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Abstract: This paper presents a new intelligent control strategy to augment the low-voltage ride-
through (LVRT) potential of photovoltaic (PV) plants, and the transient stability of a complete
grid system. Modern grid codes demand that a PV plant should be connected to the main power
system during network disturbance, providing voltage support. Therefore, in this paper, a novel
fuzzy logic controller (FLC) using the controlled cascaded strategy is proposed for the grid side
converter (GSC) of a PV plant to guarantee voltage recovery. The proposed FLC offers variable
gains based upon the system requirements, which can inject a useful amount of reactive power
after a severe network disturbance. Therefore, the terminal voltage dip will be low, restoring its
pre-fault value and resuming its operation quickly. To make it realistic, the PV system is linked to the
well-known IEEE nine bus system. Comparative analysis is shown—using power system computer-
aided design/electromagnetic transients including DC (PSCAD/EMTDC) software—between the
conventional proportional–integral (PI) controller-based cascaded strategy and the proposed control
strategy to authenticate the usefulness of the proposed strategy. The comparative simulation results
indicate that the transient stability and the LVRT capability of a grid-tied PV system can be augmented
against severe fault using the proposed FLC-based cascaded GSC controller.

Keywords: fuzzy logic controller (FLC); grid side converter (GSC); low-voltage ride-through (LVRT);
photovoltaic (PV) system; transient stability

1. Introduction

Due to the global warming issues of fossil fuel-based power stations and the increasing
cost of energy generation, the presence of large-scale renewable energy sources (RESs) in
current power systems has been increasing over the last decade. Among different types
of RESs, PV power plants are among the most popular because they are continuously
decreasing in price [1–4].

According to Refs. [5,6], the global capacity of installed PV systems was 512 GW in
2018 [5], and it will reach about 1.1 TW in 2022. A recent report showed that China, India,
the USA, Japan, and Australia are in the top positions, having installed 44.3 GW, 10.8 GW,
10.7 GW, 6.7 GW, and 3.8 GW, respectively, in 2018 [5].

China’s total installed capacity reached 175.4 GW, retaining the country’s market
leadership position [5]. Additionally, in the USA, solar energy holds the most significant
percentage of RESs [7].

1.1. Motivation

The enormous integration of PV plants into the prevailing power grid introduces issues
concerning the entire power system’s stability and reliability [8–11]; therefore, transmission
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system operators (TSOs) are directed to revise the existing grid code to ensure the smooth
and reliable operation of solar PV-connected grid systems [12].

Low-voltage-ride through (LVRT) capability is one of the major grid code obligations of
grid-tied PV systems, requiring a PV system to stay connected during network disturbances,
and requiring it to support the grid in restoring its terminal voltage following a disturbance
to the nominal value, within a pre-defined time frame as set or programed [13–17].

1.2. Literature Reviews

Several researchers have investigated the characteristics of solar PV systems under
network disturbance conditions and have designed several LVRT control strategies accord-
ingly [18–25].

For example, in Ref. [18], a supercapacitor was used in the DC side of a PV system,
consuming additional power and eventually compensating for the output power, which
augmented the LVRT capability; however, the overall system cost increased with superca-
pacitor use. In Refs. [19,20], several cascaded proportional–integral (PI) controllers were
used to augment the competence and stability of the LVRT. Typically, PI controllers provide
fixed gain; however, they cannot operate well under the non-linearities of a PV system,
which include a power system’s parameter variations, which can lead to the power system’s
instability.

Additionally, the PI controller parameter setting that is used in the cascaded control
strategy is cumbersome, especially when it comes to the applications of a power system
that are tough to express as a transfer function or a mathematical model. In Refs. [21–25],
meta-heuristic algorithms including the whale optimization algorithm [21], the genetic
algorithm [22], the Taguchi approach [23], the harmony search algorithm [24], and the
salp swarm algorithm [25], were presented for the optimal design of PI controllers in the
cascaded control technique. These approaches are effective tools for dealing with non-
linearity issues; however, the fine-tuning of numerous PI controllers necessitates complex
computational studies and considerable effort. Moreover, a typical PI controller with fixed
gain in both the inner and outer loops of the cascaded control technique cannot inject
an enormous quantity of reactive power throughout the fault period. Reactive power
injection is necessary during the transient state to ensure LVRT capability; thus, the LVRT
competency of PV systems cannot be ensured by adopting these techniques.

