzKj+l ,

(24)

where
QKi+k,Kj+l =

1
2

Bk+ltitj(k(ci, cj) + λ)− δijδkl Bk. (25)

Note that the first constraint of (16) is satisfied automatically since the one-hot encod-
ing form given in (22) is always greater than zero, and hence the maximum value for each
αi is given by

Ci = ŵi

K

∑
k=1

Bk. (26)

For training the weighted qSVM, we concentrated on four hyperparameters which are
the parameter γ of the RBF expressed by (19), the number of binary bits K, the base B, and
the Lagrange multiplier λ given in (24); thus, we used the hyperparameters (γ, K, B, λ).
For our applications, we set these hyperparameters to (γ = 16, K = 2, B = 2, λ = 0)
as proposed by [25] since these settings of the hyperparameters for the weighted qSVM
generate competitive results with the ones generated by the weighted cSVM. For setting the
bias defined in (18), we used the weighted cSVM.

In the next section, we train the weighted cSVM given in (16) and the weighted qSVM
expressed by (24) on our coresets (see Table 4). In addition, we demonstrate how to
program a D-Wave QA for obtaining a good solution of (24) since the solutions yielded by
a D-Wave QA are greatly dependent upon the embedding of the logical variables into their
corresponding physical variables, and the annealing parameters (annealing time, number of
reads, and chain strength) [30].

5. Our Experiments

In our experiments, we trained our weighted cSVM and our weighted qSVM (models)
on the coresets, and we tested our models on the original datasets (see Table 4). In addition,
we set the hyperparameters of our weighted qSVM to (γ = 16, K = 2, B = 2, λ = 0), and
for training (i.e., for setting of the bias) of the weighted cSVM, we used the Python module
scikit-learn [31].

For defining the annealing parameters (annealing time, number of reads, and chain
strength) of a D-Wave QA, we first ran quantum experiments on synthetic two-class data,
and Iris data. Then, by leveraging these annealing parameters, we used our real-world EO
data (the Indian Pine HSI and the PolSAR image of San Francisco) for evaluating our
proposed method, “by training the weighted qSVM on the coreset of our EO data instead of
a massive original EO data due to the small quantum computer (D-Wave QA) with only
few qubits”.

5.1. Synthetic Two-Class Data and Iris Data

For training the weighted qSVM expressed by (24), we first experimented on our
coresets of synthetic two-class data and Iris data shown in Table 4 in order to optimize the
annealing parameters (annealing time, number of reads, and chain strength) of a D-Wave
QA. In addition, we benchmarked the classification results generated by the weighted
qSVM compared with the weighted cSVM. This had the advantage that we could easily
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tune the annealing parameters and visualize the generated results, both for quantum and
classic settings.

In Figure 3 (in Table 5), we show our results for the classification of synthetic two-class
data and Iris data. Our results demonstrate that the weighted qSVM performs well in
comparison with the weighted cSVM for both coresets (often better for Iris data).

Figure 3. Top: Synthetic two data; Bottom: Iris data. The visual results of our experiments generated
by the weighted cSVM given in (16) and weighted qSVM expressed by (24). Our visual results demon-
strate that our weighted qSVM generalizes the decision boundary of a given dataset better than its
counterpart weighted cSVM.

To obtain these good solutions generated by our weighted qSVM, we set the annealing
parameters of the D-Wave QA as follows:

• Annealing time: We controlled the annealing time by an anneal schedule. The anneal
schedule is defined by the four series of pairs [T, ε(T)] defined in (21). We set the an-
nealing schedule accordingly: [T, ε(T)] ∈ {[0.0, 0.0], [1.0, 0.40], [19.0, 0.40], [20.0, 1.0]}.

• Number of reads: 10,000
• Chain strength: 50.
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Table 5. The classification accuracy of the weighted quantum svm (in short, qacc), and the weighted
classical svm (in short, cacc) on our coresets.

Classes Coreset Size Qacc Cacc

{−1,+1} 20 0.95 0.97

{setosa, versicolour} 22 0.99 0.98

{1, 2} 79 0.96 0.96

{2, 3} 56 0.70 0.70

{3, 4} 33 0.88 0.88

{4, 5} 41 0.78 0.78

{5, 6} 41 0.71 0.71

{6, 7} 125 0.92 0.90

{urban area, sea water} 501 0.99 0.98

{vegetation, sea water} 343 0.99 0.99

5.2. Indian Pine HSI and PolSAR Image of San Francisco

As real-world EO data, we used the coresets of an Indian Pine HSI, and a PolSAR image
of San Francisco for training the weighted qSVM when setting the annealing parameters of a
D-Wave QA set as described above. Initially, we ran a number of quantum experiments on
our coresets. In Table 5, we show the classification accuracy of our weighted qSVM results
in comparison with the ones yielded by the weighted cSVM.

