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Abstract: Face detection by electronic systems has been leveraged by private and government
establishments to enhance the effectiveness of a wide range of applications in our day to day activities,
security, and businesses. Most face detection algorithms that can reduce the problems posed by
constrained and unconstrained environmental conditions such as unbalanced illumination, weather
condition, distance from the camera, and background variations, are highly computationally intensive.
Therefore, they are primarily unemployable in real-time applications. This paper developed face
detectors by utilizing selected Haar-like and local binary pattern features, based on their number
of uses at each stage of training using MATLAB’s trainCascadeObjectDetector function. We used
2577 positive face samples and 37,206 negative samples to train Haar-like and LBP face detectors for
a range of False Alarm Rate (FAR) values (i.e., 0.01, 0.05, and 0.1). However, the study shows that the
Haar cascade face detector at a low stage (i.e., at six stages) for 0.1 FAR value is the most efficient
when tested on a set of classroom images dataset with 100% True Positive Rate (TPR) face detection
accuracy. Though, deep learning ResNet101 and ResNet50 outperformed the average performance
of Haar cascade by 9.09% and 0.76% based on TPR, respectively. The simplicity and relatively low
computational time used by our approach (i.e., 1.09 s) gives it an edge over deep learning (139.5 s), in
online classroom applications. The TPR of the proposed algorithm is 92.71% when tested on images
in the synthetic Labeled Faces in the Wild (LFW) dataset and 98.55% for images in MUCT face dataset
“a”, resulting in a little improvement in average TPR over the conventional face identification system.

Keywords: face detection; Haar-like feature; local binary pattern

1. Introduction

Face detection using electronic technology aims to determine the presence of the
face(s) in a given digital image or video. The process may proceed to identify the face(s)
detected depending on the area of application. Face detection by electronic systems has
been leveraged by private and government establishments to enhance the effectiveness
of a wide range of applications in our day to day activities, security, and businesses.
This technology’s attractiveness lies in its non-invasive and discreet nature [1], ease of
application, rapid predictiveness, sensitivity to confounding features, and potentially low
cost. All of these are made possible due to the developments in computer software and
hardware capabilities such as the GPUs (Graphical Processing Unit) [2], multicamera
systems [3], and the emerging face detection algorithms.

The emerging algorithms, which represent the software aspect of the technology,
have been divided into different categories, such as feature-based, learning-based, and
hybrid (i.e., feature and learning-based). However, this classification depends on how the
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method detects faces. In our opinion, little or no reference was given to their best areas of
application. Furthermore, the constrained and unconstrained conditions, leading to the
limitation of this algorithm’s performance, are not viewed as an advantage towards their
areas of application [4].

Most face detection algorithms that can reduce the problems posed by unconstrained
environmental conditions such as unbalanced illumination, weather condition, distance
from the camera, and background variation are highly computationally intensive [5].
Therefore, they are largely unemployable in real-time applications, especially for low
power electronic and sensor devices.

Educational application of face detection technology mostly requires simultaneous
face detection applications such as classroom student attendance system, students and staff
identity verification, laboratories, and classroom accessibility control. Testing the detection
capability of some of the face detection algorithms gives room for determining the best
applicable algorithm in educational settings.

Several approaches to face detection algorithms have been described in the literature.
The face detection work of Viola and Jones [6] used Haar-like features selection using a
cascade classifier. Leinhart and Maydt [7] modified the Haar-like feature used by Viola
and Jones for improvement. Li et al. [8] proposed a learning method of detecting faces in
an image using the Viola–Jones algorithm. Ojala et al. [9] used local binary pattern (LBP)
features extracted from the local neighborhood in place of Haar-like features employed by
Viola and Jones, and similarly, Ahonen et al. [10] also used LBP for face detection. Levi and
Weiss [7] used edge orientation histograms (EOH) to source feature information from an
image. Furthermore, efforts have been made by some researchers to compare some of
these approaches. Kortli et al. [11] compared the performance of three face descriptors
(i.e., LBP, LBPHistogram (LBPH), and Histograms of Oriented Gradients (HOG)) using
the FERET dataset. Kadir et al. [12] compared the performance of Haar-like cascade
and LBP using still image samples from three face databases (i.e., Colour FERET [13],
Taarlab [14], and MIT CBCL [15] databases). Guennouni et al. [16] used Haar-like cascade
and LBP approaches to detect faces, hand gestures, and pedestrians. This work was done to
determine the comparative performance of the two approaches for embedded devices. The
Haar-like cascade achieved greater accuracy (i.e., 96.24%) as compared to LBP (i.e., 94.75%).
Adouani et al. [17] performed a comparative study on three face detection approaches
(Haar-like cascade, LBP, and HOG with Support Vector Machine). The application was
tested on the general database face video sequence.