On the other hand, fuzzy logic controllers (FLCs) have the benefit of using artificial
learning to model the system. They can manage the non-linearity of the grid system prop-
erly by proving an adjustable gain throughout the transient circumstances and allow for
parameter variations. A FLC is reliant on its designer’s expertise in fine-tuning membership
functions (MFs) using if–then rules. FLCs have been widely used in the power industry to
tackle a variety of issues [26].

In Ref. [27], a fuzzy gain scheduling PI controller was designed to improve the power
system’s transient stability; however, the FLC controller required three gains (Kp, Ki, Kd) to
be set simultaneously [27], which made the fuzzy rules more challenging and complicated.

Additionally, a FLC was applied to the hybrid power system’s fault current limiter
(FCL) to augment the LVRT performance in Ref. [28]. However, the introduction of auxiliary
components may increase the overall system’s cost.

1.3. Contributions

In light of the above discussion, this study introduces a new control approach based
on FLCs to enhance the LVRT competency of a grid-tied PV station/plant. The main
contributions and novelties of this study are listed below:

(1) A new FLC is incorporated along with the traditional PI controller in the inner loop of
the cascaded control technique to enrich the LVRT proficiency of a PV system. Due to
its variable gain, the proposed FLC will inject an efficient quantity of reactive power
to maintain the terminal voltage at pre-fault value. The single FLC in a cascaded
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controller will offer less computation burden and is cheaper than having many FLCs
in the cascaded controller [29].

(2) A comparative analysis is presented, comparing the proposed control strategy with
the conventional control strategy developed in Ref. [30]; this shows the importance of
the proposed control strategy, taking the severe three-line-to-ground (3LG) fault into
account.

(3) Design procedures of the proposed PV system, protection system, and maximum
power point tracking (MPPT) system are also presented in detail.

(4) Finally, the transient stability of the grid system both for the proposed and for the
conventional controllers of the PV station/plant is judged by transient stability index
computation [31]. This is one of the prominent aspects of this paper.

1.4. Organization

The remainder of the paper is arranged as follows: Section 2 describes the PV power
plant model with the proposed controller; Section 3 shows the simulation results with
detailed analysis and discussion; Section 4 presents the stability index computation; and
Section 5 concludes, providing some future research directives of this research work.

2. Design of a PV Power Station

An overall block diagram of a PV system and its control method is presented in Figure 1.
A PV panel is attached to the grid using a boost converter and a grid side converter (GSC).
The converters are designed using insulated gate bipolar transistors (IGBTs). The boost
converter transforms the uncontrolled DC voltage into controlled DC voltage, and the GSC
transforms this controlled DC voltage into grid-appropriate AC voltage.
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The boost converter and the GSC are operated by the boost converter and the grid side
controller, respectively. The converter controller generates suitable gate signals with the
help of pulse width modulation (PWM) techniques for the IGBTs. The detailed mechanisms
of the control methods are discussed in Section 2.2, Section 2.3 andSection 2.4.

2.1. PV Array Design

The PV array is designed using series and parallel combinations of PV modules.
Figure 2 shows a single diode PV model, which is usually used to represent a single PV
cell because of its accuracy and simplicity. The model is comprised of a controlled current
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source, parallel diodes, and two resistances. The two resistances (i.e., parasitic) represent
the losses [32].
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Figure 2. Equivalent circuit diagram of a single diode PV module.

The relationship between the current (I) and the voltage (V) of a PV module can be
represented by the following non-linear equation [33–37]:

I = IPV − Io

[
exp

(
V + Rs I

aVt

)
− 1
]
− V + Rs I

Rp
(1)

Here, IPV = the current of the photovoltaic, Io = the reverse saturation current of the
diode, a = the identity factor of the diode, Rp = parallel resistance, and Rs = series resistance.

