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Abstract: Standing up and sitting down are prerequisite motions in most activities of daily living
scenarios. The ability to sit down in and stand up from a chair or a bed depreciates and becomes
a complex task with increasing age. Hence, research on the analysis and recognition of these two
activities can help in the design of algorithms for assistive devices. In this work, we propose a
reliability analysis for testing the internal consistency of nonlinear recurrence features for sit-to-stand
(Si2St) and stand-to-sit (St2Si) activities for motion acceleration data collected by a wearable sensing
device for 14 healthy older subjects in the age range of 78 ± 4.9 years. Four recurrence features—
%recurrence rate, %determinism, entropy, and average diagonal length—were calculated by using
recurrence plots for both activities. A detailed relative and absolute reliability statistical analysis
based on Cronbach’s correlation coefficient (α) and standard error of measurement was performed for
all recurrence measures. Correlation values as high as α = 0.68 (%determinism) and α = 0.72 (entropy)
in the case of Si2St and α = 0.64 (%determinism) and α = 0.69 (entropy) in the case of St2Si—with low
standard error in the measurements—show the reliability of %determinism and entropy for repeated
acceleration measurements for the characterization of both the St2Si and Si2St activities in the case of
healthy older adults.

Keywords: sit-to-stand; stand-to-sit; recurrence quantification analysis; reliability; wearable sensors;
activities of daily living

1. Introduction

Standing up (Si2St) from and sitting down (St2Si) [1–3] on a chair or a bed constitute
two primary motions in most of the activities encountered in daily living (ADLs) [4,5]
and require adequate biomechanical muscle strength [6]. Sufficient muscle power, healthy
balance, and strong coordination during body movements are required for a successful
completion of transitional Si2St and St2Si activities [7,8]. Particularly, with the older
population, with increasing age, physiological functioning deteriorates and the mobility of
joints is reduced due to acute health problems or the inevitable process of sarcopenia (i.e.,
loss of muscle mass and muscle strength due to aging) [9–11], and hence, the capacity to
perform different ADLs, such as bathing, dressing, or independently walking, becomes
complex [12], making assistance from caregivers necessary. Research specific to older
adults shows that most of the falls at homes, hospitals, and elderly care centers [13–15]
occur while getting out of bed or getting off a chair [16,17], especially at night, when
there is less assistance. Monitoring the body movements of older adults in their daily
living environment and detecting the level of risk for occurrence of a fall event provides
a chance for caregivers to intervene and provide instant help and attention. Recognizing
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intent rather than recognizing the fall event itself using intelligent devices and techniques
can allow timely and reliable assistance to be provided [18]. Even with best practices in
hospitals to prevent falls, the fall rates are very high.

In recent years, technology has played an important part in recognizing high-risk
body movements that might lead to a fall [19,20]. One important approach to reducing falls
in hospitals is camera surveillance so that the patients at high risk of falling are provided
assistance while getting out of bed or getting up from chairs and vice versa. A second
dominant approach is the use of pressure sensors [3]. Both of these approaches are highly
computational and incur latency and privacy violations. Novel wearable sensing devices,
such as inertial measurement units and accelerometers [19–22], are popular choices as
body-motion sensors—the reason is partly due to their capability of extracting information
that is useful for automatically inferring the physical activity in which the human subject
is involved, in addition to the low cost, ease of use, light weight, and fast processing
of biomechanical input parameter estimators. Several studies have used Si2St and St2Si
activities as primary recognition movements in order to assess the risk of falls in older
people [23–27]. In particular, by using acceleration data from wearable sensors as body-
movement-capturing signals, multiple studies reported different types of features—for
example, the frequency domain [28], autoregressive [28,29], statistics [30,31], correlation,
energy, and maximum and approximate entropy [31] were extracted and used for activity
and intent recognition algorithms.

Recently, recurrence quantification analysis (RQA) has emerged as a competitive
nonlinear signal analysis [32] technique, as nonlinear representative features are better able
to represent the complex trends in a signal. RQA has been applied to the extraction of the
nonlinear dynamics of human body movements by quantifying the system repeatability,
complexity, and local dynamics through different variables [32–35]. The computation of
these variables requires the selection of suitable embedding parameters for state-space
reconstruction (i.e., the time delay and embedding dimension). Four RQA measures were
used to characterize the dynamics of a system: (1) Recurrence rate (%RR) is a measure
of the density of recurrence points in the recurrence plot (RP); (2) determinism (%DET)
is a measure of the system’s predictability, and is the ratio of recurrence points that form
diagonal structures of a chosen minimal length to all recurrence points; (3) entropy (ENT)
is the Shannon entropy of the probability of finding a diagonal line of a specific length
in the RP; (4) average diagonal line length (L) is a measure of the average time for which
two trajectory segments stay close to each other [34]. RQA has previously been used in
multidimensional research areas—for example, to predict COP fluctuations in older adults
with and without a history of falls [36] and to analyze complex eye movements [37,38],
traffic data [39], etc. However, the measurement reliability of these nonlinear RQA variables
in defining a system dynamic or, in our case, human body movements during Si2St and
St2Si activities has not been investigated enough. Statistically reliable measures allow
researchers and clinicians to discriminate measurement features between subjects and
provide the capacity to detect changes in studied test data [40–42]. Internal consistency
reliability is the extent to which multiple trials performed by single or multiple subjects
(raters or observers in statistical terms) agree. It addresses the issue of the consistency of the
implementation of a rating system. In this study, we used the split-half reliability method
and reported the findings in terms of the Cronbach’s correlation coefficient (α) [43,44]
within the confidence interval of 95%, the standard error of measurement (SEM), the
minimal metrically detectable change (MMDC), and the coefficient of variation (CV), and
thus showed clinically different variations.

