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Abstract: Accurately predicting the remaining useful life (RUL) of the turbofan engine is of great
significance for improving the reliability and safety of the engine system. Due to the high dimension
and complex features of sensor data in RUL prediction, this paper proposes four data-driven prog-
nostic models based on deep neural networks (DNNs) with an attention mechanism. To improve
DNN feature extraction, data are prepared using a sliding time window technique. The raw data
collected after normalizing is simply fed into the suggested network, requiring no prior knowledge
of prognostics or signal processing and simplifying the proposed method’s applicability. In order to
verify the RUL prediction ability of the proposed DNN techniques, the C-MAPSS benchmark dataset
of the turbofan engine system is validated. The experimental results showed that the developed long
short-term memory (LSTM) model with attention mechanism achieved accurate RUL prediction in
both scenarios with a high degree of robustness and generalization ability. Furthermore, the proposed
model performance outperforms several state-of-the-art prognosis methods, where the LSTM-based
model with attention mechanism achieved an RMSE of 12.87 and 11.23 for FD002 and FD003 subset
of data, respectively.

Keywords: turbofan engine degradation; data-driven prognostic; deep neural network (DNN);
prognostics and health management (PHM); remaining useful life (RUL); uncertainty

1. Introduction

Prognostics is a discipline of engineering that focuses on predicting a system’s future
state or behavior by using synthesis observations, calibrated mathematical models, and
simulation [1]. It mainly refers to the research of predicting the precise period when
a system will no longer be able to perform as intended. Prognostics is an attempt to
estimate the remaining useful life (RUL) of a component in an engineering system. In many
industries, rotating machinery is a critical component and is vulnerable to failure because
of harsh working conditions and long operating hours [2]. Examples of the components of
rotating machinery include gearboxes [3], motors, bearings [4], turbines [5], and engines [6].
To avoid critical damage and abrupt stopping of machine operation, rotating machinery
failures should be detected as early as possible [7]. Failures can cause operational delays
and enormous financial losses [8].

To avoid these failure scenarios, resource maintenance is frequently planned in ad-
vance [9]. However, in some industries, maintenance costs can account for up to 70% of total
costs [10]. For this reason, maintenance cost reduction is viewed as a critical and significant
advantage for manufacturers operating in a highly competitive manufacturing sector, such
as power plant, aerospace, and oil and gas industries. Repairing an aircraft turbofan engine
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following a breakdown can be more expensive than performing preventive maintenance in
advance of a breakdown [11]. Therefore, industrial revolution has changed maintenance
methods from preventive maintenance based on reliability assessment to condition-based
maintenance (CBM) [12]. CBM strategy integrates real-time diagnosis of approaching
failure with the prognosis of future equipment performance, making it easier to arrange
essential repairs and maintenance in advance of a breakdown [11]. Numerous factors
can complicate the maintenance operation of an aero engine system, including system
configurations, maintenance resource costs, machine degradation profiles, maintenance
schedules, and recent machine status [13].

Data-driven techniques, particularly those based on artificial intelligence (AI) such
as deep learning (DL) [14–16], have gained increasing attraction in the manufacturing
industry as the industrial Internet of Things (IoT) [17] and Big Data (BD) have grown in
popularity. While considerable research has been conducted on the use of deep learning
techniques relative to machine health monitoring, very few studies have focused on apply-
ing deep learning to the prediction of RUL with associated uncertainties [1,12,18]. Precise
RUL prediction can considerably increase industrial components or systems’ reliability and
operational safety [19], prevent fatal failures, and lower maintenance costs [20]. Therefore,
several attempts have been conducted in the literature to predict the RUL of a turbofan
engine. However, these attempts still suffer from the disadvantages of high computa-
tional power [13], uncertainty prediction [21,22], and further architecture optimization is
required [23] in order to provide high prediction accuracy because even a little uncertainty
in prognostics prediction can result in huge losses [24]. Thus, there is a need for accurately
predicting the RUL in practical aerospace applications [13] due to the presence of various
uncertainties that affect prognostic calculations that, in turn, render turbofan engine RUL
predictions uncertain [25]. Previous investigations [1,6,13,14,21,22,24] do not attempt to
quantify the inherent uncertainty in their predictions. Hence, the research gaps identified
by [25] still remain open in the context of RUL prediction in prognostics. While methods
based on deep learning can achieve promising point prediction performance, they struggle
to quantify the uncertainty associated with RUL prediction [24]. To fill these gaps, we have
proposed a new data-driven approach that aims to accurately predict RUL and overcome
the uncertainty inherent in DNNs predictions in the literature by incorporating the slid-
ing time window technique for sample preparation and long short-term memory (LSTM)
network with an attention mechanism to map the relationship between features and the
RUL effectively. Then, we estimated and leveraged the uncertainties in DL models using
bootstrap sampling.

Furthermore, it is challenging to estimate RUL for prognostics and health management
(PHM) purposes [26–28]. Such RUL estimation is beneficial and one of the vital parts
in PHM is that it can prevent unexpected failures of complex engineering systems [29]
and help engineers to schedule maintenance, optimize operating efficiency, and avoid
unplanned downtime [30]. Learning-based data-driven approaches have emerged as
potential alternatives to model-based prognostic methods due to the complexity of the
physics needed to properly simulate machine deterioration processes [31]. However,
quantifying the remaining uncertainty for use in responding optimally to RUL predictions
remains a research gap. Moreover, these data-driven models learn the degradation pattern
entirely from previously stored historical data without incorporating physical models [29].
Therefore, this paper attempt to propose a new deep neural network (DNN) with an
attention mechanism for machinery prognostics. The attention mechanism is an excellent
method for enhancing the ability of models to learn new features. It may be thought
of as a secondary screening of data information to emphasize the most critical pieces of
information for analysis and precise prediction [32]. The primary contributions of this
work are summarized as follows: (i) The suggested approach can quantify prognostic
uncertainty by inferring the distribution across functions that map monitoring data to
its associated RUL. (ii) In order to enhance the neural process’s ability to predict RUL,
an attention mechanism is integrated with one-layer LSTM to precisely capture critical
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information included in the input signal and for which its performance in RUL prediction
outperforms the traditional DL approaches in the literature. (iii) We have proposed a
cost-effective approach to predict the remaining useful life of a turbofan engine where
the parameters and computational cost of the training process are considerably decreased
using dimensionality reduction processing. (iv) We have conducted a comparative analysis
of four different deep neural network architectures in order to evaluate which technique
relative to DNNs has excellent features extraction and generalization abilities. To verify
the effectiveness of the proposed prognostic approach, the model was validated using
Commercial Modular Aero Propulsion System Simulation datasets (C-MAPSS).