Our results explicitly demonstrate that the coresets obtained via sparse variational
inference are small and representative subsets of our original datasets validated by their
KL divergences shown in Table 4. In addition, our weighted qSVM generates its decision
results with the same classification accuracy as for the weighted cSVM; in some instances,
the weighted qSVM outperforms the weighted cSVM. Furthermore, by exploiting the coresets,
we reduced the computational time of training with the weighted qSVM and the MCMC
method for inferring the parameters of the posterior distribution as proved theoretically
and demonstrated experimentally in [5,6].

6. Discussion and Conclusions

Quantum algorithms (e.g., Grover’s search algorithm) are designed to process data
in quantum computers, and they are known to achieve quantum advantages over their
conventional counterparts. Motivated by these quantum advantages, quantum comput-
ers based on quantum information science are being built for solving some problems
(or running some algorithms) more efficiently than a conventional computer. However,
currently available quantum computers (a D-Wave quantum annealer, and a gate-based
quantum computer) are very small in input quantum bits (qubits). A very specific type of a
quantum computer is a D-Wave quantum annealer (QA); it is designed to solve a Quadratic
Unconstrained Binary Optimization (QUBO) problem belonging to a family of quadratic
programming problems better than conventional methods.

For Earth observation, satellite images obtained from aircraft or satellite platforms
are massive and represent hard heterogeneous data to train ML models on a conventional
computer. As a practical and real-world EO dataset, we used synthetic data, Iris data, a
Hyperspectral Image (HSI) of Indian Pine, and a Polarimetric Synthetic Aperture Radar (PolSAR)
image of San Francisco. One of the well-known methods in ML is a Support Vector Machine
(SVM): This represents a quadratic programming problem. A global minimum of such
a problem can be found by employing a classical method. However, its quadratic form
allows us to use a D-Wave QA for finding the solution of an SVM better than a conventional
computer. Thus, we can pose an SVM as a QUBO problem, and we named an SVM-to-
QUBO transformation as a quantum SVM (qSVM). Then, we can train the qSVM on our
real-world EO data by using a D-Wave QA. However, the number of the physical variables
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of the qSVM is much larger than that of the logical variables of a D-Wave QA due to the
massive EO data and the very few qubits.

Therefore, in our paper, we employed the coreset (“core of a dataset") concept via sparse
variational inference, where the coreset is a very small and representative weighted subset of
the original dataset. By assembling and exploiting the coreset of synthetic data and Iris data
shown in Table 4, we trained a weighted qSVM posed as a QUBO problem on these coresets
in order to set the annealing parameters of a D-Wave QA. We then presented our obtained
visual results and the classification accuracy of synthetic and Iris data in Figure 2 and in
Table 5, respectively, in contrast to the ones of the weighted cSVM. Our results show that the
weighted qSVM is competitive in comparison with the weighted cSVM − and for Iris data
even better than the weighted cSVM.

Finally, we assembled the coresets of our real-world EO data (from an HSI of Indian
Pine, and a PolSAR image of San Francisco), and demonstrated the similarity between our
real-world EO data and its coreset by analyzing their KL divergence. The KL divergence
test proved that our coresets are valid, small, and representative weighted subsets of our
real-world EO data (see Table 4). Then, we trained the weighted qSVM on our coresets
by using a D-Wave QA to prove that our weighted qSVM generates classification results
being competitive with the weighted cSVM in Table 5. The annealing parameters of the
D-Wave QA were already defined in the prior section. In some instances, one can see that
our weighted qSVM outperforms the weighted cSVM.

As ongoing and future work, we intend to develop a novel method for assembling
coresets with balanced labels via sparse variational inference since currently available tech-
niques generate unbalanced labels. Furthermore, we plan to design hybrid quantum-
classical methods for different real-world EO problems. These hybrid quantum-classical
methods will perform a dimensionality-reduction of remotely-sensed images (in the spatial-
dimension) by using our established methods, and will reduce the size of our training/test
data by using a coreset generating balanced labels when we process these small datasets
on a small quantum computer.
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