Most of these approaches carried out comparative studies on the general face detection
databases without indicating a specific application area’s performance index. In addition to
that, the effect of the false alarm rate and the number of training stages on the algorithms’
performance has not been reported explicitly.

Successful implementation of most face detection algorithms is performed with
OpenCV and Dlib using Python or C programming, or MATLAB using the computer
vision toolbox. For example, Alionte and Lazar [18] created a Haar-like cascade face
detector based on the Viola–Jones algorithm using MATLAB’s computer vision toolbox.
Adouani et al. [17] implemented a face detection using Haar-like cascade, LBP, and HOG
with SVM in OpenCV and Dlib using Python programming. However, a custom cascade
classifier can be implemented in MATLAB for any of the commonly used approaches for
better object detection [19].

This paper presents a practical custom cascade face classifier for two approaches
(i.e., Haar-like and LBP) using the trainCascadeObjectDetector function in MATLAB.
The resulting cascade classifier for approaches, in Extensible Markup Language (XML)
format, was tested on classroom databases. Their performances were compared based
on True Positive Rate (TPR), False Negative Rate (FNR), False Alarm Rate (FAR), and the
number of training stages (NTS) [20]. The paper is structured as follows. Section 2
provides an overview of the main concepts of the trainCascadeObjectDetector function
and the definitions of the parameters. Section 3 describes our proposed approach and the
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procedure involved in using MATLAB’s traincascadeObjectDetector to train a cascade
object detector. Section 4 describes the application of the trained CascadeObjectDetector
on an image obtained from a classroom image database. Section 5 presents the results and
performance analysis of the two trained CascadeObjectDetectors (i.e., for Haar and local
binary patterns (LBP)), and the discussions are presented in Section 6. Finally, the summary,
conclusions, and the future direction of the research work are discussed in Section 7.

2. Cascade Object Detector

The trainCascadeObjectDetector is a classifier function for vision. CascadeObject
Detectors system object is present in MATLAB’s computer vision toolbox. It is used to
create a custom classifier for detecting categories of objects whose aspect ratio does not
change (fixed), such as faces, human full-body, cars, body features, plate numbers. Cascade
object detector is a group of cascade classifiers arranged in stages. Each stage consists of
decision stumps (weak learners). Each stage selects smaller numbers of features using a
technique called boosting (i.e., Adaboost). Adaboost creates an accurate complex classifier
by combining the average weight of the decision taken by the weak classifiers.

AdaBoost Algorithm for Selecting Features

For example, let us consider the Adaboost classifier’s learning as a suggestion of a
group of experts. The classification result by each expert En for the input xi is expressed as
En(xi). To differentiate between the training vector of two outcomes, En(xi) can only accept
two results that are represented as +1 or −1, i.e., En(xi) ∈ {−1,+1}. The collective opinion
of the experts is denoted as K(xi). It represents the linear combination of the weighted sum
of expert suggestions, which can be expressed as follows:

K(xi) = w1E1(xi) + w2E2(xi) + · · ·+ wnEn(xi) (1)

where E1(xi), E2(xi), . . . , En(xi) represent the decisions from n experts and w1, w2, . . . , wn
are the weights given to each expert suggestion [21]. The procedural steps of the Adaboost
algorithm for classifier learning of features are given as follows:

1. Given a training data with n pairs of images (xi, yi), where xi is a positive or negative
image, and yi is the label allotted to each image. The value for positive images is 1,
and that of negative images is 0.