The rest of this paper is structured as follows. Section 2 highlights the background
and the related works of the study. Section 3 outlines this work’s research methodology,
while Section 4 describes the experimental findings. Lastly, Section 5 concludes the paper
and highlights future investigations.

2. Background and Related Work

Industrial internet advancements have enabled sensor data available from multiple
machines across different domains and industries [17]. These sensor readings can
determine the health of the equipment. As a result, there is a growing demand in
the industry to perform maintenance on equipment based on their condition instead
of the existing industry standard of time-based maintenance [33,34]. It has also been
demonstrated that condition-based maintenance may save a lot of financial losses. As a
result, developing these models can help achieve goals such as predicting the machine’s
RUL based on sensor data. RUL may be calculated by using historical trajectory data,
which is useful for optimizing maintenance schedules in order to minimize engineering
problems and reduce costs.

One of the data-driven methods used for RUL estimation is the convolutional
neural network (CNN). CNN applications in RUL-related fields have also obtained
massive attention in the literature [35]. Babu et al. [36] are the first to use the deep CNN
approach for RUL prediction. The results showed that CNN outperformed multi-layer
perceptron (MLP), support vector machine (SVM), and significance vector regression
(SVR) models. The CNN approach proposed by [36] has been tested and evaluated on
the C-MAPSS dataset. Wen et al. [37] have developed a new residual convolutional
neural network (ResCNN). ResCNN employs the residual block, which uses shortcut
connections to skip several blocks of convolutional layers and can aid in overcoming
the vanishing gradient issue. Furthermore, ResCNN is improved by utilizing the k-fold
ensemble technique. The proposed ensemble ResCNN is applied to NASA’s C-MAPSS
benchmark dataset. Another study proposed by [28] has presented a novel method for
deep feature learning for RUL prediction using time-frequency representation (TFR) and
multi-scale CNN networks (MS-CNN). TFR can effectively disclose the non-stationary
nature of the bearing degradation signal.

Another practical approach is deploying a hybrid learning method. For instance, Li, Li,
and He [38] have attempted to improve RUL estimations of the machines by suggesting a
directed acyclic graph (DAG) network that combines CNN and LSTM to estimate the RUL.
They reported that padding the signals in the same training batch will affect the prediction
capacity of the integral approach when a single timestamp is utilized as an input. To
address this limitation, the work in [38] generates a short-term sequence by sliding the time
window (TW) with a single-phase duration. Furthermore, the piece-wise RUL technique is
employed instead of the conventional linear function based on the degradation mechanism.
Huang et al. [39] used the classic multi-layer perceptron (MLP) approach to predict the
RUL of bearings in laboratory testing and found that the prediction results outperformed
reliability-based alternatives. Muneer et al. [40] suggested an attention based DCNN model
with time window approach to cope with the degradation and reliability of time-series fore-
casting problem. They performed a case study by estimating the RUL of turbofan engine
on four subsets of C-MAPPS benchmark dataset. The main limitation of this work [40],
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the uncertainty inherent in their DL model was not quantified. Khawaja, Vachtsevanos,
and Wu [41] developed a confidence prediction NN method with a confidence distribution
node to solve the downside that the confidence limits of RUL prediction cannot generally
be explicitly acquired with NN techniques. Many researchers have also implemented fuzzy
logic into MLP networks to collect more knowledge for PHM.

Malhi, Yan, and Gao [42] suggested applying competitive learning based on RNN
methods to long-term prognostics of machine health status by using recurrent neural
networks. The continuous wavelet transform is used to preprocess indicators of vibration
from a rolling bearing with a fault, which is then used as model inputs. Yuan, Wu, and
Lin [43] suggested an LSTM-based scheme for RUL prediction of aero engines in the case
of highly complex operations, hybrid faults, and strong noises as an enhancement of the
standard RNN. Zhao et al. [44] have used LSTM for tool wear health monitoring tasks.
By integrating both the time domain and frequency domain functions, Ren et al. [45]
proposed an optimized DL method for multi-bearing RUL collaborative estimation. The
proposed method’s feasibility and superiority were demonstrated by numerical tests on a
real dataset. To fill the research gap, this research proposes a new DNN-based approach
with an attention mechanism to predict the RUL of an aero engine system. Table 1 presents
a summary of the state-of-art methods.
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Table 1. Summary of the state-of-art methods findings.

Authors Year Technique Used Benchmark Dataset Results Achieved Limitations/Gaps

Babu et al. [36] 2016 Deep CNN C-MAPSS RMSE for FD002 (30.29)
RMSE for FD003 (19.81)

This study does not consider the uncertainty
prediction associated with RUL.

Zhang et al. [21] 2016 Multi-objective deep
belief networks ensemble C-MAPSS RMSE for FD002 (25.05)

RMSE for FD003 (12.51)

This work does not consider the uncertainty
prediction inherent in their DL model, which makes

impractical in practice.

Malhotra et al. [17] 2020 LSTM-ED C-MAPSS
The authors have failed to
report the RMSE value for

each subset of data.

The model was not able to estimate the RUL and
only able to capture the fault.

Li, Ding, and Sun, [22] 2018 DCNN C-MAPSS RMSE for FD002 (22.36)
RMSE for FD003 (12.64)

This work does not consider the uncertainty
prediction inherent in their DCNN model and
further architecture optimization is still needed

since the current training time is longer than most
shallow networks in the literature.

Zheng et al. [15] 2017 Deep LSTM C-MAPSS RMSE for FD002 (24.49)
RMSE for FD003 (16.18) Uncertainty of LSTM model was not examined

Song et al. [46] 2019 Autoencoder-BLSTM C-MAPSS

The model was only tested on
a simpler subset of data
called FD001 where the
RMSE achieved is 13.63.