A few related studies had high human activity recognition (HAR) capabilities by
using recurrence parameters [25–27], but they did not perform a reliability analysis of
the measurement changes in the RQA feature values during the performance of human
body movements for the Si2St and St2Si activities while considering healthy older groups,
multiple subjects, and multiple experimental conditions. The authors of [2] performed
HAR, but there was not a reliability analysis of the RQA features, and the dataset used for
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the study was not open access. As such, the performance of the RQA features for the HAR
was not reliably validated. Instead of performing RQA, the authors of [25] used different
sliding-window techniques to segment signals and detect activity. The dataset used was
the same as that in this work. High accuracy values were obtained, but the work lacked a
validation of the reliability of the technique for varied structures of activity types. HAR
using recurrence analysis on a dataset of accelerometer sensor recordings could also be
achieved by applying visual segmentation. The research in [26] used recurrence plots as
visual descriptors instead of RQA features and reached 80% accuracy. Different recurrence
features have been used in various works; for example, postural fluctuations in older adults
were assessed with two RQA measures, %DET and ENT [36], while in some cases, such as
in [37], additional features, such as the laminarity and center of recurrence mass, were been
analyzed. Moreover, neither study performed a reliability assessment to select the most
useful features. By using a subset of features instead, the authors of [27] were able to offer
an improvement in the HAR task. The reliability of RQA on the center of pressure signal
from subjects with musculoskeletal disorders and in a standing posture was evaluated
for the %RR, %DET, ENT, and trend [45,46]; these authors also assessed the reliability of
the RQA features of %DET and laminarity for postural sway, but instead focused on the
determination of the optimum recurrence threshold. However, a reliability analysis helps
one focus on the best features for individual tasks and applications. In the current work, a
statistical study was performed to assess the internal consistency reliability of the dynamic
RQA features calculated for the nonlinear analysis of the acceleration data acquired by
wearable sensors for changes in human body movements that occurred in older adults
while performing Si2St and St2Si activities in order to provide timely help and aid for the
prevention of falls in older adults at home and in hospitals and elderly care institution.

2. Materials and Methods
2.1. Data

The “Activity recognition with healthy older people using a batteryless wearable
sensor” dataset [47,48] was made publicly available by the UC Irvine Machine Learning
Repository [49] and was used for experimental analysis of the currently proposed research.
The data were acquired with a flexible, batteryless, and wearable wireless identification and
sensing platform (W2ISP) [25,47,50] that was attached above the clothing of the participants
at the sternum level, as shown in Figure 1. The W2ISP contains a 3-axis accelerometer
(ADXL330) and a microprocessor (MSP430F2132), and it records acceleration signals in
the x-, y-, and z-axes with respect to the device’s and subject’s pose. We obtained the
frontal (a f ), lateral (al), and vertical (av) acceleration, which was measured with respect
to the sensor’s position on body. The data were collected in two clinical room settings,
RoomSet1 and RoomSet2, which differed with respect to the RFID antenna placement and
the number of antennas deployed. The setting of RoomSet1 uses 4 RFID reader antennas
around the room (one on the ceiling level and 3 on the wall level) for the collection of
data, whereas the room setting RoomSet2 used 3 RFID reader antennas (two at the ceiling
level and one at the wall level) for the collection of motion data. The sensor settings were
designed to investigate the living conditions in hospitals and elderly care institutions.
The room settings, however, did not differ with respect to the sensor’s placement on
the subject’s body and the sequence of scripted activities to be performed. Hence, the
acceleration signal recorded by W2ISP was unaffected by the room RFID antenna settings.
The component of acceleration along the vertical axis av showed a clear change in the
signal value as the position of the human body changed while performing the two activities
under consideration, Si2St and St2Si. Hence, we used the av signal for calculating the RQA
parameters in this study [29,46,51–54].

Fourteen healthy older subjects aged 78± 4.9 years performed different ADLs: walk-
ing to the chair, sitting on the chair, getting off the chair, walking to the bed, lying on
the bed, getting off the bed, and walking to the door. Hence, the possible class labels
assigned (provided with each signal) for every sensor observation were: sitting on the bed
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(labeled 1), sitting on the chair (labeled 2), lying on the bed (labeled 3), and ambulating
(labeled 4), where ambulating included standing and walking around the room. Out of
14, 9 subjects performed the scripted activities in RoomSet1 and 5 subjects performed the
scripted activities in Roomset2. The sequence of movements carried out for Si2St and St2Si
by the subjects during the data collection is shown in Figure 2. Based on the labels provided
with each recorded sample, the occurrence of Si2St was identified as sequence 1-4 (sitting
on a chair to standing) and 2-4 (sitting on a bed to standing). The occurrence of the St2Si
movement was identified as 4-1 (standing to sitting on a chair) and 4-2 (standing to sitting
on a bed). A total of 34 and 54 transitions were identified as Si2St and St2Si, respectively, for
RoomSet1. A total of 18 and 10 transitions were identified as Si2St and St2Si, respectively, for
RoomSet2. The number of instances for the Si2St and St2Si activities recorded in RoomSet1
and RoomSet2 was in agreement with the frequency of activities reported in [28] for the
current dataset. Based on the labels provided with each recorded sample, the occurrence
of Si2St was identified as sequence 1-4 (sitting on a chair to standing) and 2-4 (sitting on
a bed to standing). The occurrence of St2Si movement was identified as 4-1 (standing to
sitting on a chair) and 4-2 (standing to sitting on a bed). For Si2St, the point of change
in the sequence of labels from (1,2) to 4 was identified as the transitional point, and an
interval of 10 s before and 10 s after the transitional point was used to identify a complete
Si2St transition. For St2Si, the point of change in the sequence of labels from 4 to (1,2)
was identified as the transitional point, and an interval of 10 s before and 10 s after the
transitional point was used to identify a complete Si2St transition. The complete signal
consisted of more continual points before and after the cut points selected here. Due to the
anonymity of the available records, there is no way of knowing which trials came from the
same subject, and hence, a within-subject reliability study was not possible. Therefore, a
partially standardized within-trial reliability study that would still be feasible for clinicians
to follow is presented in this work [55].

Figure 1. Wearable sensor settings during data acquisition: (a) positioning of the W2ISP sensor on the
subject’s body, (b) the W2ISP sensor attached to the subject’s clothing with isolating silver fabric [47].