2. Initializing weights w1,i =
1

2m , 1
2l for positive and negative images, where m and l are

the number of negative and positive images, respectively.
3. For t = 1, . . . , T, where T is the number of stages of training and n pairs of images:

• The weights are normalized as wi,t ← wi,t/ ∑n
j=1 wi,j

• Applying a single feature, for every feature, j, train a classifier hj, the weighted
error is evaluated as ei = ∑i wi|hi(xi)− yi|

• Select the classifier ht that has the lowest error et.

4. Update the weight wt+1,i = wt,iβ
1−ei
t , where ei = 0 when xi is classified correctly,

ei = 1 otherwise and βt = et/(1− et).
5. The final strong classifier, which is the combination of the weak classifiers, is ex-

pressed as follows:

h(x) =

{
1 ∑T

t=1 αtht(x) ≥ 1
2 ∑T

t=1 αt

0 otherwise

where αt = log10(1/βt).
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The outcome of each stage of a weak classifier can be either a positive or negative
value. The positive value means a face is located on the image, whereas the negative value
indicates that no face is found. In the case of a negative outcome, the detector moves
the sliding window to the next location. If the outcome is positive, the classifier moves
the region to the next stage and indicates that a face is in the current window region.
A larger percentage of the image contains no object of interest on presupposition, the stages
programmed to do away with negative outcomes faster. On this note, some common terms
need to be defined:

• True-positives (TP): They are an actual object of interest that are correctly classified.
The rate of the correctly classified object/faces can be determined as [20]:

True-positives rate (TPR) =
TP

(TP+FP)
(2)

• False-positives (FP): They are the non-object of interest that are wrongly classified as
the true object.

• False-negatives (FN): They are an actual object of interest wrongly classified as nega-
tive. The False Negative Rate (FNR) can be obtained using Equation (3):

False-negatives rate (FNR) =
FN

(FN+TP)
(3)

3. Our Proposed Method

Most custom trained cascade object detectors failed to identify the effect of the FAR,
Number of Training Stages (NTS), and the frequency and performance of the feature usage
at each stage of the cascade on the overall performance of the cascade object detector.

Figure 1 describes the flow of the proposed approach. In this design, Haar features
are selected based on their usage at each stage [22], and the training parameters were
varied to obtain the best settings. To obtain a better trained cascade object detector result,
the false-negative rate should be low in value (i.e., in between 0 to 1) so that more faces
can be detected at the initial stages. Subsequent stages correct the mistakes of the previous
ones, which give room for proper examination before marking an object as negative.

Alexandre et al. [22] demonstrated that the central features and the vertical-double
features had less than 5% usage at the detection window for each stage of the cascade.
While rotated feature and the horizontal-double features are the most commonly used
based on their position, area, and width to height ratio for the region of interest in face
detection (the nose, eyes, and the cheeks). Based on this fact, features with less usage
(vertical double and central) are eliminated for features that focused on detecting the eye,
nose, and cheek. In this approach, horizontal double, rotated, and crossed features are
employed, as shown in Figure 2.
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Figure 1. Custom face classification model for the classroom using Haar-like and LBP features.

Figure 2. Prototypes of Haar-like features and their 45◦ rotated versions. (a) Vetical-double (not used).
(b) Kernel in (a) rotated 45◦. (c) Horizontal-double. (d) Kernel in (c) rotated 45◦. (e) Horizontal 3
rectangle. (f) Kernel in (e) rotated 45◦. (g) Vertical 3 rectangle. (h) Four rectangle. (i) Center-surround
(not used).

3.1. Feature Evaluation

The choice between the pixel and feature as a common characteristic of object detection
is always a contention. Features have more advantages over pixels. Features can take mea-
sures to obtain make-shift domain knowledge that may require a large amount of training
data to learn. Additionally, feature-based systems are more computationally efficient than
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pixel-based [6]. Therefore, Haar and LBP features of the trainCascadeObjectDetector
function were employed because of their better representation of fine-scale texture, which
suits face detection.