High computational load and uncertainty were not
quantified.

Wen et al. [37] 2018 ResCNN C-MAPSS
Authors have failed to report

the RMSE value for each
subset of data.

The limitations of the proposed method are that the
imbalance of signal data is ignored and the tuning

parameter process of the ensemble ResCNN is very
time-consuming. Moreover, uncertainty was not
predicted, which made this method impractical.

Li, Li, and He [38] 2019 CNN combined with
LSTM C-MAPSS RMSE for FD002 (20.34)

RMSE for FD003 (12.46)

The proposed DAG network suffers from a slow
training time issue, which was reported to be

(138.17 s), and the uncertainty was not quantified.

Muneer et al. [40] 2021 Attention-based DCNN C-MAPSS RMSE for FD002 (18.34)
RMSE for FD003 (13.08)

The problem of RUL prediction with associated
uncertainties of their DL model were not addressed.
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Table 1. Cont.

Authors Year Technique Used Benchmark Dataset Results Achieved Limitations/Gaps

Zhang et al. [47] 2019 CNN-XGB C-MAPSS RMSE for FD002 (19.61)
RMSE for FD003 (13.01)

This method’s main drawback is the computational
speed, where the prediction time taken is around
621.7 s. It also does not consider the uncertainty

prediction associated with RUL.

Ji et al. [48] 2020 PCA–BLSTM C-MAPSS

The model was only tested on
a simpler subset of data
called FD003 where the
RMSE achieved is 11.1.

Long training time where the researchers failed to
indicate the time of training in seconds.

Wang et al. [49] 2021 MS-CNN PRONOSTIA
Bearing dataset

The MSE obtained with
average test loss is (35.48)

The R2 achieved with
average test loss is (0.64)

This work does not consider the uncertainty
prediction inherent in their DL model, which makes

it impractical in practice

This study 2021 LSTM with Attention
Mechanism C-MAPSS RMSE for FD002 (12.87)

RMSE for FD003 (11.23)

Optimized network structure where the parameters
and computational cost of the training process are

considerably decreased using dimensionality
reduction processing. The prediction time taken is

around 117.3 s, and the uncertainty in DNNs
predictions is examined.
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3. Development of Data-Driven Model

The approach of this study provides a comparative analysis among four promising
and well-known deep learning models. To achieve the optimum model for predicting RUL
of different engine units, the proposed DNN-based models with attention mechanism were
trained and evaluated, applying standard performance evaluators for prediction models.
The first section focuses on the proposed deep candidate models, while the final two steps
of the suggested methodology are discussed in subsequent sections.

3.1. Candidate Model Training and Optimization

This section focuses on describing the DNNs architecture and optimization utilized
to develop RUL prediction candidate models. This study has employed commonly used
neural network architectures such as “Convolutional Neural Networks (CNNs), and Re-
current Neural Networks (RNNs) with simple units, Gated Recurrent Unit (GRU) and
Long Short-Term Memory (LSTM) units,” respectively. For DNN optimization, we applied
the Randomized Hyperparameter search methodology employed in [50] to maximize the
effectiveness of DNN candidate models. By performing a random search over a vast
hyperparameter space, the randomized hyperparameter search provides improved hy-
perparameters for DNNs with a limited computing budget. The hyperparameters are
randomly sampled, and models are created by using the parameters that are evaluated.
The following subsections present a brief overview of each DNN architecture that is utilized
to predict the RUL of the turbofan engine.

3.1.1. Recurrent Neural Networks

A shortcoming of traditional DNNs is that the weights learned by individual neurons
preclude them from identifying exact representations for the corresponding features to
RUL due to the complex structure of the system. An RNN circumvents the restriction
via utilizing a repeating loop over timesteps to resolve the problem mentioned above.
A sequence vector {x1, . . . , xn} is manipulated by utilizing a recurrence of the form
rt = fα(rt−1, xt), where f denotes the function of activation, α is a set of parameters
applied at each time step t, and xt is the input at timestep t.

For instance, three variations of recurrent neurons, a simple RNN unit, a gated recur-
ring unit (GRU), and the LSTM unit, are used to develop the candidate RNN-based models
for the proposed study. Each timestep is a simple recurrent neuron. The parameters gov-
erning the connections between the input and hidden layers and the horizontal connection
between activations and the hidden layer to the output layer are shared. A basic recurrent
neuron’s forward pass can be expressed as follows:

at = g
(

Wa

[
a〈t−1〉, Xt

]
+ ba

)
(1)

yt = f
(
Wy at + by

)
(2)

where g reflects an activation function when “t” represents the current timestep, the input
of timestep is represented by Xt, ba and by defines the bias, Wa and Wb are the respective
weights, and timestep t of the activation output is denoted by at. If needed, this at activation
could be employed to measure the yt forecasts at time t.

Table 2 demonstrates the RNN method structural design with the simple RNN neu-
rons. This model uses a reshape layer to convert sequence input to time-series input.
The following layers of the DNN model interpreted these sequence vectors’ geometric
relationships to learn deep feature representations and evaluated them by the output layer
in order to render predictions; a single linear unit is used. Figure 1 presents the proposed
simple RNN-based model structure for RUL prediction.
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Table 2. Simple RNN-based model architecture for RUL estimation of turbofan engine.

Layer Type No. of Weights

Reshape layer (sequence to timeseries
conversion)

Simple RNN with 30 neurons

No weights
35 × 30 = 1050

FC1 with 20 relu units
Dropout layer for regularization

FC2 with 8 relu units

(30 + 1) × 20 = 620
No weights

(20 + 1) × 8 = 168
Output Layer with One linear unit (8 + 1) × 1 = 9

Figure 1. Proposed simple RNN-based model structure for RUL estimation.

Additionally, DNNs with simple RNN neurons indicate favorable outcomes in several
applications. They are still prone to vanishing gradients problem [51] and show a limited
capability to learn long-term dependencies of engine system degradation. The research
community has provided a number of modified recurrent neuron architectures to overcome
the simple RNN neurons drawback, including the Gated Recurrent Unit (GRU) technique
proposed by [52] and the LSTM method presented by [53] in order to resolve the problem
of gradients disappearing and to allow long-term dependences to be learned.