The data were sparse, meaning that the time intervals for recording inter-sensor
observations were variable. When a W2ISP sensor has adequate power supply, an upper-
bound frequency of 40 Hz is achieved, as reported in [28]. Hence, using the timestamp
provided with the data, we used cubic polynomial interpolation to attain the final signal
frequency of 40 Hz (maximum), as suggested in [28]. The interpolated av signal obtained
at this point was noisy because the power for sampling the embedded physical sensor
was inadequate. A linear polynomial smoothing filter with a span of 0.1 (a span of 0.1
means that 10% of the data points are used to calculate the smoothed output) was applied
to smooth out any noisy spikes. A sample of the Si2St and St2Si signals acquired in raw,
interpolated, and filtered forms is shown in Figure 3.
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Figure 2. Experimental setting for data collection using W2ISP during activities: (a) sit-to-stand
(Si2St); (i) sitting on the bed/chair, (ii) transition, (iii) standing; (b) stand-to-sit (St2Si); (i) standing,
(ii) transition, (iii) sitting on the bed/chair.

(a) (b)

Figure 3. Raw, interpolated, and filtered vertical acceleration signal av acquired from W2ISP while
performing (a) Si2St and (b) St2Si.

2.2. Methodology

The proposed procedure included two steps: (1) RQA feature extraction and (2) relia-
bility analysis. These are explained in detail below.

2.3. RQA Feature Extraction

The value of the embedding dimension (m) and delay (τ) affects the computed RQA
feature values heavily [32]; hence, an optimized upper bound, m = 5, was first calculated
and set by using the false nearest neighbors method proposed by [56], and an optimized τ
for each Si2St and St2Si was calculated by using the average displacement method proposed
by [57] for all av signal records. A recurrence matrix was created by first determining the
Euclidean distances between all embedded vectors, which is called a distance matrix. A
threshold (ρ) that was computed as 20% of the mean distance was applied, and all points
in the normalized distance matrix with values below this threshold were identified as
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recurrent points; the resulting matrix of 1s and 0s was called a recurrence matrix (R), and it
was calculated by using Equation (1).

Rm,ρ
i,j = Θ(ρ− ‖av(i)− av(j)‖) (1)

where av(i), av(j) ε R, i, j = 1, 2, 3, ..., N, and N is the number of states. In this case, every
new incoming sample in the time-series signal represents the next state, and hence, N also
represents the length of the signal for which the recurrence is plotted. m is the embedding
dimension, Θ(.) : R→ (0, 1) is the Heaviside step function, ‖(.)‖ is the norm, and ρ is a
distance threshold calculated as 0.2 ·mean(‖av(i)− av(j)‖.

Figure 4a,b show the sample distance matrices and Figure 4c,d show the corresponding
recurrence matrices R calculated for the St2Si and Si2St activities.

Figure 4. Recurrence matrices for the activities: (a) Si2St (m = 5, τ = 15, ρ = 0.01); (b) St2Si (m = 5,
τ = 18, ρ = 0.04) before the step function; (c) Si2St; (d) St2Si after the step function.

Several variables were used to quantify the structure present in the recurrence matrix.
The percent recurrence (%RR) signifies how often a trajectory visits similar locations in the
state space and is computed as the percentage of recurrent points in the recurrence matrix,
as shown in Equation (2):

%RR =
1

N(N − 1)

N

∑
i 6=j=1

Rm,ρ
i,j (2)
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The percent determinism (%DET) is quantified as the fraction of recurrent points
that form diagonal lines (at least three consecutive points in length) parallel to the main
diagonal and is computed as shown in Equation (3):

%DET =
∑N

l=dmin
lHD(l)

∑N
i,j=1 Rm,ρ

i,j
(3)

Entropy (ENT) is the Shannon entropy of the frequency distribution of the diagonal
line lengths and measures the complexity of the system. The entropy of the probability
distribution of the diagonal lines’ lengths p(l) of Rm,ρ

i,j is calculated as shown in Equation (4):

ENT = −
N

∑
l=dmin

p(l)l(p(l)), where p(l) =
HD(l)

∑N
l=dmin

HD(l)
(4)

The average diagonal line length (L) is the average time for which two segments of the
trajectory are close to each other. In this case, L can be interpreted as the mean prediction
time and is calculated as shown in Equation (5):

L =
∑N

l=dmin
lHD(l)

∑N
l=dmin

HD(l)
(5)

where i, j = 1, 2, 3, ..., N, N is the number of states, HD(l) is the histogram of the frequency
of occurrence of different diagonal line lengths l in Rm,ρ

i,j , and dmin is the minimum number
of consecutive points considered as a diagonal. In this case, dmin ≥ 3.

2.4. Reliability Analysis

There are multiple statistical methods that can be used to measure the reliability of
a parameter—for example, split half, test–retest, parallel forms, etc. Test–retest means
administering the same test to the same group of individuals in two different time periods
and correlating the first set of scores with the second. Parallel forms implies administer-
ing two alternate forms—say, A and B—of a test to the same group of individuals and
correlating the scores on form A with the scores on form B. The split-half method implies
administering a test to a group of individuals and splitting the test in half. This method
treats the two halves of a measure as alternate forms. The correlation between these two
split halves is used to estimate the reliability of the test. Due to the nature of the data
collection procedure used in the current experiment, we used the split-half method to
assess and analyze the degree of reliability of the RQA parameters in the case of the Si2St
and St2Si movements. To assess the relative reliability, an internal consistency analysis was
performed by using the split-half method for RoomSet1 and RoomSet2 while considering the
environmental and physiological conditions to be individually and internally consistent
for the RoomSet1 and RoomSet2 data. Split-half reliability statistics were calculated for the
RR, DET, ENT, and L for the data from RoomSet1 (Si2St (n = 34) and St2Si (n = 54)) and
for the data from RoomSet2 (Si2St (n = 10) and St2Si (n = 18)), where n is the number of
recognized transitions. The split-half reliability was reported in terms of Cronbach’s alpha
(α) [43,58] with a 95% confidence interval (95% CI), as shown in Equation (6), to show how
closely related the RQA measures were for Si2St and St2Si. A paired t-test was performed
on the two randomly split halves of the RQA parameters to verify the effect of systematic
bias, and the result was reported in terms of the p-value. To assess the degree of reliability
achieved, Munro’s criterion was applied, which ranks the reliability range according to the
value of α’: very low: 0–0.25, low: 0.26–0.49, moderate: 0.50–0.69, high: 0.7–0.89, and very
high: 0.9–1.00 [55,59,60].