3.1.1. Haar-Like Features

Haar has been a common feature employed by many researchers for object
detection [6,23]. Viola–Jones used Haar-like rectangle features adapting the idea (from
the work of Papageoriou et al. [23]) of using Haar-like wavelets. Figure 2 shows the
examples of the rectangle Haar-like feature placed around the region of the image to detect
faces. There are two-rectangle features (vertical and horizontal) as shown in Figure 2a,c,
a three-rectangle feature in Figure 2e, and a single four-rectangle feature in Figure 2h. They
are used to determine the common attributes of the face because the region of the eyes is
believed to be darker than that of cheeks, while that of the nose is brighter. The sum of the
pixels that lie within the white rectangle is subtracted from the sum of the pixels in the grey
rectangle to determine the difference in the contrast region.

Alexandre et al. [22] showed the percentage usage of each of these features in face
detection. The features with the frequent percentage of use are the horizontal-double
and horizontal-triple features and their rotated versions (i.e., 45.771%, 8.70%, 7.068%,
and 8.043%), vertical-double rotated type (9.660%), vertical-triple feature and its rotated
version (7.764% and 10.885%), and the four rectangle features (34.647%), respectively.
Consequently, features whose geometric values (position, area, and width-to-height ratio)
are not used at the final stages of the cascade are eliminated. Therefore, only those features
are employed to optimize the speed of processing and the detection rate.

Furthermore, the Haar-like features can be classified into five types, left-right, top-
bottom, horizontal-middle, vertical-middle, and diagonal, as shown in Figure 3. By rotating
the left-right and vertical-middle in anti-clockwise produce top-bottom and horizontal-
middle, respectively. These features are used to detect the presence of faces by sliding
a fixed-size window of the feature at all scales over the input image. Taken a detector
of 24× 24 base resolution, the Haar-like feature obtainable from it is 162,336, which is
quite large in terms of computational time required to resolve. An intermediate represen-
tation for the image, which is called an integral image, is used to speed up the feature’s
extraction process.

Figure 3. Types of Haar-like features. (a) Left-right. (b) Top-bottom. (c) Vertical-middle.
(d) Horizontal-middle. (e) Diagonal.

3.1.2. Integral Image

An intermediate rendition of the image is necessary to speed up the features’ location
and extraction process. An integral image is a new image rendition that makes feature
evaluation very fast. By referring to Figure 4 as an example, to obtain the sum of pixels
in a rectangle ABCD, an integral part of it (EFGH) is taken to compute the pixel value.
The integral value at location 1 is the sum of the pixel on the rectangle E, at location 2 is the
sum of the pixel at E + F, at location 3 is E + F + G and at location 4 is the sum of the pixels
at E + F + G + H. The computed sum of the pixel within H is 4 + 1 − (3 + 2).
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Figure 4. Integral window pixel value computation.

3.1.3. Attentional Cascade

This approach is described as a chain classifier that is progressively more complex
from one stage to another. It has low false-positive rates, thereby rejecting most of the
negative windows and then allowing the positive instances shown in Figure 5. It is a
cascaded system where the first classifier’s response determines the second classifier’s
action, and each stage classifier triggers the next classifier if its output is positive. The
classifiers are designed to attain high detection rates. A negative outcome at any stage of
the cascade is an automatic rejection of the sub-window. Generally, the learning algorithms
(AdaBoost) are used to create the cascade stages by adjusting the threshold value to achieve
the minimum number of false negatives possible. However, a lower AdaBoost threshold
value produces higher detection rates and higher false-positive rates.

Figure 5. Illustration diagram of the attentional cascade.

In an attentional cascade, every part of the multiple split windows is a potential input.
Each split part of the window is checked at every layer of the cascade whether it is a face,
then it will be moved to the next strict classifier or if not, then it will be rejected, and the
next window will be supplied to the classifier until all the parts are checked. A successful
face is the one that passes through all the layers of the attention cascade.