The authors in [54] presented GRU, which is capable of showing better performance
for long-term relationship learning in time series data. The memory variable Ht = at is used
by the GRU unit at each stage t, which provides an updated list of all samples processed
by the unit. Hence, the GRU unit considers overwriting the Ht at each timestep t, but the
regulation of memory variable overwriting is implemented via the update gate Γu when
the GRU unit superimposes the Ht value at each step“ t” with the candidate value Ht. GRU
neuron functionality can be represented via the following series of equations:

Ht
= tanh(Wc

[
Γr × Ht, Xt]+ bc (3)

Γr = σ
(

Wr

[
Ht−1, Xt

]
+ br

)
(4)

Γu = σ
(

Wu

[
Ht−1, Xt

]
+ bu

)
(5)

Ht = Γu ∗ Ht
+ (1− Γu) ∗ Ht−1 (6)

at = Ht (7)

where Wr, Wc, and Wu represent the respective weights, and br, bc, and bu denote the
subsequent bias terms for input Xt at timestep t. σ is the function of logistic regression,
and the activation value at timestep t is represented by at. With the exception of the
usage of GRU neurons, the implemented RNN model developed with GRU is similar
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to that of simple RNNs. Table 3 presents the GRU-based RNN model architecture for
RUL estimation.

Table 3. GRU-based RNN model architecture for RUL estimation in C-MAPSS benchmark dataset.

Layer Type No. of Weights

Reshape layer (sequence to timeseries conversion)
GRU layer with 30 neurons

No weights
78 × 30 = 2340

FC1 with 20 relu units
Dropout layer for regularization

FC2 with 8 relu units

(30 + 1) × 20 = 620
No weights

(20 + 1) × 8 = 168
Output Layer with One linear unit (8+1) × 1 = 9

As mentioned earlier, the authors in [53] have proposed the LSTM neuron with
some improvements to the design of the Simple_RNN unit, which provides a more ro-
bust generalization of GRU. Prominent variations in LSTM and GRU cells are illustrated
as follows:

1. No significance gate Γr is used in generic LSTM units for Ht computation.
2. LSTM units utilize two distinct gates instead of an update gate Γu, namely output

gate Γo and update gate Γu. The output gate tracks the content’s visibility of the Ht

memory cell to compute LSTM unit activation outputs for other hidden units in the
network. To achieve Ht, the forget gate handles the extent of overwriting on Ht−1, for
instance, how much memory cell information must be overlooked in order to function
properly for memory cells.

3. LSTM is different from GRU architectures by the fact that the memory cell contents
Ht may not be equivalent to the activation at at time t.

Moreover, the RNN approach-based LSTM is constructed with similar architecture
as GRU and simple RNN models. The only difference is the presence of LSTM units
in recurrent layers instead of GRU units. Both RNN networks, LSTM-based and GRU-
based, are combined with an attention mechanism. Table 4 and Figure 2 show the
model’s architecture that used LSTM with an attention mechanism to build the RUL
estimation model.

Table 4. RUL estimation using RNN-based LSTM neurons architecture.

Layer Type No. of Weights

Reshape layer (sequence to timeseries conversion)
LSTM layer with 30 neurons

FC1 with 20 relu units

No weights
144 × 30 = 4320

(30 + 1) × 20 = 620
Dropout layer for regularization

FC2 with 8 relu units
Output Layer with linear unit

No weights
(20 + 1) × 8 = 168

(8 + 1) × 1 = 9

The integrated attention mechanism is utilized to maintain the intermediate output via
the LSTM encoder. Thus, the suggested model is trained to extract usable representations
from the input sequence and to correlate output and input sequences. As illustrated in
Figure 2, the attention mechanism determines the score value for each variable using the
LSTM hidden layers’ intermediate variables. Each variable’s weight value indicates its
relative importance. Then, the context vector layer will combine the data and extract critical
feature information from the input sequence, with the critical feature information offered
greater weight. Moreover, by monitoring the mapping relation in multi-dimensional space,
additional hidden layers provide a more precise distribution among network input and
output, improving the model’s capacity to deal with nonlinear complex features.
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Figure 2. Proposed RNN-based LSTM with attention mechanism model structure for RUL estimation.

The listed formulas (8–12) illustrate the update rules for each parameter following the
use of LSTM and the attention mechanism:

f n
(t)

in
(t)

on
(t)

gn
(t)

 =


σ
σ
σ

tanh

Zn
L+M

 Edn
t−1

hn
t−1
vt

 (8)

vt =
N

∑
i

βt
i xi (9)

st
i = Wstanh

(
Whhn

(t−1) + Wxxi + bs

)
(10)

βi
t =

exp
(
st

k
)

∑N
k=1 exp

(
st

k
) (11)

N

∑
i=1

βi
t = 1 (12)

where Zn
L+M indicates the LSTM model’s nth layer parameters, and σ is the sigmoid func-

tion. Edn
t−1 denotes an embedding matrix, and L denotes the LSTM network’s dimension.

vt is the context vector, which is a representation of the input’s relevant vector at time t.
M is the dimension of vt, and βt

i denotes the attention weights assigned by the relevance
score st

i . Once the relevant scores for the attributes X = {x1, x2, · · · , xN} are computed, the
network is capable of obtaining the attention weights.

By amplifying the weights, the neural network may concentrate on learning the related
data. In short, the weight matrices utilized in the suggested LSTM-based model at time
point t are as follows:

w′t,ih = wi,ihβi (13)

w′i,oh = wi,ohβt (14)
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w′i, fh
= wi, f hβi (15)

where the following is the case.

βi =


1 + βt,1 1 + βt,1 , · · · , 1 + βt′ ,1
1 + βt;2 1 + βt;2 , · · · , 1 + βt′ ,2

...
...

...
1 + βt;m 1 + βt′ ,m , · · · , 1 + βt′ ,m


m×m

Finally, the process of the LSTM with an attention mechanism is shown in
Figure 2 (bottom).