α =
k

k− 1
· (1− ∑k

i=1 var(xi)

varT
) (6)
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where x ε RR, DET, ENT, L, i refers to items in x, and var(xi) refers to the inter-item
variance of the ith items in both randomly split halves. varT is the total variance or the
variance of the sum of two half-split population distributions, and k is the number of items
in the half set, i.e., for each test sample with n items, k = n/2.

To assess the absolute reliability, we used the standard error of measurement (SEM)
with α as the reliability coefficient; this was calculated as SEM = std(xi) ·

√
1− α, where

std(xi) represents the standard deviation of the test scores, as given in [61,62]. The mini-
mal metrically detectable change (MMDC) or change that could be considered clinically
different between two measurements is defined as the 95% CI of the SEM of the RQA
measure, i.e, MMDC = ± 1.96 · SEM [62,63]. In addition, the coefficient of variation (CV)
was determined for the comparison of the absolute reliability between RQA measures and
was calculated as CV = (std(xi)/mean(xi)) · 100, where mean(xi) and std(xi) are the mean
and standard deviation of xi, respectively.

3. Results

Tables 1 and 2 demonstrate α with the respective 95% CIs, SEM, MMDC, and CV for
different RQA variables for the relative and absolute internal consistency reliability of the
Si2St and St2Si activities in RoomSet1 and RoomSet2, respectively. There was no significant
difference, i.e., all of the t-tests yielded p-values between 0.5 and 0.7 between the mean
scores over two randomly split halves of data records for the %DET and ENT measures in
all cases, which indicates the absence of any systematic bias due to the measuring device or
method applied. According to Munro’s criterion, %RR and ENT showed high reliability and
%DET showed borderline values between moderate and high correlation with respect to α
for the Si2St activity in RoomSet1. %DET, ENT, and L showed high reliability for the Si2St
activity in RoomSet2. In the case of the St2Si activity, %DET and ENT showed a moderate to
high correlation in most cases for the data collected in both RoomSet1 and RoomSet2. SEM
values as low as 0.5, 0.04, and 0.39 were observed for the measurements of %RR, %DET, and
ENT, respectively, which shows that there was a small spread of measurement error across
repeated measurements. L showed a very high standard deviation and, accordingly, upper
bound for the SEM and CV in both Si2St (SEM = 10.32, CV = 82.74) and St2Si (SEM = 7.08,
CV = 94.11) cases, and is thus reported to be unreliable.

Table 1. Reliability analysis of the RQA measures in the activities of Si2St (n = 34) and St2Si (n = 54) for RoomSet1.

Si2St St2Si
α (95% CI) SEM MMDC CV(%) α (95% CI) SEM MMDC CV(%)

RR 0.58 (0.12 0.72) 0.05 0.10 22.00 0.35 (0.07 0.52) 0.06 0.12 22.57
DET 0.54 (0.23 0.74) 0.11 0.21 0.04 0.51 (0.44 0.59) 0.04 0.08 0.00
ENT 0.72 (0.48 0.86) 0.39 0.76 13.91 0.64 (0.37 0.81) 0.56 1.10 17.18

L 0.21 (0.08 0.78) 8.32 16.30 82.74 0.45 (0.26 0.69) 6.88 13.50 94.11

Moderate to high correlations with 0.5 < α < 0.89 is shown in bold. RQA: recurrence quantification analysis, α: Cronbach’s alpha, SEM:
standard error of measurement, MMDC: minimal metrically detectable change, CV: coefficient of variation.

Table 2. Reliability analysis of the RQA measures in the activities of Si2St (n = 10) and St2Si (n = 18) for RoomSet2.

Si2St St2Si
α (95% CI) SEM MMDC CV(%) α (95% CI) SEM MMDC CV(%)

RR 0.16 (0.08 0.32) 2.04 3.99 25.64 0.25 (-0.1 0.32) 1.40 2.74 19.07
DET 0.68 (0.33 0.86) 0.45 0.88 0.64 0.29 (0.01 0.35) 0.16 0.31 0.50
ENT 0.71 (0.48 0.86) 2.23 4.37 5.81 0.69 (0.37 0.81) 2.56 5.01 6.41

L 0.55 (0.43 0.88) 10.32 20.22 39.74 0.18 (0.06 0.38) 7.08 13.87 44.31

Moderate to high correlations with 0.5 < α < 0.89 are shown in bold. RQA: recurrence quantification analysis, α: Cronbach’s alpha, SEM:
standard error of measurement, MMDC: minimal metrically detectable change, CV: coefficient of variation.
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4. Discussion

The relative reliability in terms of the correlation coefficient α indicates a prediction of
the correlation between two samples that are drawn randomly from a population. It shows
how consistent the components are with the entire measurement.

The higher and significant correlations reported for %DET and ENT suggest that
the consistent feature values obtained for %DET and ENT reflect similar repeated body
movements for Si2St and St2Si across almost all trials and subjects for the signals recorded in
both RoomSet1 and RoomSet2. Hence, the %DET and ENT are the most reliable RQA features
for use in the quantification and characterization of Si2St and St2Si body movements in
healthy older adults. The %RR proved to be reliable in some cases, and L showed a large
spread in values in almost all cases. Hence, both %RR and L are suggested to be unreliable
features in the current study. Although the number of experimental trials and subjects
can affect changes in the numerical values of the parameters, a larger population might
provide a better insight into the reliability of these parameters.