3.1.4. Local Binary Patterns (LBP) Features

This approach is a non-parametric image representation pattern that encodes both
local and global facial attributes into a compact feature histogram. LBP was mainly built to
analyze texture features [24] but proved very powerful as a tool to describe the structures
(local and global) of an image. It has been tried in different application capacities, for in-
stance, motion analysis [25,26], biomedical analysis [27], remote sensing [28], aerial image
analysis [29], image and retrieval video [30,31] and many other areas.

The pixels of an image are arranged in LBP format, that is, tagging each pixel with
decimal numbers. The format is called Local Binary Patterns or LBP codes. LBP considers
the 3× 3 neighborhood of each pixel by subtracting the value of the center pixel from its
neighbors (8). If the resulting value obtained is a positive number, it is represented as 1,
otherwise 0. This procedure will create binary numbers (zeros and ones), which can be
combined starting from the top-left in a clockwise direction. The resulting binary numbers
are referred to as the local binary patterns. The decimal value obtained after converting the
LBP value serves as a label for the pixels. Figure 6 shows a local binary conversion of a
3× 3 neighborhood pixel.
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Figure 6. 3× 3 pixel values LBP conversion.

4. Cascade Classifier Using the MATLAB’s trainCascadeObjectDetectortrainCascadeObjectDetectortrainCascadeObjectDetector Function

A simple framework is employed to produce a highly efficient cascade classifier.
Cascade classifier training requires a set of positive and negative samples. A region
of interest was specified for each positive sample, while that of the negative sample is
insignificant. The MATLAB Image labeler was employed in this training to label the
positive sample’s region of interest using bounding boxes. This can also be done by setting
the resolution of the positive samples to a specific small value (for example, 24 × 24).
A table was produced by the image labeler, which contains the label information of the
positive samples. The actions performed by the train cascade detector at each stage are
listed as follows:

• Stage One training:

– It calculates the number of positive samples it will use which should less than
the number provided

– It generates negative samples from the negative images provided by the user

• Stage Two training:

– Adopt data from stage one
– Classify all positive samples and then get rid of the misclassified negative

samples.
– Use the same calculated number of positive samples
– Create negative samples from the negative images provided using the sliding

window and then adopt false-positive classified samples

• . . .
• Stage N training:

– Use previous stages
– Classify all positive sample and then get rid of the misclassified negatives
– Use the same calculated numbers of positive samples
– Create negative samples from the negative images provided using the sliding

window and then adopt false-positive classified samples

The following function parameters are to be set to optimize the training stages; false-
positive rate, the true-positive rate, and the feature type to be employed for the training.
By default, the number of negative samples is double that of the positive samples (i.e.,
the multiplication factor is 2). For this training, the false positive rate, also called as False
Alarm Rate (FAR), is varied as 0.01, 0.05, and 0.1. These three values are used to evaluate
the effect of FAR on the two approaches’ performance. Although the default value is 0.5,
other value in between 0 to 1 (0, 1] can be set. The true positive rate is set to be the default
value, which is 0.995; a value between 0 to 1 (0, 1] can be set. MATLAB supports three
types of features “Haar-like”, “LBP” and “HOG” for training. For this study, two features
were selected (i.e., Haar-like and LBP). We first trained for the Haar-like feature and then
the LBP feature. The two custom cascade object detectors were used to test a classroom
educational dataset, and their performances are compared.

5. Experimental Results

The set of faces used for the training consists of 2577 labeled faces. The base resolution
for the face images is set to be 24× 24 pixels, which indicated the minimum size of faces the
trained cascade detector can detect. The positive sample faces were obtained from a website
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during a random search of the world wide web (https://github.com/NVlabs/ffhq-dataset).
Figure 7 shows some of the positive sample faces used for the training. The negative
samples which represent the non-face sub-windows are 37,206 images.

Figure 7. Example of positive faces used for the training.