3.1.2. Convolutional Neural Networks

CNNs are designed to handle learning problems involving high dimensional input
data with complex spatial structures such as image classification [55], pattern recogni-
tion [56], amino acid sequence prediction [54,57], and time series failure signals. CNNs
attempt to learn hierarchical filters that can transform large input data to accurate class
labels using minimal trainable parameters. This is accomplished by enabling sparse inter-
actions between input data and trainable parameters by using parameter sharing in order
to learn equivariant representations (also called feature maps) of complex and spatially
structured input information [58]. In a Deep CNN, units in the deeper layers may indirectly
interact with a large portion of input due to the usage of pooling operations that replaces
the output of Net at a certain location with a summary statistic and allows the network to
learn complex features from this compressed representation [49]. The so-called “top” of
the CNN is usually composed of a bunch of fully connected layers, including the output
layer, which uses the complex features learned by previous layers to make predictions.

The CNN-based architecture of the RUL prediction model is presented in Table 5
with one reshape layer, two convolution layers with max pool blocks, flatten layer, fully
connected layer, and an output layer of the sigmoid neuron. The CNN-based approach has
been proposed.

Table 5. RUL prediction using CNN-based neurons architecture.

Layer Type No. of Weights

Reshape layer No weights
Conv-1D with 8 kernels of size 3 ((3 × 2) + 1) × 8 = 56

Maxpool-1D No weights
Regularization with 50% of probability No weights

Conv-1D with 16 kernels of size 3 ((3 × 8) + 1) × 16) = 400
Maxpool-1D No weights

Flatten (to create array of scalars) No weights
FC1 with 8 relu units (32 + 1) × 8 = 264

Output layer comprising of one sigmoid (8 + 1) × 1 = 9

The deep CNN learning ability is enhanced by utilizing multiple non-linear feature
extractions. It can learn hierarchical representations from data on its own. As a result,
the scale of the convolution kernel and the number of convolution layers significantly
affect prediction performance. The proposed CNN architecture for RUL prediction in this
research study is presented in Figure 3, and the attention mechanism employed is similar
to the one shown in Figure 2 (bottom). Therefore, the input datum is two-dimensional (2D),
where the feature number takes up one dimension, and the sensor’s time sequence is the
other dimension.
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Figure 3. Proposed deep CNN structure for RUL prediction.

Following that, the reshape layer is employed for sequence to time-series conversion
of the input data. The feature maps are then combined using a convolutional layer with one
filter. After flattening, the feature will be connected with a fully connected layer. Moreover,
the dropout method will be used to relieve overfitting. Additionally, RELU is the activation
feature of each layer. In this study, Adam’s optimization algorithms will serve as the
optimizer. Due to the current state of the aero engine system datasets, we increased the
penalty for lag prediction; the loss is expressed as given below:

loss =
1
N

N

∑
1=1

ω(yi − ŷi) (16)

where yi is the actual value, and ŷi is the predicted value. N is the validations’ set number.
When the actual value yi is greater than the predicted value ŷi, the penalty coefficient
ω = 1, otherwiseω = 2.

3.2. Prognostic Procedure

Figure 4 depicts the proposed prognostic experimental approach. To begin, the
FD002 and FD003 subsets of data are preprocessed by selecting fourteen raw sensor
measurements (discussed in Section 3.3.1) and normalize the accompanying data to fall
within the range [−1, 1]. Next, the training and testing datasets are created, with each
sample providing information about the time sequence within the Ntw length time frame.
Hence, the normalized data that are prepared in 2D format have been directly fed into the
DNNs models as input. There is no requirement for hand-crafted signal processing features
such as skewness, kurtosis, and so on. As a result, the suggested method does not require
prior knowledge of prognostics or signal processing. Following that, the suggested DNNs
candidate models for RUL prediction are constructed, and its configuration is specified,
including the number of hidden layers, the number and length of convolution filters, etc.
Finally, the DNNs models receive normalized training data as input and output labelled
RUL values for the training samples.

Additionally, back-propagation learning is employed in order to update the net-
work’s weights. For updates, the Adam optimization method is employed in conjunc-
tion with mini-batches. The samples are randomly separated into numerous mini-
batches of 512 samples, each for each training epoch and loaded into the training DNN
model. Following that, network information, for example, the weights in each layer, is
optimized by using the mini-mean batch’s loss function. It should be mentioned that
batch size selection influences the performance of network training [59]. According to
the experimental trials, the batch size of 512 samples was determined to be appropriate
and is utilized in all of the case studies in this study. Additionally, a random search
strategy is applied to provide optimal performance on a given subset of data (i.e.,
FD002) over a large hyperparameter space.
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Figure 4. The prediction process of our proposed DNNs candidate models.



Electronics 2021, 10, 2453 14 of 25

3.3. Data Pre-Processing and Normalization
3.3.1. Sensor Data Selection

The C-MAPSS dataset contains 21 sensors/features. Therefore, not all the sen-
sors/features are highly correlated with RUL prediction. Hence, we have used gradient
boost decision trees (GBDTs) for feature selection and dimensionality reduction in
order to assess the association between sensor data and RUL values in order to identify
significant features.

The GBDT method is a type of ensemble learning method that uses the decision
tree as its primary estimator. It operates admirably when utilized for feature selection
and can output the characteristics’ relative value. The results are ranked in order of
significance, and the top fourteen sensor measurements are chosen for further analysis.
Hence, among 21 sensors only fourteen sensors/features are selected to be fit into the
DNN candidate models.

3.3.2. Data Normalization

Several raw sensor data, operating parameters, and run to failure are granted in
real-world applications. Sensor data must be standardized about each sensor before
training and testing since the value scale of different sensors can differ. In this ex-
periment, 21 sensors are employed, and the irregular or unchanged sensor data are
eliminated. The min-max normalization technique is used to normalize each feature
range to be [0, 1]. Additionally, for certain systems where the system health does not
decay linearly from the operations start, we must use piece-wise functions to reduce
the estimated RULt

calc goal. Different workloads, operational environments, and deteri-
oration modes exist in certain applications, and we can incorporate this knowledge into
the RUL estimation model if it is accessible.