The absolute reliability was found to be higher for the %RR, %DET, and ENT, which
was consistent with the relative reliability. The smaller the SEM is, the more precise the
measurement capacity of the instrument will be. Overall, the low values for the SEM
showed the precision of the RQA measures for the repeated records of the Si2St and St2Si
acceleration signals that were acquired using wearable sensing equipment. Consequently,
smaller standard errors translated into more sensitive measurements of a state change.
The MMDC determined by the SEM in this case represented the minimal changes in the
values of %RR, %DET, ENT, and L that corresponded to the lower bound of a clinically
significant change in body movement. Consistently low MMDC values were shown for
%RR, %DET, and ENT, which means that they represented changes in movement more
sensitively. L showed a very high CV, and could hence not be used further, as similarly
reported in [45]. These findings suggest that while the sensor used and RQA measures
based on the recorded acceleration signals showed acceptable reliability in a clinical or
residential room setting, the %DET and ENT were the most reliable nonlinear recurrence
features, and they are suggested to be used further for activity and intent recognition
algorithms for the early detection of falls according to Si2St and St2Si body movements in
healthy older adults.

Different types of features—namely time-domain, [30,31], frequency-domain [25,28,52,64–66],
autoregressive [28,29], and biomechanical features, such as the vertical displacement and
tilt angle [67], correlation, spectral energy, and maximum and approximate entropy [31]—
have been used in the literature, and their authenticity has been proven in terms of their
good classification performance in activity and intent recognition. A similar future study
on the reliable RQA features reported here can be performed to assess their discrimination
capabilities in intent recognition algorithms for different phases of body movements while
performing Si2St and St2Si. Since different subjects recorded the test ADL activities in
RoomSet1 (subject ID 1–9) and RoomSet2 (subject ID 10–14), the test–retest and parallel-form
reliability could not be assessed due to the lack of standardization of the test. Furthermore,
the number of samples used to compute the statistics was enough for RoomSet1, but was not
enough for RoomSet2. A more comprehensive and standardized test could be performed
with larger numbers of repeated measurements, i.e., with a greater sampling size and in
different sessions with respect to time or location. In addition, the subjects performing the
body movements for this particular study belonged to a healthy older group. In the future,
we would like to explore other datasets with subjects that belong to a different age group
or that have neurological or physical disorders.

5. Conclusions

The current research presented a relative and absolute reliability analysis of recurrence
measures for the characterization of sit-to-stand and stand-to-sit activities in healthy older
adults. The reliability statistics indicated a reliable representation in terms of determinism
and entropy for acceleration signals that were acquired through wearable sensors with a
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minimum error of measurement for both the Si2St and St2Si activities; hence, they can be
used further for fall risk analysis in older adults while standing or sitting.

Author Contributions: Conceptualization, A.N. and Y.S.K.; methodology, A.N. and D.C.N.; software,
A.N. and D.C.N.; validation, A.N., D.C.N. and Y.S.K.; formal analysis, D.C.N.; resources, Y.S.K.;
writing—original draft preparation, A.N. and D.C.N.; writing, review and editing, A.N. and Y.S.K.;
visualization, A.N. and D.C.N.; supervision, Y.S.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This paper was (partially) supported by the Post-Doc. Scholarship Program of
KOREATECH.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RFID Radio frequency identification
RQA Recurrence quantification analysis
Si2St Sit-to-stand
St2Si Stand-to-sit
RR Recurrence rate
DET Determinism
ENT Entropy
L Average diagonal length
FNN False nearest neighbors

References
1. Kralj, A.; Jaeger, R.J.; Munih, M. Analysis of standing up and sitting down in humans: Definitions and normative data

presentation. J. Biomech. 1990, 23, 1123–1138. [CrossRef]
2. Martinez-Hernandez, U.; Dehghani-Sanij, A.A. Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor.

Pattern Recognit. Lett. 2019, 118, 32–41. [CrossRef]
3. Massé, F.; Bourke, A.K.; Chardonnens, J.; Paraschiv-Ionescu, A.; Aminian, K. Suitability of commercial barometric pressure

sensors to distinguish sitting and standing activities for wearable monitoring. Med. Eng. Phys. 2014, 36, 739–744. [CrossRef]
[PubMed]

4. Schenkman, M.; Berger, R.A.; Riley, P.O.; Mann, R.W.; Hodge, W.A. Whole-body movements during rising to standing from
sitting. Phys. Ther. 1990, 70, 638–648. [CrossRef]

5. Aggarwal, J.K.; Ryoo, M.S. Human activity analysis: A review. ACM Comput. Surv. 2011, 43, 1–43. [CrossRef]
6. Mourey, F.; Grishin, A.; d’Athis, P.; Pozzo, T.; Stapley, P. Standing up from a chair as a dynamic equilibrium task: A comparison

between young and elderly subjects. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, B425–B431. [CrossRef] [PubMed]
7. de Morais Faria, C.D.C.; Saliba, V.A.; Teixeira-Salmela, L.F. Musculoskeletal biomechanics in sit-to-stand and stand-to-sit activities

with stroke subjects: A systematic review. Fisioter. Em Mov. 2010, 23, 35–52. [CrossRef]
8. Nuzik, S.; Lamb, R.; VanSant, A.; Hirt, S. Sit-to-stand movement pattern: A kinematic study. Phys. Ther. 1986, 66, 1708–1713.

[CrossRef]
9. Cadore, E.L.; Izquierdo, M. New strategies for the concurrent strength-, power-, and endurance-training prescription in elderly

individuals. J. Am. Med. Dir. Assoc. 2013, 14, 623–624. [CrossRef]
10. Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability,

and balance in physically frail older adults: A systematic review. Rejuvenation Res. 2013, 16, 105–114. [CrossRef]
11. Cadore, E.L.; Casas-Herrero, A.; Zambom-Ferraresi, F.; Idoate, F.; Millor, N.; Gómez, M.; Rodriguez-Mañas, L.; Izquierdo, M.

Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in
institutionalized frail nonagenarians. Age 2014, 36, 773–785. [CrossRef] [PubMed]

12. Aissaoui, R.; Dansereau, J. Biomechanical analysis and modelling of sit to stand task: A literature review. In Proceedings of
the IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.
99CH37028), Tokyo, Japan, 12–15 October 1999; Volume 1, pp. 141–146.

13. Deandrea, S.; Lucenteforte, E.; Bravi, F.; Foschi, R.; La Vecchia, C.; Negri, E. Risk factors for falls in community-dwelling older
people: A systematic review and meta-analysis. Epidemiology 2010, 21, 658–668. [CrossRef] [PubMed]

14. Tinetti, M.E. Preventing falls in elderly persons. N. Engl. J. Med. 2003, 348, 42–49. [CrossRef]

http://doi.org/10.1016/0021-9290(90)90005-N
http://dx.doi.org/10.1016/j.patrec.2018.03.020
http://dx.doi.org/10.1016/j.medengphy.2014.01.001
http://www.ncbi.nlm.nih.gov/pubmed/24485500
http://dx.doi.org/10.1093/ptj/70.10.638
http://dx.doi.org/10.1145/1922649.1922653
http://dx.doi.org/10.1093/gerona/55.9.B425
http://www.ncbi.nlm.nih.gov/pubmed/10995039
http://dx.doi.org/10.1590/S0103-51502010000100004
http://dx.doi.org/10.1093/ptj/66.11.1708
http://dx.doi.org/10.1016/j.jamda.2013.04.008
http://dx.doi.org/10.1089/rej.2012.1397
http://dx.doi.org/10.1007/s11357-013-9586-z
http://www.ncbi.nlm.nih.gov/pubmed/24030238
http://dx.doi.org/10.1097/EDE.0b013e3181e89905
http://www.ncbi.nlm.nih.gov/pubmed/20585256
http://dx.doi.org/10.1056/NEJMcp020719


Electronics 2021, 10, 2438 11 of 12

15. Tinetti, M.E.; Williams, C.S. Falls, injuries due to falls, and the risk of admission to a nursing home. N. Engl. J. Med. 1997,
337, 1279–1284. [CrossRef] [PubMed]

16. Schultz, A.B.; Alexander, N.B.; Ashton-Miller, J.A. Biomechanical analyses of rising from a chair. J. Biomech. 1992, 25, 1383–1391.
[CrossRef]

17. Bernardi, M.; Rosponi, A.; Castellano, V.; Rodio, A.; Traballesi, M.; Delussu, A.; Marchetti, M. Determinants of sit-to-stand
capability in the motor impaired elderly. J. Electromyogr. Kinesiol. 2004, 14, 401–410. [CrossRef] [PubMed]

18. Doulah, A.; Shen, X.; Sazonov, E. A method for early detection of the initiation of sit-to-stand posture transitions. Physiol. Meas.
2016, 37, 515. [CrossRef]

19. Wolf, K.H.; Hetzer, K.; Zu Schwabedissen, H.; Wiese, B.; Marschollek, M. Development and pilot study of a bed-exit alarm based
on a body-worn accelerometer. Z. Gerontol. Geriatr. 2013, 46, 727–733. [CrossRef]

20. Ganea, R.; Paraschiv-Ionescu, A.; Büla, C.; Rochat, S.; Aminian, K. Multi-parametric evaluation of sit-to-stand and stand-to-sit
transitions in elderly people. Med. Eng. Phys. 2011, 33, 1086–1093. [CrossRef]

21. Janssen, W.G.; Kulcu, D.G.; Horemans, H.L.; Stam, H.J.; Bussmann, J.B. Sensitivity of accelerometry to assess balance control
during sit-to-stand movement. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 479–484. [CrossRef]

22. Janssen, W.G.; Bussmann, J.B.; Horemans, H.L.; Stam, H.J. Validity of accelerometry in assessing the duration of the sit-to-stand
movement. Med. Biol. Eng. Comput. 2008, 46, 879–887. [CrossRef] [PubMed]

23. Pozaic, T.; Lindemann, U.; Grebe, A.K.; Stork, W. Sit-to-Stand Transition Reveals Acute Fall Risk in Activities of Daily Living.
IEEE J. Transl. Eng. Health Med. 2016, 4. [CrossRef]

24. Ejupi, A.; Brodie, M.; Lord, S.R.; Annegarn, J.; Redmond, S.J.; Delbaere, K. Wavelet-Based Sit-To-Stand Detection and Assessment
of Fall Risk in Older People Using a Wearable Pendant Device. IEEE Trans. Biomed. Eng. 2017, 64, 1602–1607. [CrossRef] [PubMed]

25. Torres, R.L.S.; Ranasinghe, D.C.; Shi, Q. Evaluation of wearable sensor tag data segmentation approaches for real time activity
classification in elderly. In Proceedings of the International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services, Tokyo, Japan, 2–4 December 2013; Springer: Cham, Switzerland, 2013; pp. 384–395.

26. Penatti, O.A.; Santos, M.F. Human activity recognition from mobile inertial sensors using recurrence plots. arXiv 2017,
arXiv:1712.01429.

27. Capela, N.A.; Lemaire, E.D.; Baddour, N. Improving classification of sit, stand, and lie in a smartphone human activity
recognition system. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications
(MeMeA) Proceedings, Turin, Italy, 7–9 May 2015; pp. 473–478.

28. Wickramasinghe, A.; Ranasinghe, D.C. Recognising activities in real time using body worn passive sensors with sparse data
streams: To interpolate or not to interpolate? In Proceedings of the 12th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, Coimbra, Portugal, 22–24 July 2016; pp. 21–30. [CrossRef]

29. Khan, A.M.; Lee, Y.K.; Lee, S.Y.; Kim, T.S. A triaxial accelerometer-based physical-activity recognition via augmented-signal
features and a hierarchical recognizer. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1166–1172. [CrossRef] [PubMed]

30. Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In Proceedings of the International Conference on
Pervasive Computing, Vienna, Austria, 21–23 April 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–17.

31. Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity recognition from accelerometer data. In Proceedings of the Twentieth
National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference,
Pittsburgh, PA, USA, 9–13 July 2005; Volume 5, pp. 1541–1546.