Each stage of the classifier in the cascade was trained with the 2651 (also of size
24 by 24 pixels) training faces, and 5302 negative samples using the Haar-like and LBP
features, respectively. The trained face detectors’ performance is tested using different
educational classroom database images obtained from a GitHub website (https://github.
com/mackenney/attendance-system-wacv19/tree/master/DB). The analysis was carried
out based on the number of faces detected (TP), the True faces that are not detected (FN),
the False faces detected (FP), and the time taken to detect the faces (DT). The performance
was tested in comparison with that of two pre-trained tiny faces (ResNet 101 and 50) deep
learning face detector obtained from Finding Tiny Faces (cmu.edu) [32] using classroom
images with a resolution of 3471× 3024 and 3798× 3024 pixels, respectively.

Table 1 shows the comparative performance analysis of the two trained detectors
(Haar-like and LBP), for six layers of stages, compared to ResNet101 and ResNet50 deep
learning (tiny face) model. Figure 8 shows a sample of the faces detected by the corre-
sponding methods.

Table 2 shows the performance of the two trained face detectors at eight layers of
stages, using Image II. The output samples of the faces detected by the corresponding
methods are shown in Figure 9. The performance of the two trained custom cascade face
detector classifiers based on the number of cascade layers (6 and 8 stages) for 0.01, 0.05
and 0.1 FAR, and that of the deep learning face cascade classification models are compared
using the classroom database images. The performance is as shown in Table 3.

Table 1. Performance of custom trained Haar-like and LBP features for 0.01, 0.05, and 0.1 false alarm
rate (FAR) values and six layers of stages.

Detector DT FAR TP FN FP TPR in % FNR in %

FaceDetector-Haar1 1.0939 s 0.01 18 4 0 81.82 18.18
FaceDetector-LBP1 0.9724 s 0.01 18 4 0 81.82 18.18
FaceDetector-Haar2 1.1301 s 0.05 20 2 0 90.91 9.09
FaceDetector-LBP2 1.4496 s 0.05 21 1 17 95.45 4.55
FaceDetector-Haar3 1.0555 s 0.10 22 0 1 100.00 0.00
FaceDetector-LBP3 1.2290 s 0.10 21 1 4 95.45 4.55
HR-ResNet101 139.5256 s - 22 0 1 100.00 0.00
HR-ResNet50 110.1023 s - 22 0 2 91.67 0.00

Note: FaceDetector-Haar1 and LBP1 is for 0.01, Haar2 and LBP2 is for 0.05, and Haar3 and LBP3 for 0.1 FAR
trained cascade for 6-layers.

https://github.com/NVlabs/ffhq-dataset
https://github.com/mackenney/attendance-system-wacv19/tree/master/DB
https://github.com/mackenney/attendance-system-wacv19/tree/master/DB
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Figure 8. Faces detected by (a) Haar-like and (b) LBP custom face detector at 0.1 FAR for 6-layers of
cascade stages. Subimages (c,d) are the output from ResNet101 and ResNet50, respectively.

Figure 9. Faces detected by (a) Haar-like and (b) LBP custom face detector at 0.1 FAR for 8-layers of
cascade stages. Subimages (c,d) are the output from ResNet101 and ResNet50, respectively.
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Table 2. Performance of custom trained Haar-like and LBP features for 0.01, 0.05, and 0.1 false alarm
rate (FAR) values and eight layers of stages.

Detector DT FAR TP FN FP TPR in % FNR in %

FaceDetector-Haar11 1.1454 s 0.01 20 6 1 76.92 23.08
FaceDetector-LBP11 1.0124 s 0.01 21 5 0 80.77 19.23
FaceDetector-Haar22 1.0637 s 0.05 20 6 1 76.92 23.08
FaceDetector-LBP22 1.1136 s 0.05 21 5 0 80.77 19.23
FaceDetector-Haar33 1.0451 s 0.10 21 5 1 80.77 19.23
FaceDetector-LBP33 1.0738 s 0.10 22 4 5 81.48 18.52
HR-ResNet101 56.0617 s - 24 2 1 95.60 0.08
HR-ResNet50 29.8578 s - 26 0 1 92.86 0.00

Note: FaceDetector-Haar11 and LBP11 is for 0.01, Haar22 and LBP22 is for 0.05, and Haar33 and LBP33 for 0.1
FAR trained cascade for 8 layers.