For data normalization, sensor data can be normalized by letting µi denote the mean
of the i-th sensor data from the engine, and σi denotes standard deviation. Z-score normal-
ization is where x′i is the normalized sensor output. The raw sensor data are scaled within
the range of [0, 1] by using normalization of min-max as described in the following:

x′i =
xi − µi

σi
(17)

x′i =
xi −minxi

maxxi −minxi
(18)

where xi,j is the i-th measuring point of the j-th sensor. xi,j
norm is the xi,j normalized result.

xj
max and xj

min represent the minimum and maximum values of the j-th sensor.

3.4. Samples Preparation Using Sliding Time Window

The sliding window (SW) approach [60] is used to segment data, as illustrated in
Figure 5. The entire lifespan of an engine is T, and the window and step sizes are specified
individually as l and m. The ith sample has an input size of l × n, where n is the selected
sensor’s total number and the operating condition (OC) data dimension, and the real RUL
is Ts − l − (i − 1) × m. For both training datasets FD0002 and FD003, the sliding window
length is selected at 30 based on the experiments conducted with various window sizes
(e.g., 5, 10, 15, 20, 25, 30, 35, etc.), and it was discovered that there was a considerable
reduction in RUL estimation error when the sliding window size increased from 15 to 30.
When the sliding window is greater than 30, no noticeable improvement in prognostic
performance occurs. All the historical data in the SW are extracted at each time step
to establish a high dimensional vector of length 14 × 30 as input data. Thus, based on
feature selection and the dimensionality reduction method, 14 sensors measurements out
of 21 sensors are selected/employed as the raw input features. These 14 sensors were
also utilized by [23,61]. The dynamic characteristics of aero engine operating data under
various operating conditions are significantly different, which results in different network
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structures for extracting features. The structure of the proposed DNN-based models in this
paper is designed to predict the RUL of aero engines under single and multiple operating
conditions. Therefore, this paper utilizes the FD002 dataset obtained under six OCs and the
FD003 dataset obtained under a single OC of the aero engines for experimental analysis.

Figure 5. Schematic diagram of the sliding window approach.

Additionally, a sequence to target the problem can be expressed as RUL estimates. A
time series of length T is X = (xt | t = 1, · · · , T) with xt ∈ Rn×m, where n is the sensors’
number, and m the samples number per cycle. Hence, the goal is to estimate the corre-
sponding output yT , yT = f (xt | t = 1, · · · , T), where xt represents all samples at cycle t.
When the sliding window technique is employed, the earlier formulation must be revised
to yT = f (xw

t | t = w, · · · , T), where w is the window size. Thus, the vector xw
t contains

all the samples in the TW, which is denoted as xw
t = (xt−w+1, · · · , xt). In our settings, the

size of the sliding step is always set to one. The sequence length specifies how historical
data are employed in any model, whereas the window size describes the complexity of
dynamic features across time. Both parameters should be examined when optimizing the
model because they have such a significant impact on its performance.

For the RUL target label, a piecewise linear function has been used [21], which is
defined as the following:

Rul =
{

Rul, if Rul ≤ Rulmax
Rulmax, if Rul > Rulmax

(19)

where the following is the case.

Rulmax is a preset value

Therefore, Rulmax is set to 130 and 150 cycles, respectively, for FD002 and FD003 as
in [21,38]. According to experimental analysis, m is 30, and l is 1. FD002 and FD003 have
training samples of 53,759 and 24,720, respectively, and testing samples of 259 and 100,
respectively, because only the most recent measurements of the test sets are used. The
effectiveness of the piecewise linear function on this prediction problem has been confirmed
in the literature [23,36,61], and the processed label values are smoothed.

4. Experimental Results and Discussion

This section summarizes the experiments’ findings and discusses their significance.
In the first section, Commercial Modular Aero Propulsion System Simulation datasets
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(C-MAPSS) are introduced. In the second section, experimental results and performance
analysis are introduced. The comparative analysis with literature is provided in the
last section.

4.1. C-MAPSS Benchmark Dataset

This paper selects the C-MAPSS turbofan degradation dataset provided by NASA to
verify the effectiveness of the proposed DNNs candidate models. The primary control system
comprises three components: a fan controller, a regulator, and a limiter. The fan maintains
normal flight conditions by directing air into the inner and outer culverts, as observed in
Figure 6. The combustor is supplied with compressed high temperature, high-pressure gases
via a low-pressure compressor, and a high-pressure compressor. Low-pressure turbines can
be used to decelerate and pressurize air, hence, increasing the chemical energy conversion
efficiency of aviation kerosene. High-pressure turbines generate mechanical energy by
striking turbine blades with high temperatures and high-pressure gas.

Figure 6. Illustration diagram of the turbofan engine [62].

The C-MAPSSs are extensively utilized in state-of-the-art prognostic studies, which
contains four sub-datasets of the engine under different operating conditions and failure
modes. Every subset of data contains a training set, testing set, and true RUL values and
they consist of 21 sensors and 3 operation settings [39]. Every engine unit has varying
degrees of wear. With time, the engine units begin to degrade until they reach system
failure, which is described as an unhealthy time cycle. Therefore, the sensor records in
the testing set are terminated before system fault. The dataset is collected in the form of a
compressed text file. Each row represents a snapshot of the data collected during a single
operation cycle, whereas each column represents a unique variable. The specific details of
the dataset and the prognostic problem are provided in Table 6.

Table 6. Description of C-MAPSS benchmark dataset.