The mathematical model of a single diode PV module, considering actual and nominal
conditions, is adequately presented in Ref. [33]. To build a 50 MW PV station, the Kyocera
KC200GT PV module is adopted, where a single module has the maximum power (Pmax) =
200.143 W, maximum voltage (Vmp) = 26.3 V, and maximum current (Imp = 7.6 A), respec-
tively. The parameters of the aggregated PV model are listed in Table 1. The I-V and P-V
characteristic curves of the designed PV array are presented in Figure 3.

Table 1. Designed parameters of a 50 MW PV station.

Parmameter Value

Pmax (maximum power) 50 MW
Vmp (voltage at maximum power) 973.1 V
Imp (current at maximum power) 51440 A

Nm (series-connected module in a string) 37
Np (number of parallel-connected strings) 6760

Rs (series resistance per cell) 0.344 Ω
Rp (parallel resistance per cell) 150.69 Ω
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2.2. Boost Converter Controller and MPPT

As discussed in earlier sections, a boost converter is added to raise the output DC
voltage and to obtain the maximum power from the PV panel. This mechanism can be
achieved by adjusting the output voltage (Vo) of a PV panel according to ambient tempera-
ture and irradiance. A boost converter controller is presented in Figure 4. This controller
uses a fractional open circuit voltage algorithm to achieve maximum power.
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The duty cycle reference (Dref) for the boost controller can be expressed as follows [38]:

Dre f = 1 −
NMKmpVoc_pilot

Vo
(2)

Here, Voc_pilot = the open circuit voltage of the pilot module and Kmp = the proportional
constant. The optimum value of the KC200GT solar module is 0.8023 [38].

In Figure 4, two separate PI controller loops are incorporated to operate the boost
converter. The upper loop ensures MPPT operation, whereas the lower loop will activate
during the fault period; this is because, in a fault condition, the DC-Link voltage (Vdc) will
rise beyond the rated value. Therefore, the DC power cannot be injected into the grid via an
inverter system. During this transient period, the lower controller will protect the DC-Link
circuit by maintaining the DC voltage at a pre-defined reference level (1.05 pu) with the
help of a comparator circuit.

2.3. Proposed GSC Controller

The proposed cascaded GSC controller, based on a conventional PI controller and
a FLC, is presented in Figure 5. It is designed using the rotating dq frame of reference.
A phase-locked loop (PLL) is incorporated to generate a transformation angle θ) for the dq
axis. This control technique consists of the outer and inner loops. The outer loops regulate
the PV station’s terminal voltage (Vg) and Vdc at a constant level (1.2 kV). The inner loops
regulate the dq axis currents of the converter. Three PI controllers and one FLC are used
in this GSC control strategy to track the error signals. The reason for using one FLC in
the inner loop is to inject more reactive power during the fault period, so that the Vg can
resume its regular operation quickly after any fault event. This happens because the FLC
can deliver adjustable gain, depending upon system parameters during the fault period.
The Taguchi method is utilized in this work for the optimal design of PI controllers in a
cascaded control system [23].
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A comparator is also embedded in the lower portion of the proposed GSC controller.
During the fault period, the active power cannot be transferred to the grid system. When the
Vg is less than 0.9 pu, this comparator triggers a zero signal; thus, active power injection
becomes zero. This comparator also ensures maximum reactive power injection during
fault events by preserving the apparent power rating of the converter within its maximum
limit.

Finally, the generated reference dq axis voltage can be transformed into three-phase
reference voltage, which is compared with the high frequency carrier wave to generate the
necessary gate signals to drive IGBTs.