32. Parlitz, U. Nonlinear time-series analysis. In Nonlinear Modeling; Springer: Berlin/Heidelberg, Germany, 1998; pp. 209–239.
33. Riley, M.; Balasubramaniam, R.; Turvey, M. Recurrence quantification analysis of postural fluctuations. Gait Posture 1999, 9, 65–78.

[CrossRef]
34. Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007,

438, 237–329. [CrossRef]
35. Webber, C.; Marwan, N. Recurrence quantification analysis. In Theory and Best Practices; Springer: Cham, Switzerland, 2015.
36. Ramdani, S.; Tallon, G.; Bernard, P.L.; Blain, H. Recurrence quantification analysis of human postural fluctuations in older fallers

and non-fallers. Ann. Biomed. Eng. 2013, 41, 1713–1725. [CrossRef]
37. Anderson, N.C.; Bischof, W.F.; Laidlaw, K.E.; Risko, E.F.; Kingstone, A. Recurrence quantification analysis of eye movements.

Behav. Res. Methods 2013, 45, 842–856. [CrossRef]
38. Gurtner, L.M.; Bischof, W.F.; Mast, F.W. Recurrence quantification analysis of eye movements during mental imagery. J. Vis. 2019,

19, 1–17. [CrossRef]
39. Fragkou, A.D.; Karakasidis, T.E.; Nathanail, E. Detection of traffic incidents using nonlinear time series analysis. Chaos 2018, 28,

063108. [CrossRef]
40. Santos, B.R.; Delisle, A.; Larivière, C.; Plamondon, A.; Imbeau, D. Reliability of centre of pressure summary measures of postural

steadiness in healthy young adults. Gait Posture 2008, 27, 408–415. [CrossRef]
41. Green, S.B.; Yang, Y.; Alt, M.; Brinkley, S.; Gray, S.; Hogan, T.; Cowan, N. Use of internal consistency coefficients for estimating

reliability of experimental task scores. Psychon. Bull. Rev. 2016, 23, 750–763. [CrossRef]
42. Varghese, R.; Hui-Chan, C.W.; Wang, E.; Bhatt, T. Internal consistency and test-retest reliability of an instrumented functional

reaching task using wireless electromyographic sensors. J. Electromyogr. Kinesiol. 2014, 24, 593–600. [CrossRef] [PubMed]
43. Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [CrossRef]

http://dx.doi.org/10.1056/NEJM199710303371806
http://www.ncbi.nlm.nih.gov/pubmed/9345078
http://dx.doi.org/10.1016/0021-9290(92)90052-3
http://dx.doi.org/10.1016/j.jelekin.2003.09.001
http://www.ncbi.nlm.nih.gov/pubmed/15094153
http://dx.doi.org/10.1088/0967-3334/37/4/515
http://dx.doi.org/10.1007/s00391-013-0560-2
http://dx.doi.org/10.1016/j.medengphy.2011.04.015
http://dx.doi.org/10.1109/TNSRE.2008.2003386
http://dx.doi.org/10.1007/s11517-008-0366-3
http://www.ncbi.nlm.nih.gov/pubmed/18626677
http://dx.doi.org/10.1109/JTEHM.2016.2620177
http://dx.doi.org/10.1109/TBME.2016.2614230
http://www.ncbi.nlm.nih.gov/pubmed/28113226
http://dx.doi.org/10.4108/eai.11-8-2015.151111
http://dx.doi.org/10.1109/TITB.2010.2051955
http://www.ncbi.nlm.nih.gov/pubmed/20529753
http://dx.doi.org/10.1016/S0966-6362(98)00044-7
http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.1007/s10439-013-0790-x
http://dx.doi.org/10.3758/s13428-012-0299-5
http://dx.doi.org/10.1167/19.1.17
http://dx.doi.org/10.1063/1.5024924
http://dx.doi.org/10.1016/j.gaitpost.2007.05.008
http://dx.doi.org/10.3758/s13423-015-0968-3
http://dx.doi.org/10.1016/j.jelekin.2014.05.011
http://www.ncbi.nlm.nih.gov/pubmed/25026882
http://dx.doi.org/10.1007/BF02310555


Electronics 2021, 10, 2438 12 of 12

44. Cronbach, L.J.; Shavelson, R.J. My current thoughts on coefficient alpha and successor procedures. Educ. Psychol. Meas. 2004,
64, 391–418. [CrossRef]

45. Mazaheri, M.; Negahban, H.; Salavati, M.; Sanjari, M.A.; Parnianpour, M. Reliability of recurrence quantification analysis
measures of the center of pressure during standing in individuals with musculoskeletal disorders. Med. Eng. Phys. 2010,
32, 808–812. [CrossRef] [PubMed]

46. van Lummel, R.C.; Walgaard, S.; Maier, A.B.; Ainsworth, E.; Beek, P.J.; van Dieën, J.H. The Instrumented Sit-to-Stand Test
(iSTS) has greater clinical relevance than the manually recorded sit-to-stand test in older adults. PLoS ONE 2016, 11, e0157968.
[CrossRef] [PubMed]

47. Torres, R.L.S.; Ranasinghe, D.C.; Shi, Q.; Sample, A.P. Sensor enabled wearable RFID technology for mitigating the risk of falls
near beds. In Proceedings of the 2013 IEEE International Conference on RFID (RFID), Orlando, FL, USA, 30 April–2 May 2013;
pp. 191–198.

48. Roberto, L.S.T.; Damith, R. Activity Recognition with Healthy Older People Using a Batteryless Wearable Sensor. 2016. Avail-
able online: https://archive.ics.uci.edu/ml/datasets/Activity+recognition+with+healthy+older+people+using+a+batteryless+
wearable+sensor (accessed on 23 June 2021).

49. Dua, D.; Graff, C. Irvine, CA: University of California, School of Information and Computer Science UCI Machine Learning
Repository. 2017. Available online: https://archive.ics.uci.edu/ml/citation_policy.html (accessed on 30 September 2021).