Dataset
C-MAPSS

FD001 FD002 FD003 FD004

Engine units for training 100 260 100 249

Engine units for testing 100 259 100 248

Opeating conditions 1 6 1 6

Fault modes 1 1 2 2

The experiment aims to predict the RUL of a single-engine unit randomly selected
from the testing set. The second and third subsets of data, FD002 and FD003, are used for
DNN model verifications in this research study. FD002 has 53,759 training samples and
259 test samples. FD003 has 24,720 training samples and 100 test samples. It also has the
simplest operating conditions (OC) and the simplest fault type (FT), and FD002 is a more
complicated subset and has six OCs and one FTs compared to the FD002 subset of data.
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4.2. Experimental Results and Candidate Models Performance Analysis

This section aims to evaluate and validate our different DNN candidate models
proposed for turbofan engine RUL estimation. For better prognostic characteristics analysis,
the actual and predicted RULs of testing units are compared in Figure 7, where testing
units are sorted in an ascending order by actual RUL. The predicted RUL values for the
suggested LSTM-based attention mechanism architecture are comparable to the actual RUL
in two random cases (engine 24 and engine 41; randomly selected), as shown in Figure 7.
The second evaluation test is conducted for the GRU-based attention candidate model.
The results presented in Figure 8 show that the model was able to predict the RUL for
two random cases (engine 26 and engine 41). However, the RUL case of engine 41 was
randomly predicted by using LSTM-based attention mechanism and GRU-based models.
Hence, the LSTM-based attention mechanism model show better prediction of RUL engine
41, as shown in Figures 7, 8, 9 and 10b, respectively.

Figure 7. RUL prediction results of FD002 using the proposed LSTM with the attention mechanism model of the first
verification test: (a) RUL prediction for the first randomly selected case (engine #24); (b) RUL prediction for the second
randomly selected case (engine #41).

Figure 8. RUL prediction results of FD002 using the proposed GRU architecture of the second verification test:
(a) RUL prediction for the first randomly selected case (engine #26); (b) RUL prediction for the second randomly selected
case (engine #41).

The third evaluation test is conducted for S_RNN candidate model architecture where
the RUL estimation in both cases was not accurate as of the other two RNN methods, LSTM
and GRU. The S_RNN-based model performs the worse, as it can be observed in both cases
(Figure 9). Lastly, the fourth evaluation test is performed for the proposed CNN candidate
model, where the RUL prediction results were poor, as shown in Figure 10. The CNN
model was not able to capture the degradation of the aero engine accurately. Thus, the
LSTM-based model outperformed CNN, GRU, and S_RNN models in both verification
cases in this study.
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Figure 9. RUL prediction results of FD002 using the proposed S_RNN architecture of the third verification test:
(a) RUL prediction for the first randomly selected case (engine #16); (b) RUL prediction for the second randomly se-
lected case (engine #41).

Figure 10. RUL prediction results of FD002 using the proposed CNN architecture of the fourth verification test:
(a) RUL prediction for the first randomly selected case (engine #28); (b) RUL prediction for the second randomly se-
lected case (engine #41).

For the evaluation of regression problems, residual analysis is another well-known
evaluation metric that is used to assess the appropriateness of the model by defining
residuals and examining residual plots. A residual e is defined as the difference between
the observed value of a dependent variable “y” and its predicted value y. For the ith
datapoint, the residual ei is given as follows.

ei= yi − yi (20)

The residual analysis depicts the bias of the model towards underestimation or over-
estimation. A regression model is said to be overestimating if ei > 0, which means the
predicted values yi are persistently greater than the actual scores yi. Contrariwise, a model
is said to be underestimating if ei < 0; i.e., the model is persistently predicting yi to be
smaller than yi. The residual plots provide insights into the model by illuminating the
patterns of under/overestimation. A better regression model is expected to balance overes-
timation and underestimation, which means data distributions of residuals ei are symmetric
around the residual point zero with an approximately similar number of samples above
and below zero. The residual analysis of models can be highlighted by using the scatter
plot and distribution plot showing the distribution of ei around zero. The more skewed the
distribution of residuals is, the more biased the model is and vice versa. Figures 11 and 12
show the residual analysis of LSTM-based model for the test data of FD002 and FD003.
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Figure 11. Residual analysis of LSTM with attention mechanism-based model on FD002 test dataset.

Figure 12. Residual analysis of LSTM with attention mechanism-based model on FD003 test dataset.

As observed in the LSTM residual counts portion of figures, the residual distribution
of test data is almost symmetric around zero, which means the model is not biased towards
over/underestimation. This fact is further corroborated from the residual scatter plot
portion of Figures 11 and 12. The reader can observe that the population of residuals ei > 0
is not drastically different from the population of ei < 0, which demonstrates that the
LSTM model is neither biased towards overestimation nor underestimation.
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Additionally, another three metrics were utilized to evaluate the performance of the
proposed prognostic approach. The three evaluation metrics are root mean square error
(RMSE) [23,61], mean absolute error (MAE), and R-squared (R2). The motivation for
choosing these three matrices is because they were widely utilized in the state of the art to
evaluate various models’ performance.

4.3. Model Uncertainty Quantification

In order to estimate the epistemic uncertainty of the proposed DNNs candidate
models, model ensembling and bootstrap sampling [18,63] are utilized in our approach
for capturing the uncertainty inherent in the RUL prediction. This requires creating a
base training set from which all samples for training and validation are included as well
as a different testing subset of data for estimating generalization performance following
the bootstrap technique. Numerous subsets K of the complete training set are formed by
sampling until a sampling budget is reached, with replacement. This budget is set to be
equal to the sample’s total number in the entire training set, as is customary. Following
sampling, any remaining unused samples “indicated as out-of-bag samples” were utilized
for validation. Next, K randomly initialized models and trained on the bootstrap sets. After
training is complete, epistemic uncertainty is modeled by considering RUL predictions as
random variables and estimating their projected value (averaging predictions over models’
realizations), and variance can be described as follows:

E[ŷ] = µŷ =
K

∑
k=1

Mk(x) (21)

where E[ŷ] is the predicted value for a given sample x, Mk denotes a single model realiza-
tion, and K denotes the model realization’s total number. Then, the variance is calculated
as follows:

E
[
ŷ2
]
− (E[ŷ])2 = σ

ŷ
2 =

K

∑
k=1

Mk(x)2 −
(

K

∑
k=1

Mk(x)

)2

(22)

where it has been utilized to calculate the standard deviation or spread around the mean
for each data point in our predictions.