Table 3. The performance of Haar-like, LBP for 6 and 8 stages compared to deep learning ResNet101
and ResNet50 pretrained models.

Detector DT FAR TP FN FP TPR FNR
in % in %

Six stages FaceDetector-Haar1 1.094 s 0.01 18 4 0 81.82 18.18

FaceDetector-Haar2 1.130 s 0.05 20 2 0 90.91 9.09

FaceDetector-Haar3 1.056 s 0.10 22 0 1 100.00 0.00

FaceDetector-LBP1 0.972 s 0.01 18 4 0 81.82 18.18

FaceDetector-LBP1 1.460 s 0.05 21 1 17 95.45 4.55

FaceDetector-LBP3 1.229 s 0.10 21 1 4 95.45 4.55

Eight stages FaceDetector-Haar11 1.145 s 0.01 20 6 1 76.92 23.08

FaceDetector-Haar22 1.064 s 0.05 20 6 1 76.92 23.08

FaceDetector-Haar33 1.045 s 0.10 21 5 1 80.77 19.23

FaceDetector-LBP11 1.012 s 0.01 21 5 0 80.77 19.23

FaceDetector-LBP22 1.114 s 0.05 21 5 0 80.77 19.23

FaceDetector-LBP33 1.074 s 0.10 22 4 5 81.48 18.52

Tiny Face HR-ResNet101 (1) 139.526 s - 22 0 1 100.00 0.00

(ResNet101 and ResNet50) HR-ResNet50 (1) 110.102 s - 22 0 2 91.67 0.00

for HR-ResNet101 (2) 56.062 s - 24 2 1 95.60 0.08

Image (1) and (2) HR-ResNet50 (2) 29.858 s - 26 0 1 92.86 0.00

Our approach was compared with three recently developed approaches (i.e., methods
by Chen et al. [33], Kortli et al. [11], and Adouani et al. [17]), based on their achieved true
positive rate evaluation (TPR) for the haar and LBP algorithm. The comparison was carried
out on the database used by Chen et al. (MUCT face database testing “a” [34] and Labeled
Faces in the Wild (LFW) database [35]). Figure 10 shows some samples of the cropped
detected faces from MUCT and LFW databases. The results are shown in Table 4. We can
see that the proposed method outperforms the other three methods.
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Table 4. Comparisons of our approach with three recent approaches using the same database.

Approach MUCT Dataset LFW Dataset

TPR for Haar (%) TPR for LBP (%) TPR for Haar (%) TPR for LBP (%)

Chen et al. [33] 16.41 77.33 - -
Kortli et al. [11] 98.04 91.21 - -
Adouani et al. [17] - - 92.68 60.37
Proposed 98.55 91.87 92.71 91.26

Figure 10. Faces detected by (a) Haar-like and (b) LBP custom face detector at 0.1 FAR for 8-layers
of cascade stages. Subimages (c,d) are the output from ResNet101 and ResNet50, respectively.

6. Discussion

For six layers of cascade stages, from Table 1, we can see that the performance of
the Haar face detector outperformed that of LBP. As the value of the FAR increases from
0.01 to 0.05, the TPR of the Haar-like detector continues to increase without any false
positive value. In contrast, the TPR of the LBP also increases but with 17 non-faces (FP)
detected. Besides, it can be observed that face detector-Haar3 with a 0.1 FAR also has
a better performance rate as compared to the counterpart LBP at the same FAR value.
When the performance of the best two Adaboost approaches (i.e., FaceDetector-Haar3 and
FaceDetector-LBP3) is compared with the performance from deep learning approaches (i.e.,
HR-ResNet101 and HR-ResNet50), in terms of TPR, it is found that the performance of
FaceDetector-Haar3 is similar to the performance of HR-ResNet101, and the performance
of FaceDetector-LBP3 is similar to the performance of HR-ResNet50. Figure 8 shows that
false faces detected in FaceDetector-LBP3 and HR-ResNet50. Although the performance of
FaceDetector-Haar3 is similar to the performance of HR-ResNet101, in Table 1, we can see
that HR-ResNet101 requires a significantly longer processing time to detect the faces (DT).