2.4. Proposed FLC Design

The power system is non-linear in characteristics and subject to network disturbances;
therefore, a FLC is used, as shown in Figure 5, to deal with non-linearities. The FLC has
an insensitivity to fault due to its variable gain. To design the FLC for a GSC controller,
as shown in Figure 6, the error of the d-axis current (eId) and the change in the error of eId
(d(eId)/dt) are employed as input; whereas, the output employs d-axis reference voltage
(Vd*). Here, 1/z is one sampling of time delay. The basic structure of the FLC is presented in
Figure 6, where it is mainly composed of fuzzification, fuzzy inference, and defuzzification.
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Figure 6. Structure of the proposed FLC.

In fuzzification, two inputs are converted to fuzzy sets between [0, 1] with the help
of MFs. The MFs for the input and output are presented in Figure 7. In this study the
triangular MF, including overlap, is used, and it is composed of five linguistic variables
as follows: negative big (NG), negative small (NS), zero (Z), positive small (PS), and PB
(positive big), respectively.
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Figure 7. Membership functions of an FLC.

The grade of input MFs can be obtained as follows [39]:

µ(x) = [w − 2(x − m)]/2 (3)

where µ(x) is the value of grade of membership, w is the width, m is the coordinate of the
point at which the grade of membership is 1, and x is the value of the input variable.

One of the most common MFs in practice is the triangle MF. Straight lines are used to
construct triangular MFs. MFs with straight lines have the benefit of being simple [40].

The rule-based block basically consists of if–then conditional statements, as given
below:

IF <eId is NS> and <d(eId)/dt is Z> THEN <∆Vd* is PS>;
IF < eId is PS> and <d(eId)/dt is NS> THEN <∆Vd* is Z>.
The twenty-five rules’ data are presented in Table 2, and these are the data used in

this research work.

Table 2. FLC rules.

∆Vd* d(eId)/dt

NB NS Z PS PB

eId

NB PB PB PS PS Z
NS PB PS PS Z NS
Z PS PS Z NS NS

PS PS Z NS NS NB
PB Z NS NS NB NB

In this work, Mamdani’s max–min method is used for inference mechanisms [41].
The center of gravity method is used for defuzzification to obtain ∆Vd* due to its simplic-
ity [42], which is given by following equation:

∆Vd
∗ =

N
∑

i=1
µiCi

N
∑

i=1
µi

(4)

where N is the total number of rules, µi is the membership grade for ith rule, and Ci is the
coordinate corresponding to the maximum value of the respective consequent membership
function.

3. Simulation Results and Discussion

The modified version of the IEEE nine bus power plant model, depicted in Figure 8,
was used for a simulation study which was conducted using the PSCAD/EMTDC software
suites. Three synchronous generators (SGs), three loads, and six transmission lines formed
the primary system. In this model there were three power plants; two were thermal-based
power stations (SG1 and SG2) and one was a hydro-based power station (SG3).
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Figure 8. System model of a modified IEEE nine bus power plant model.

In addition, the automatic generation control (AGC) technique was adopted in SG1
and SG3; however, was SG2 directed as the governor free control (GF). The governor
models, AGC method, and exciter model used in this work were adopted from Ref. [43].
The capacities of the individual conventional power plants were 1.5, 2.5, and 2.0 pu,
respectively, and the parameters for each SG were taken from Ref. [44]. Finally, a PV plant
was linked to bus 5, using transmission lines and transformers. The rating of the PV station
is 0.5 pu.

The simulation time step 20 µs was selected to acquire precise results. To boost the
power system’s stability and reliability, the grid codes of various countries were retained.
The primary differences between several grid codes are minor; therefore, in this study,
the LVRT attributes are based on E.ON Netz (German grid codes) [17,45]. The ability of
the proposed FLC system is validated by subjecting the test system to the symmetrical
3LG fault, adjacent to bus 11 of Figure 8. Finally, the outcomes are compared with the
conventional PI-based cascaded control mechanism [30].

The 3LG fault was employed in the system model at 0.1 s and it lasted for 0.1 s
(5 cycles). The circuit breakers (CBs) were tripped at 0.2 s and closed again at 1 s, assuming
the 3LG fault was already cleared.