Uncertainty prediction for DNNs models is vital in both computational and real-world
turbofan applications. Despite the enormous achievement of DNNs for RUL prediction, an
inordinate amount of effort has been expended on improving point-estimate performance
on widely employed benchmarks. While these standards aid in the advancement of
DL, real-world safety-critical systems cannot rely solely on black-box prediction without
insight into the inherent uncertainties in the models and data. Therefore, in this study,
we attempted to predict the uncertainty in DNN models in order to make render them
practical in practice because the presence of a few uncertainties in prognostics prediction
can result in huge losses. Therefore, two cases based on our two models’ best performance
have been selected to predict the uncertainty associated with RUL. Figure 13 indicates that
epistemic uncertainty is low across all time steps and roughly negligible near failure in
both cases.
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Figure 13. RUL prediction results of engine 41 with model uncertainty quantification: (a) uncertainty case prediction for
attention-based LSTM model; (b) uncertainty case prediction for attention-based GRU model.

5. Comparison with Literature

This section aims to compare the proposed four DNN-based models with the state-
of-the-art methods. In the literature, different DL methods have been used to predict
RUL on the C-MAPSS benchmark dataset. Table 7 shows the comparison of the proposed
deep candidate models with related literature contributions. The comparison is only
shown for metrics available, but it shows the reader the promising results of the proposed
DNNs-based predictor. The experimental results confirmed that the proposed DNNs-
based predictors surpass the other previous methods for predicting RUL on independent
benchmark testing of FD002 and FD003 subsets of data.

Table 7. Comparison of the proposed predictors with related literature contributions.

FD002 FD003

Prediction Model MAE RMSE R2 MAE RMSE R2

Proposed
Attention-based

CNN Model
16.23 22.34 0.336 8.99 21.89 0.232

Proposed
Attention-based

SRNN Model
14.32 29.32 0.236 12.97 25.14 0.323

Proposed
Attention-based

GRU Model
14.75 18.38 0.162 13.32 19.28 0.423

Proposed
Attention-based

LSTM Model
1.42 12.87 0.236 5.47 11.23 0.168

MLP [21] Not
Reported 80.03 Not

Reported
Not

Reported 37.39 Not
Reported

Deep LSTM [43] - 24.49 - - 16.18 -

RF [21] - 20.23 - - 22.34 -

DBN [21] - 30.05 - - 20.99 -

DW-RNN [22] - 25.90 - - 18.75 -

MTL-RNN [22] - 25.78 - - 17.98 -

DCNN [23] - 22.36 - - 12.64 -

DNN [23] - 24.61 - 13.93 -

RNN [23] - 24.03 - - 13.36 -

LSTM [23] - 24.42 - - 13.54 -
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Table 7. Cont.

FD002 FD003

Prediction Model MAE RMSE R2 MAE RMSE R2

Attention-based
Sequence to

Sequence Model [64]
- 14.90 - - 11.85 -

Attention-based DL
model [65] - FD001

(14.53) - - FD004
(27.08) -

DARNN [66];
PRONOSTIA

dataset
- Bearing4

0.07 ± 0.002 - - Bearing5
0.07 ± 0.002 -

Table 7 shows that our proposed attention-based LSTM model has surpassed all
the previous models in the literature. However, DCNN proposed by [23] is the only
study that has obtained good results in the FD003 subset of data. Thus, our proposed
attention-based LSTM predictor still achieved better results with an RMSE of 11.23. The
proposed attention-based LSTM predictor has excellent capabilities of capturing long-term
dependencies and extracts features from the time-frequency domain by incorporating the
sliding TW technique and temporal information of signals. Based on the experimental
findings, it has been observed that increasing the sliding TW results in improving RUL
prediction accuracy. The proposed enhanced LSTM-based model predicts the RUL of aero
engines with high accuracy without the requirement to comprehend engine construction
or failure mechanism and without the need for professional knowledge and experience.
The proposed model can be used as maintenance strategy for industrial equipment PHM
with multivariate time series data obtained from various sensors.

6. Limitations and Future Research

Due to the nature of uncertainty inherent in the RUL prediction, our research enhanced
the reliability of deterministic RUL prediction incorporating the uncertainty prediction
based on the bootstrap sampling method. Therefore, further neural networks architecture
and prediction interval optimization necessary to improve the prognostic performance. In
future work, the proposed approach will be applied for the RUL prediction of aero engines
with different operating conditions. When the operating conditions are more complex, the
RUL prediction is more challenging, and this kind of problem deserves further study.

The model can be further enhanced in future work by increasing the number of
convolutional nuclei and hidden neurons in the fully connected layer. Additionally, it is
well-known that, in measurements, there are uncommon and inconsistent observations
that outnumber the majority of the population of observations, referred to as anomalies.
Since the raw vibration signals are used directly as input, the prognosis model requires
a more complicated network structure in order to verify the correctness of the results,
resulting in high calculation loads. Finally, a model combining stacked LSTM layers will
be investigated to extract useful temporal features layer by layer and improve the model’s
robustness, while an attention mechanism will be used to efficiently address the problem
of information loss throughout LSTM’s long-distance signal transmission.

7. Conclusions

With the advancement of smart manufacturing, it is becoming increasingly critical to
leverage huge historical data to predict the RUL of aero engine systems, identify potential
problems early, and reduce the expense of manual inspection. This study proposed a data-
driven approach for turbofan engine remaining useful life prediction using four different
DNNs models with an attention mechanism. The sliding window technique is adopted to
prepare data samples, and the testing engine units with shorter time cycles than Ntw are
eliminated in the corresponding cases. We have evaluated the proposed DNN candidate
models with two subsets of data, FD002, a simpler dataset, and FD003, a complex subset
of data with six operating conditions. Therefore, among the four proposed models, the
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attention-based LSTM model has outperformed the other three models due to its excellent
capabilities to capture long-term dependencies and extract features from the time-frequency
domain incorporating the sliding TW technique and temporal information of signals. The
proposed approach is also compared with literature contributions and showed improved
results in terms of better prediction quality and enhanced computational speed due to the
dimensionality of reduction processing. The proposed attention mechanism-based LSTM
model, presented in Figure 2, is an initial step towards improving the RUL prediction of
the turbofan engine and paves the way for further research investigations aimed towards
more robust and accurate DNN-based RUL prediction models because it can effectively
map the relationship between features and the RUL.
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