At eight layers of stages, the two trained face detectors were tested on different
classroom image (i.e., Image II). It can be observed from Table 2 that, unlike for six layers of
stages, the LBP detector has a higher TPR value than the corresponding Haar-like detector.
Although the LBP detector has a higher number of true faces detected (TP), the number of
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non-faces (FP) detected is equally much, as shown in Figure 9. The performances of the
deep learning versions (i.e., ResNet101 and ResNet50) are better than that of the Adaboost.
However, the processing time advantage gives Adaboost algorithms an edge over deep
learning, especially on low power devices (e.g., raspberry pie) online applications.

From the result obtained, the performance of a trained cascade is not based on the
choice of technique and numbers of training stages. Rather, it is a function of high-quality
training data (positive and negative), feature selection based on usage at the stages, and best
training parameter settings. To some extent, the Adaboost approach can detect non-frontal
faces which suit low-power electronic devices such as raspberry pi, mobile application,
sensors, and real-time approaches because of its low computational and time.

From Table 3, by taking the average percentage of TPR for FaceDetector-Haar1,
FaceDetector-Haar2, and FaceDetector-Haar3 (i.e, (81.82% + 90.91% + 100.00%)/3 = 90.91%),
and comparing it to that of the deep learning ResNet101 and ResNet50, it is shown that
the deep learning (i.e., HR-ResNet101 (TPR = 100.00%) and HR-ResNet50 (TPR = 91.67%))
outperformed Haar cascade by 9.09% and 0.76% respectively. The overhead constraints
(time and computational resources) of deep learning methods was 139.526 s and 110.102 s
compared to 1.094 s of our approach despite their performance advantage. Deep learning re-
quires a large amount of data for its learning process, which tends to affect its performance
due to the inability to learn from small amounts of data. However, there is continuous
effort into Learning theory for resource-constrained algorithms, and many approaches
have been published, but further work is still required to generalize its design process that
is still tied to a specific problem type and depends on selected method/loss function [36].

7. Conclusions

The performance of a custom trained cascade classification model is enhanced by
setting the parameters of the train cascade object detector functions to optimize the number
of stages, the FPR, TPR, and the feature type employed in training. In this paper, we
developed a face-detector-based Adaboost algorithm with selected features based on the
usage percentage in each stages using MATLAB’s trainCascadeObjectDetector function.
A set of 2577 positive face samples and 37,206 negative samples was employed to train
Haar-like, and LBP face detectors for the different range of FAR values (i.e., 0.01, 0.05, and
0.1). The False Negative Rate (FNR) and the True Positive Rate (TPR) of the trained custom
classification models (Haar-like and LBP) for the range of FAR values were compared
to that of the tiny face (i.e., ResNet101 and ResNet50 models) pre-trained face detectors
using a classroom image database. From Table 3, the average performance of LBP at a
low stage (i.e., six stages) was 90.91% (i.e., (81.82% + 95.45% + 95.45%)/3) in terms of the
TPR, which is slightly lower than that of ResNet50 deep learning pretrained model. The
average detection rate of the Haar cascade face detector and LBP is the same at the low
stage (i.e., at six stages) for a classroom database application. However, the Haar cascade
has a lower value of FPR, which gives it an edge. From Tables 1 and 2, it can be deduced
that an increase in the number of training stages has little or no effect on the performance.
Secondly, the attentional focus and light intensity of the second image is low compared
to that of the first image. Therefore, this accounts for the reduction in the performance
of the Adaboost algorithm (eight stages haar cascade) which relied mainly on attentional
focus. The challenge of the Adaboost object detection algorithm in classroom face detection
applications is the non-availability of a robust database that poses challenges in areas of
illumination, disguise, or camera motion [37], face orientation, face expression, and partial
occlusion. Moreover, the performance of other face detection algorithms could also be
evaluated and compared in this area.
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