Figure 9 shows the impact of the 3LG fault on terminal voltage of the PV system and
the response of the control system in maintaining terminal voltage. The terminal voltage
falls very quickly in conventional cases once a fault occurs. However, the voltage dip in the
proposed case is very small because the proposed FLC-controlled GSC of the PV system
injects enough reactive power to sustain the grid. The reactive power injection capability
for both cases is shown in Figure 10. Figure 11 presents the active power profile at bus 10.
It has been observed that a secondary power drop occurs in the conventional PI-controlled
GSC case, whereas, it is more stable in the proposed FLC-controlled GSC case. Even though
both cases follow the LVRT grid codes by maintaining stability within 1.5 s, the control
system response is very fast and has low fluctuation in the proposed case.
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Figure 9. Terminal voltage profile of the conventional and proposed PV plants at bus 10.
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Figure 10. Reactive power profile of the conventional and proposed PV plants at bus 10.
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Figure 11. Active power profile of the conventional and proposed PV plants.

The rotor speed and active power profile of the SGs of the main power system have less
fluctuation in the proposed case; this is due to an active power injection that fluctuates less
during the fault period, as shown in Figures 12 and 13. Figure 14 presents the power angle
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response of SGs. After the fault, it is observed that the power angle response fluctuates more
in the conventional case than in the proposed case. Additionally, the frequency response of
the entire power system is more stable in the proposed case than in the conventional case,
as depicted in Figure 15.
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Figure 13. Active power profile of the SGs.
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Figure 14. Power angle profile of the SGs.
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From the above discussion, it is evident that the proposed technique shows a signifi-
cantly higher performance and higher robustness than the conventional case.

4. Transient Stability Evaluation

The transient stability of the complete system is evaluated using a transient stability
index (Wc) [31,46,47], which is defined as follows:

Wc(s) =
T∫

0

∣∣∣∣ d
dt

Wtotal

∣∣∣∣dt/system base power (5)

Here, system base power = the sum of all the rated capacities of conventional SGs, T =
simulation time (10 s), and Wtotal = total kinetic energy. Wtotal is computed using the rotor
speed of each SG as follows:

Wtotal =
N

∑
i=1

Wi(J) (6)

Wi =
1
2

Jiω
2
mi(J) (7)

Ji =
2Hi
ω2 MVA rating (each generator) × 106(kg·m2) (8)

Here, N = the number of SGs, Wi = the kinetic energy of an individual SG, Ji = the
moment of inertia of a particular SG, ωmi = the rotor angular velocity of a particular SG in
mechanical rad/s, ω = 2πf is the synchronous speed in rad/s, and Hi = the inertia constant
of an individual SG.

The lower the value of Wc, the better the system’s transient stability. The Wc value
is lower in the proposed case compared with the conventional case, as indicated in
Figure 16, which validates the importance and accuracy of the proposed FLC-controlled
GSC controller.
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5. Conclusions

This paper proposed a new control mechanism, based on the FLC, for a PV station
to augment transient stability in terms of LVRT competence. The FLC offers variable gain
depending upon the system’s parameters, helping to inject an adequate amount of reactive
power to resume the terminal voltage to its pre-fault condition. The system response
of the proposed mechanism complies with all the international LVRT grid codes, which
subjects the system to the 3LG fault. The simulation results were compared with those of
the conventional controller to verify the proposed FLC-controlled GSC controller. Based
on the simulation results and the performance evaluations, the following features of the
proposed approach are noteworthy:

1. The proposed technique provides a faster response and increased accuracy in main-
taining the terminal voltage of the PV plant and the transient stability of the entire
system.

2. The proposed FLC-controlled GSC controller offers an almost negligible voltage dip
after a severe network fault.

3. The proposed control method deals with the system’s non-linearities more effectively.

Therefore, the proposed strategy can be incorporated with the grid-tied PV system
for sustainable grid networks. This study accounts for a constant load, constant solar
irradiance, and constant cell temperature. In the future, a variable load, variable solar
irradiance, and variable cell temperature can be considered. Additionally, the adaptive
neuro-fuzzy-based control strategy can be applied in the place of a FLC to automatically
scale the MFs with the GSC controller of a PV system.
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