50. Kaufmann, T.; Ranasinghe, D.C.; Zhou, M.; Fumeaux, C. Wearable quarter-wave folded microstrip antenna for passive UHF
RFID applications. Int. J. Antennas Propag. 2013, 2013, 129839. [CrossRef]

51. Janssen, W.G.; Bussmann, J.B.; Horemans, H.L.; Stam, H.J. Analysis and decomposition of accelerometric signals of trunk and
thigh obtained during the sit-to-stand movement. Med. Biol. Eng. Comput. 2005, 43, 265–272. [CrossRef]

52. Doheny, E.P.; Walsh, C.; Foran, T.; Greene, B.R.; Fan, C.W.; Cunningham, C.; Kenny, R.A. Falls classification using tri-axial
accelerometers during the five-times-sit-to-stand test. Gait Posture 2013, 38, 1021–1025. [CrossRef] [PubMed]

53. Millor, N.; Lecumberri, P.; Gomez, M.; Martinez-Ramirez, A.; Izquierdo, M. Kinematic parameters to evaluate functional
performance of sit-to-stand and stand-to-sit transitions using motion sensor devices: A systematic review. IEEE Trans. Neural
Syst. Rehabil. Eng. 2014, 22, 926–936. [CrossRef] [PubMed]

54. Taslim Reza, S.M.; Ahmad, N.; Choudhury, I.A.; Ghazilla, R.A.R. A fuzzy controller for lower limb exoskeletons during
sit-to-stand and stand-to-sit movement using wearable sensors. Sensors 2014, 14, 4342–4363. [CrossRef] [PubMed]

55. Carter, R.; Lubinsky, J. Rehabilitation Research: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2015.
56. Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D Nonlinear Phenom.

1997, 110, 43–50. [CrossRef]
57. Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. Reconstruction expansion as a geometry-based framework for choosing proper delay

times. Phys. D Nonlinear Phenom. 1994, 73, 82–98. [CrossRef]
58. Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53. [CrossRef]
59. Kellar, S.P.; Kelvin, E.A. Munro’s Statistical Methods for Health Care Research; Wolters Kluwer Health/Lippincott Williams & Wilkins:

Philadelphia, PA, USA, 2013.
60. Munro, C.A. The development of a pressure ulcer risk-assessment scale for perioperative patients. Aorn J. 2010, 92, 272–287.

[CrossRef]
61. Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports

medicine. Sports Med. 1998, 26, 217–238. [CrossRef]
62. Donoghue, O.A.; Savva, G.M.; Börsch-Supan, A.; Kenny, R.A. Reliability, measurement error and minimum detectable change in

mobility measures: A cohort study of community-dwelling adults aged 50 years and over in Ireland. BMJ Open 2019, 9, e030475.
[CrossRef] [PubMed]

63. Corriveau, H.; Hébert, R.; Prince, F.; Raîche, M. Intrasession reliability of the “center of pressure minus center of mass” variable
of postural control in the healthy elderly. Arch. Phys. Med. Rehabil. 2000, 81, 45–48. [PubMed]

64. He, Z.; Jin, L. Activity recognition from acceleration data based on discrete cosine transform and SVM. In Proceedings of the 2009
IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 5041–5044.

65. Muhammad, S.A.; Klein, B.N.; Van Laerhoven, K.; David, K. A feature set evaluation for activity recognition with body-worn
inertial sensors. In Proceedings of the International Joint Conference on Ambient Intelligence, Amsterdam, The Netherlands,
16–18 November 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 101–109.

66. Shinmoto Torres, R.L.; Visvanathan, R.; Hoskins, S.; Van den Hengel, A.; Ranasinghe, D.C. Effectiveness of a batteryless and
wireless wearable sensor system for identifying bed and chair exits in healthy older people. Sensors 2016, 16, 546. [CrossRef]

67. Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Bula, C.J.; Robert, P. Ambulatory system for human motion analysis using
a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 2003, 50, 711–723. [CrossRef]
[PubMed]

http://dx.doi.org/10.1177/0013164404266386
http://dx.doi.org/10.1016/j.medengphy.2010.04.019
http://www.ncbi.nlm.nih.gov/pubmed/20570205
http://dx.doi.org/10.1371/journal.pone.0157968
http://www.ncbi.nlm.nih.gov/pubmed/27391082
https://archive.ics.uci.edu/ml/datasets/Activity+recognition+with+healthy+older+people+using+a+batteryless+wearable+sensor
https://archive.ics.uci.edu/ml/datasets/Activity+recognition+with+healthy+older+people+using+a+batteryless+wearable+sensor
 https://archive.ics.uci.edu/ml/citation_policy.html
http://dx.doi.org/10.1155/2013/129839
http://dx.doi.org/10.1007/BF02345965
http://dx.doi.org/10.1016/j.gaitpost.2013.05.013
http://www.ncbi.nlm.nih.gov/pubmed/23791781
http://dx.doi.org/10.1109/TNSRE.2014.2331895
http://www.ncbi.nlm.nih.gov/pubmed/25014957
http://dx.doi.org/10.3390/s140304342
http://www.ncbi.nlm.nih.gov/pubmed/24599193
http://dx.doi.org/10.1016/S0167-2789(97)00118-8
http://dx.doi.org/10.1016/0167-2789(94)90226-7
http://dx.doi.org/10.5116/ijme.4dfb.8dfd
http://dx.doi.org/10.1016/j.aorn.2009.09.035
http://dx.doi.org/10.2165/00007256-199826040-00002
http://dx.doi.org/10.1136/bmjopen-2019-030475
http://www.ncbi.nlm.nih.gov/pubmed/31719075
http://www.ncbi.nlm.nih.gov/pubmed/10638875
http://dx.doi.org/10.3390/s16040546
http://dx.doi.org/10.1109/TBME.2003.812189
http://www.ncbi.nlm.nih.gov/pubmed/12814238

	Introduction
	Materials and Methods
	Data
	Methodology
	RQA Feature Extraction
	Reliability Analysis

	Results
	Discussion
	Conclusions
	References

